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Abstract— Estimating a user’s expertise level based on ob-
servations of their actions will result in better human-robot
collaboration, by enabling the robot to adjust its behaviour and
the assistance it provides according to the skills of the particular
user it’s interacting with. This paper details an approach
to incrementally and continually estimate the expertise of a
user whose goal is to optimally complete a given task. The
user’s expertise level, here represented as a scalar parameter,
is estimated by evaluating how far their actions are from
optimal. The proposed approach was tested using data from an
online study where participants were asked to complete various
instances of a simulated kitting task. An optimal planner was
used to estimate the “goodness” of all available actions at any
given task state. We found that our expertise level estimates
correlate strongly with observed after-task performance metrics
and that it is possible to differentiate novices from experts after
observing, on average, 33% of the errors made by the novices.

HRI, human profiling, expertise estimation

I. INTRODUCTION

The success of human-robot teams in domains such as
manufacturing, logistics and in-home assistance crucially
depends on understanding the human factors that influence
team dynamics and performance. In these domains, the
productivity and efficiency of a human-robot team is strongly
affected by the capability of the robot to model its partner
and to adapt its own behavior accordingly [1]. This includes,
for example, modifying the robot’s behaviour based on the
human’s intent, awareness, engagement or trust.

Although it is less often studied, expertise is another factor
that can play an important role in human-robot collaboration
[2], [3]. With accurate knowledge of the user’s expertise for
a given task, the robot can better decide the frequency and
level of assistance that its teammate requires. Knowledge
of the user expertise level will also help the robot to plan
possible interventions during the task in order to maximize
the team’s overall performance while minimizing interrup-
tions. Moreover, if the robot cannot complete its own actions
successfully, due to an error or a novel situation, the robot
can decide to observe and learn from a known expert [4].

In order for a robot to provide expertise-aware assistance,
we first need to reliably estimate a user’s expertise level
during a task. Existing approaches rely on task-dependent
performance metrics [3] and can only be estimated upon
task completion [2], which limits the possibility of a robot
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adapting to the user’s expertise level online during task
execution. In this paper, we propose a method that incre-
mentally and continually estimates a user’s expertise level.
In particular, we are interested in the early detection of non-
experts, also called novices, since they are likely to benefit
the most from the robot’s timely assistance. We estimate a
user’s expertise level by looking at their actions rather than
after-task performance metrics. To do so, we leverage the
rationality coefficient first introduced in [5] as an indicator
of an individual’s ability to choose actions that will result in
better performance [6]. That is, a user that frequently chooses
the best actions is considered to be an expert while a user that
often makes mistakes is considered to be a novice. We refer
to this rationality coefficient as our expertise level estimate.

This paper makes three key contributions: (1) an extension
of the Bayesian framework proposed in [6] to estimate
a user’s expertise level in an incremental and continuous
manner; (2) the use of an optimal planner to determine
the value of all actions available at each task state; and
(3) the validation of the proposed framework on human
data collected during execution of a simulated kitting task.
Together, these three contributions lay the foundation of a
future robotic system capable of inferring, reasoning about
and adapting its behavior to the expertise level of the user
with whom it interacts.

The following section briefly discusses the existing work
on the estimation of a user’s expertise level. Section III
describes the proposed approach for incrementally estimating
a user’s expertise level. Section IV details the task, planner,
and user study used for validation of the proposed approach.
In Section V we present the results of the proposed expertise
estimation on our user study’s data. We conclude the paper
in Section VI with a discussion of our findings, limitations
and future work.

II. RELATED WORK

The study and inference of a user’s expertise level is
a shared problem between the human-computer (HCI) and
human-robot (HRI) interaction research communities. In this
section, we briefly review existing work in both fields.
Similarly, since the aforementioned rationality coefficient is
a key aspect of the method proposed in this paper, we also
review past applications of this coefficient.

A. Expertise in Human-Robot Interaction

One common approach for estimating an individual’s ex-
pertise is supervised learning, where task-specific measures
of performance are used directly to predict expertise. In [3],
an individual’s skill level is predicted using a binary classifier
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that receives as input a vector containing 7 carefully selected
performance metrics. The binary classifier was trained using
data from a sample of users trained across several days. Data
from the first and last days of training was used to define
the novice and expert categories respectively. In [7], Hidden
Markov Models (HMM) were used to define an expert model
that encodes expert surgical gestures. This expert model was
trained using the kinematic data of experienced surgeons on
a surgical simulator. The expertise level of a new user was
determined by comparing their performance to the reference
expert model.

