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Abstract—In this paper we propose a new method for solving
multi-robot motion planning problems with complex constraints.
We focus on an important class of problems that require an
allocation of spatially distributed tasks to robots, along with
efficient paths for each robot to visits their task locations. We
introduce a framework for solving these problems that naturally
couples allocation with path planning. The allocation problem is
encoded as a Boolean Satisfiability problem (SAT) and the path
planning problem is encoded as a Traveling Salesman Problem
(Tsp). In addition, the framework can handle complex constraints
such as battery life limitations, robot carrying capacities, and
robot-task incompatibilities. We propose an algorithm that lever-
ages recent advances in Satisfiability Modulo Theory (SmT) to
combine state-of-the-art SAT and TSP solvers. We characterize
the correctness of our algorithm and evaluate it in simulation on
a series of patrolling, periodic routing, and multi-robot sample
collection problems. The results show our algorithm significantly
outperforms state-of-the-art mathematical programming solvers.

Index Terms—Path Planning for Multiple Mobile Robot Sys-
tems, Surveillance Systems, Autonomous Agents, Scheduling and
Coordination

I. INTRODUCTION

Robots are increasingly being asked to perform complex
missions that require the efficient coordination of multiple
robots over large and complex physical spaces. In this paper,
we focus on motion planning problems where a robot or
group of robots are dispatched to complete a set of spatially
distributed and interdependent tasks. Such problems arise in a
variety of robot applications. In environmental monitoring and
patrolling, robots with on-board sensing are tasked with se-
lecting and visiting viewpoints to assess traffic conditions [1],
crop health [2], security threats [3], [4], or for general data
collection [5]. In exploration tasks, robots are used to observe
and potentially collect samples from a previously unexplored
environment [6], [7], [8] (an example sample collection task
for two robots is shown in Figure 1). In flexible manufacturing