Other approaches for expertise prediction include ques-
tionnaires that measure a user’s knowledge about a specific
task [8] and task modeling approaches such as Markov
Decision Processes (MDP). In [2], the authors used a hand-
tuned partially observable MDP (POMDP) model to predict
the likelihood of a user being an expert. The robot holds an
initial belief about a user’s expertise and makes an update to
this belief after each task instance has been completed.

In this paper, instead of employing task-dependent per-
formance metrics, we propose an incremental approach that
predicts a user’s expertise level by looking at their action
choices and the values of those choices. The value of each
action is obtained using a general task planner.

B. Expertise in Human-Computer Interaction
Similar performance-based approaches for expertise pre-

diction have been used by the HCI research community.
However, instead of relying on expert demonstrations, ex-
pertise is established on the basis of an observed population.
In [9], the authors defined a set of performance metrics that
best summarized the skills needed to succeed at a rhythmic
target-hitting task. The expertise of each participant was
later established by comparing their individual performance
measures to the mean and standard deviation of the full
group.

The prediction of expertise and/or skill level is particularly
relevant in the domain of intelligent learning systems. Two
main approaches are commonly used: Bayesian knowledge
tracing (BKT) and item response theory (IRT) [10]. In BKT,
a skill is modeled as a latent variable in a HMM. Given
an interaction in which this skill is applied, updates on the
latent variable are done based on the correctness of the
interaction. In IRT, given a sequence of observed actions
or answers, skill mastery is estimated by maximizing its
probability of occurrence given the observed sequence. Both
approaches require an expert to define the relations between
the performance indicators, skills and actions [6].

In this paper, expertise predictions are based on an in-
dividual’s data alone and population samples or measures
are not needed. Similarly, rather than identifying and using
performance indicators for each skill of interest, we predict
expertise at a task in which multiple skills are involved by
considering the value of each action taken during the task.

C. Human Modeling and Prediction
First introduced in [5] as a measure of the degree of

confidence on an agent’s ability to chose highly rewarded

actions, the aforementioned rationality coefficient has been
applied in multiple HRI scenarios in the last decade. In
their “Bayesian theory of mind”, [11] used this coefficient
to model a human’s capacity for reasoning about the goals
and beliefs of others. In [12], the rationality coefficient was
used to infer a human’s understanding on the effect of their
actions on the dynamics of the world.

Instead of using the rationality coefficient to reason about
a human’s mental model and capacities, [13] used it as an
indicator of how well a robot’s model can describe a human’s
current motion. Similarly, in [14], this same coefficient
is used to detect whether a human’s demonstrations and
corrections are relevant for behaviours a robot is currently
learning. Closer to the work proposed in this paper, in [6], the
rationality coefficient is used to infer an individual’s expertise
level. However, their approach requires fully observable
sequences of actions. Additionally, an MDP model has to
be solved for each possible coefficient value. In [15], a
Bayesian framework is proposed in order to estimate a user’s
adaptability. In this paper we apply a similar formulation to
the estimate of a user’s expertise level.

III. PROBLEM STATEMENT AND APPROACH

A. Human Expertise Modeling

We consider the setting where an observer R (the robot)
watches an agent H (the human) complete a given task.
Both the observer and the agent share the same knowledge
about the states, actions and goals of the task. We model
each task as a transition system tuple 〈S,A〉, where S
is the finite set {s1, ..., sN} of task states and A is the
transition relation between different states. In our case, A
corresponds to the finite set of actions allowed across all
states and A(st) defines the set of actions available at state
st. We define a policy π as a mapping from the state space
to a probability distribution over the action space, that is,
π : S × A → [0, 1]. Similarly, we define an optimal policy
π∗(s, a) as a stationary policy that incurs the minimum cost,

π∗(st, at) =

{
1, if argminaQ

∗(st, at)

0, otherwise.
(1)

where Q∗(st, at) = C(at) + argminaQ
∗(st+1, at+1),

referred hereinafter as the action value, is the cost of action
at, C(at), plus the total cost required to complete the task
after executing action at at state st and transitioning to state
st+1.

We consider tasks whose goal is to minimize the number
of actions required for completion. Given this type of task
and our action value definition, the set of actions A(st)
available at each state st can be grouped into 3 different cat-
egories: optimal (A∗(st)), redundant (Ared(st)) or mistakes
(Amiss(st)); with A(st) = A∗(st) ∪ Ared(st) ∪ Amiss(st). In
our test scenario, all actions have the same cost C(ai) = 1.
Thus, although the number of actions in each category varies
between different states, the same action value is shared
among all actions within the same category. We assume



that R knows the optimal policy, π∗(st, at), required to
complete such a task, and it uses this knowledge to gauge
H’s expertise. If the action choices made by H result in a
lower total cost, the observer R considers the agent H to be
an expert. If, on the contrary, H makes choices that result in
a higher total cost, the observer R considers the agent H to
be an non-expert.

The behavior of agent H is modeled according to the
principle of rational action, which states that an agent is
more likely to choose actions that they believe will help
them achieve their goals [16]. In other words, agent H also
aims at selecting actions with the smallest cost. However,
H’s capability to choose such actions is limited by their
expertise. That is, the more skilled (or expert) agent H is, the
more likely they are to choose optimal actions. We model
the human’s level of expertise through a Boltzmann policy
[5], [11], [12],

π(st, at) = p(at|st, β) =
1

Zst
exp(−βQ∗(st, at)) (2)

where st corresponds to the current task state, Q∗(st, at)
defines the cost of taking action at at the given state st under
the optimal action policy π∗(st, at) known by the observer
R, and Zst represents an appropriate normalization constant.
In our case, this constant was adapted to be independent of
the number of actions of each type (i.e., optimal, redundant
or mistakes) available at each state and it is defined as Zst =
sum(Q∗(x, st), Q

∗(y, st), Q
∗(w, st), with x ∈ A∗(st), y ∈

Ared(st), and w ∈ Amiss(st). Similarly, to guarantee that∑
ã∈A(st)

p(ã|st, β) = 1, we compute probabilities over the
action categories available at each state rather than over the
set of all individual actions.

In this model, the coefficient β ∈ [0,∞) is called the
expertise coefficient and determines the degree to which
agent H is capable of following the optimal policy known
by R. As β → ∞, H is seen as more of an expert
(p(at|st, β)→ π∗(at|st) for all st ∈ S and at ∈ A); and as
β → 0, H is seen as more of a novice who selects actions
uniformly at random from the set of available actions
(p(at|st, β)→ Unif(A(st)) for all st ∈ S and at ∈ A).
While this model is simple, similar scalar models have been
applied to other human factors including trust [17] and
intent [18], and have resulted in improved performance and
human perception.

B. Expertise Estimation Through Bayesian Inference

Following the model proposed in [6], we assume that for
the j-th agent H there is a specific βj parameter that provides
a good estimate of this agent’s expertise. Given a series of
observations of the behavior of an agent Hj at a given task,

Oj = {(s1, a1), (s2, a2), ..., (sT , aT )}, (3)

where in state si agent Hj took action ai, we want to make
inferences about the expertise level of agent Hj . Formally,
we want to compute the posterior distribution over possible

βj values and determine which one is the most probable
given the observed behavior of agent Hj ,

p(βj |Oj) ∝ p(Oj |βj)p(βj) (4)

To calculate this distribution, the prior probability p(βj)
needs to be specified and the likelihood of the observed data
p(Oj |βj) computed. Since our formulation allow us to take
each action to be conditionally independent given the current
state and the agent’s expertise coefficient βj , the likelihood
p(Oj |βj) can be written as

p(Oj |βj) =
T∏
t=1

1

Zst
exp (−βjQ∗(st, at)) . (5)

After the posterior is computed, the maximum a posteriori
(MAP) estimate is taken as the predicted expertise coefficient
β̂j of agent Hj . This point estimate corresponds to the βj
value at which the posterior distribution is maximized,

β̂j = argmax
βj

p(βj |Oj). (6)

C. Incremental Expertise Inference

Given that each observed action is conditionally indepen-
dent given the current task state and the agent’s expertise
coefficient βj , the proposed Bayesian inference framework
provides us with a simple way to incrementally compute
the expertise coefficient βj of any agent Hj . That is, for
O = {o1, o2, o3} with oi = (si, ai),

p(βj |o1, o2, o3) ∝ p(o1, o2, o3|βj)p(βj),
= p(o2, o3|βj)p(o1|βj)p(βj),
= Likelihood of(o2, o3)× posterior after o1

(7)

More generally, the posterior having observed action-
states pairs (o1, ..., oK) is treated as the prior for any new
set of incoming observations (oK+1, ..., oT ). A βj estimate
obtained in this way after observing all T state-action pairs is
equivalent to the result obtained after seeing all observations
at once.

IV. EXPERIMENTAL DESIGN

The proposed expertise inference approach was tested
using observations obtained on a simulated kitting task.

A. Task Definition

Kitting is a common task in manufacturing assembly that
can benefit from human-robot collaboration [19]. Kitting
refers to the procedure of gathering all the components and
tools required for a task, and arranging them in a specific
way on a kit tray such that they can be efficiently picked up
or used during the manufacturing process. For this paper, a
simulated version of a kitting task was implemented. Figure
1 shows the configuration of the simulation environment at
the beginning of a kitting task. The task starts with a number
of containers (item (i) in Figure 1) stacked together on a



Fig. 1: View of simulated kitting task showing the elements
of the simulation: (i) containers, (ii) unloading platform, (iii)
unloading locations, (iv) kit tray, (v) target kit arrangement,
and (vi) container platforms.

container platform (item (vi) in Figure 1), each containing a
number of different components.

In order to place a component on the kit tray1 the
user needs to execute the following sequence of actions:
1) bring the container that holds the target component to
the unloading location (item (ii) in Figure 1); 2) unload
the component onto the unloading location (item (iii) in
Figure 1); 3) place the component at its target location in the
kit tray (item (iv) in Figure 1); and 4) return the container
to the container platforms (item (vi) in Figure 1). There is a
limit on the total number of components that can be unloaded
at a given time and the number of container platforms on
which the containers can be stacked. Similarly, the number
of containers and components to be placed can vary between
kitting tasks.

In order to complete this task, an agent or participant must
arrange, on the kit tray, all components as indicated by the
target kit arrangement (item (v) in Figure 1) while aiming for
minimum number of actions possible. Transitions between
task states are deterministic and all actions have 1 unit cost.

B. Estimating Action Values With a Planner

The action values Q∗(st, at) required for computing the
likelihood of any β expertise coefficient are obtained from a
planner built on the Planning Domain Definition Language
(PDDL) framework [20]. The PDDL provides a formal
way to represent the planning domain, problem instances,
constraints, and actions. After encoding our kitting task in
this representation, a symbolic planner was implemented to
compute a plan with the minimal number of actions as well
as the values of all actions available at a given task state.
The value Q∗(st, at) of a state-action pair (st, at) is then
defined as the number of actions needed to reach the task’s
goal given that action at has been taken at state st.

1A video showing how a simulated kitting task is completed can be be
found at https://youtu.be/hsg6aCZYQCo

The planner takes a PDDL-domain file and problem in-
stances (initial state, goal etc.) as inputs and implements an
A∗ search algorithm to find all possible optimal sequences of
actions leading from initial to the goal state. For the kitting
task, a state is defined by a set of predicates representing
the properties of the problem objects (e.g., location of
containers and components) and a set of functions which
are the properties that have numerical values (e.g., number
of unloading locations, number of components etc.).

The performance of any A∗ based planner depends on
the heuristic function used, which provides a lower bound
on the distance from current state to the goal (e.g. using
geometric distances in path planning domains). However, in
task planning problems like the kitting task, it is difficult
to formulate a measure of closeness of a state to the goal.
This, coupled with a large action and state space (200-400
grounded actions and over 4 million valid states), makes
the problem of determining the optimal plan in our kitting
task quite challenging. Therefore, we implemented a domain-
specific heuristic which calculates a lower-bound on the cost
of the optimal plan by taking into account the features of the
problem. The complete task is decomposed into sub-tasks
(moving containers, unloading and arranging components).
The heuristic value is determined based on the minimum
number of actions required to achieve the goal specifications
(e.g., the minimum number of containers to be moved or
components to be placed), while ensuring that the calculated
value is admissible to maintain optimality.

C. User Study

The data used to validate the proposed approach was
obtained through an online user study. The study was ap-
proved by the Office of Research Ethics at the University
of Waterloo. Participants were recruited through Amazon
Mechanical Turk (MTurk). Participation in this study took
approximately one hour and was remunerated up to $7.25
USD. A total of 35 participants took part in the study, with
28 completing all tasks. The results and analyses presented
in this paper only take into account the latter.

Participants were asked to complete 7 distinct instances
of a kitting task. These instances were selected from a pool
of randomly generated candidates to include different num-
bers of containers, components, and assembling resources,
i.e., platforms and unloading locations, as well as distinct
difficulty levels. The complexity of each instance, i.e., easy,
medium or hard, was first assessed using task characteristics
obtained from the planner such as the total cost of optimal
solution, number of states explored and branching factor.
A pilot test in which users’ performance was compared
to the known optimal solution was used to confirm the
initial complexity ranking obtained from the planner. Task
complexity of all kitting instances is summarized in I.

The user study was comprised of two stages: training
and testing. During the training stage, each participant was
shown a short video that explained the main actions and
features of the simulation. They were also asked to complete
a training kitting task (task 1). Upon completion of this

https://youtu.be/hsg6aCZYQCo
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Fig. 2: Comparison of participants’ percentile ranking based on the total number of actions (blue crosses) and βj coefficients
(green dots). βj coefficients were estimated using full length observations. Dotted vertical lines in the task 6 plot highlight
participants whose sequences of actions are discussed in detail in Sec. VI

.

stage, participants were asked to complete 6 different kitting
instances of varying complexity. They completed a first set
with tasks of easy, medium and hard complexity, followed of
a second set with the same complexity order. All participants
were shown the same sequence of task instances. Participants
were tasked with completing all kitting instances with the
minimum number of actions. For each task instance, all
participants’ actions were logged.

V. RESULTS

We apply empirical Bayesian estimation of expertise on
the data obtained from our user study. We consider βj ∈
{0.5, 0.6, 0.7, . . . , 5} as the discrete set of possible expertise
coefficients. This set of values was initially proposed in
[11] and later used in [12]. Additionally, given the size and
configuration of the tasks we are considering, the β = 0.5
β = 5 values result in probabilities of taking optimal actions
that vary between 33%− 50% and 93%− 99% respectively.
A discretized normal prior (µ = 2.75, σ = 1) over this set
was used. This prior allows us to capture that almost all
participants chose at least one or two non-optimal actions
during a task, and that although some participants made more
non-optimal choices than others, they did not act entirely at
random. The likelihood of a sequence of actions executed by
the j-th participant on the i-th task, Oij , given all possible
βj coefficients is computed using Eq. 5. The Q ∗ (st, at)
values for all actions and states are obtained from the planner.
Maximum a posteriori estimates are taken as the predicted
β̂ij expertise coefficient of the j-th participant on the i-th
kitting task.

Three different analyses were conducted to evaluate the
proposed expertise estimate. First, we validate the accuracy
of the β coefficients against a population-based estimate.
Second, we study the impact of the number of observed
actions in the accuracy of the β estimates. Last, we inves-
tigate whether there are differences between the number of
observations needed to identify novices and experts, and how
these numbers can vary according among tasks of different
complexity.

A. Comparison With Other Empirical Expertise Estimates

We use the expertise level relative to the population as a
baseline against which we measure the quality of the β̂ij ex-
pertise estimates. Since participants were asked to complete
each kitting task with the minimum number of actions, we
use the total number of actions taken by each participant at
each task as a metric of their performance. Participants are
ranked based on this metric and their expertise corresponds
to their percentile rank within the population sample. The
results of the comparison between the performance-based
percentile ranking and estimated β̂ij expertise coefficients
for a subset of task instances are shown in 2. Full length
observations were used during estimation.

Overall, we find that the estimated expertise coefficients
follow closely the baseline expertise ranking. Participants
with a low number of actions were predicted to have a high
β̂ij coefficient. Similarly, participants with a high number of
actions were predicted to have a low β̂ij . This close relation
between the baseline performance-based expertise ranking
and the estimated β̂ij coefficients is further supported by
strong Spearman correlation coefficients (ρ), with p−value ≤
0.01, between both expertise estimates (see I).

TABLE I: Correlation coefficient between baseline expertise
estimate and predicted β̂ij coefficients

Task Num. Task Complexity Coefficient (ρ)

1 Easy -1.0

2 Easy -1.0

3 Medium -1.0

4 Hard -0.998

5 Easy -0.999

6 Medium -0.929

7 Hard -0.975

We observe also that task 6 has a lower correlation
coefficient than the other tasks. This might be explained by
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differences between the type of non-optimal choices made by
participants and when those choices were made. Given our
current formulation, making mistakes is more costly than
taking redundant actions and non-optimal choices made at
the end of the task have a stronger influence on the resulting
β̂ij estimates than those made at the beginning of the task.
The first point is illustrated by participants A and B (see task
6 plot in 2). Both participants made 4 non-optimal choices
in total; while A made 2 mistakes and 2 redundant actions,
B took 3 redundant actions and made 1 mistake. The second
point is illustrated by participants C and D. Both participants
made 5 non-optimal choices in total, however contrary to C,
D made all those choices at the beginning of the task.

Compared to previous work, the proposed method results
in higher correlation coefficients, -0.985 in average, than
the ones reported by [2], 0.412 and 0.427. Although our
results are not directly comparable to [3], it is important to
notice that, contrary to their work, the proposed approach
does not require predefined performance metrics or several
task executions in order to determine a participant’s expertise
level.

B. Impact of Number of Observations

Since the proposed expertise estimates can be computed in
an incremental manner, we next investigate the impact that
the number of observations available during inference has on
these estimates. To do so, we employ the same Bayesian em-
pirical estimation procedure previously outlined. However,
we limit the number of observations used to calculate the
posterior distribution to different observation lengths. For
each participant, we consider the first k observations seen
at any given task, where k ∈ {5, 10, 15, . . . , T ij} and T ij
indicates the total number of actions the j-th participant took
during the i-th kitting task.

We use Spearman correlation coefficients (ρ) between the
predicted β̂ij estimates and the chosen performance metric,
i.e., total number of actions taken to complete each task, as
our measure of accuracy. The results are shown in Figure 3a.
Two main tendencies are observed. On the one hand, we

observe that four of the seven tasks, i.e., task 1, 2, 3, and
7, registered moderate correlation coefficients, i.e., −0.4 ≤
ρ ≤ −0.6 with p-value ≤ 0.05, after only 5 to 10 actions
have been seen during inference. Tasks 4, 5 and 6 required,
however, between 15 and 20 observations before reaching
similar correlation values. On the other hand, we observe that
for almost all tasks, strong correlation coefficients, i.e., ρ >=
−0.7 with p-value ≤ 0.05, were obtained after seeing at
least 25 observations. Task 7, however, required 15 additional
observations.

These differences in the number of observations needed to
reach both moderate and strong correlation coefficients can
be explained by how many participants made non-optimal
choices and when these choices were made during a task. To
illustrate this, we compare the distribution of the percentage
of participants that made non-optimal choices along task 1
and task 4 (see 3b). In the case of task 1, we observe that: i)
between 5%−45% of the total number of participants made
non-optimal choices within their first 10 actions, and ii) most
of these non-optimal choices were made by participants with
the highest number of total actions. On the contrary, with task
4, we observe that: i) almost all participants made few or non
optimal choices at the beginning of the task, and ii) between
5% and 75% of all participants made non-optimal choices
during the following 10 to 15 observations. Hence, com-
pared to task 1, in task 4 the proposed expertise estimation
approach required more observations in order to differentiate
the participants who made errors only during those first 25
observations from those who took more non-optimal actions
later on in the task. This pattern was reflected on the low
correlation registered during the first 20 observations. The
same pattern was observed for tasks 6 and 7.

C. Relation Between Task Complexity, Observation Length
and βj Estimates

Our previous analysis showed that for almost all kitting
tasks we needed between 20 and 30 observations before
obtaining reasonable expertise estimates. However, it might
be possible that the number of observations required to obtain
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(a) Accuracy rates for task 2 (easy) at
different observation lengths
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(b) Accuracy rates for task 3 (medium) at
different observation lengths
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(c) Accuracy rates for task 4 (hard) at
different observation lengths
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(d) Avg. number of non-optimal actions
for all expertise groups along task 2
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(e) Avg. number of non-optimal actions
for all expertise groups along task 3
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(f) Avg. number of non-optimal actions
for all expertise groups along task 4

Fig. 4: Evolution of expertise accuracy and avg. number of non-optimal actions observed for different expertise groups, i.e.,
experts, novices and intermediates, along tasks of varying complexity.

these estimates differ among expertise groups, i.e., experts
and novices, and tasks of different complexity. For instance,
we expect that: i) the identification of experts might require
more observations than that of the novices, since we need to
make sure that none or few non-optimal choices were made
along the task, and ii) more complex2 tasks might allow us to
identify novices faster than easier tasks, since novices would
be prone to make more mistakes during the former.

To measure the impact of these two factors on the number
of observations required to obtain reasonable expertise esti-
mates, participants were separated into two expertise groups:
experts and novices. Groups were defined in a similar manner
to the one described in [9]. Participants whose total number
of actions was σ = 0.6 standard deviation below the mean
were considered to be experts. The remaining participants
were considered as novices. A classification threshold be-
tween both groups, βexperts, was determined based on the
estimated βj coefficients obtained after using full length
observations. Expertise groups and classification thresholds
were defined for each kitting task. The expertise group, gij ,
of the j-th participant after observing their first k actions on
the i-th tasks was determined as follows

gij =

{
expert, if βj ≥ βexperts

novice, otherwise.
(8)

The total number of participants correctly assigned to each
group was used as the accuracy metric. We present results
for a subset of the kitting tasks, one at each complexity level,
in 4a to 4c. We also present the evolution of the number

2Task complexity was assigned as described in Sec. IV-C

of errors made by participants on each expertise group along
these tasks (see 4d to 4f). Overall, we observe that as task
complexity increases, the number of observations required to
separate novices from experts decreases. While for the easiest
task (task 2) between 10 and 30 observations were needed
to fully identify all novices, for the most complex one (task
4), similar accuracy was obtained after only 20 observations.
We also found that, compared to novices, experts required
more observations before being fully identified.

These results as well as the number of observations
required to accurately identify all expertise groups are closely
related to the distribution of non-optimal actions along each
task (see 4d to 4f). We found that as soon as the number of
non-optimal choices made by both groups deviates from each
other, 100% accuracy can be obtained. For example, in task
2, the overlap between the number of non-optimal choices
made by experts and novices ends after approximately 35
actions have been observed. Hence, between 35 and 40
observations are required to fully identify the participants
of each expertise group. The same pattern is observed in
tasks 3 and 4.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a method that incrementally
estimates a user’s expertise level by evaluating how optimal
the action choices made by a user are. A key aspect of the
proposed method is the ability to quantify the goodness of
all actions available at any given state visited by the user.
Contrary to [6], where an MDP problem must be solved for
each task and user, the proposed method benefits from the
use of an optimal planner as an oracle that provides accurate
estimates of any action’s value. By doing so, we are able



to test the proposed method in a task scenario that expands
over 400 possible actions and over 4 million valid states.
Also note that while the solving time of such problems does
not scale well with the number of states, optimal plans can
be computed offline because of the structure of a kitting task
(deterministic actions and fully observable states).

We evaluated the proposed approach on 7 instances of a
simulated kitting task. We compared our expertise estimates
against a baseline obtained from the overall population’s
performance (i.e., total number of actions taken to complete
a task) for each task. Our results indicate that our estimates
of expertise are good indicators of observed performance.
Note that the proposed approach could also have been used
to evaluate whether someone is an overall expert or novice
at kitting (rather than on each task). This would be done by
setting the posterior probability distribution of the previous
task as the prior of the next task.

We also evaluated the number of actions required during
inference in order to obtain accurate expertise estimates.
Our results indicate that, for the type of task we consider,
observation lengths between 20 and 25 actions are sufficient
to obtain βj estimates that strongly correlate with final task
performance. We also find that identifying a novice requires
fewer observations than identifying an expert. As a possible
application of this early detection, we could envision a robot
that guides the user through the best solution plan as soon
as it determines the user is a novice. Such an interaction,
in the context of the simulated kitting tasks, would result in
a performance improvement of 24.4% in average. Finally,
we observe that the observation length required to identify
novices decreases with task complexity. This offers pointers
towards active-learning settings in which a robot can propose
to its human partner to work on a more complex task in order
to quickly determine their expertise level.

A limitation of the work we present in this paper are
two assumptions that i) the planner provides informed and
correct estimates of any action’s value, and ii) the human
and the robot share a similar understanding of what makes
some actions more valuable than others. Thus, when our
estimates determine that a participant has a low expertise
coefficient it is because they are often choosing in a poor
manner. However, in a real case scenario, it might happen
that the robot’s (and planner) representation of the task does
not completely match the task’s current state and hence
actions that are judged as sub-optimal are in fact optimal.
Similarly, it might happen that the user’s understanding of
the dynamics of the environment and task does not match
that of the robot, and the user’s sub-optimal behavior is due
to this mismatch rather than due to the user’s inability to
identify optimal actions [21]. As future work, we will extend
the current model so the robot can further reason about the
significance of a poor β estimate and act accordingly.
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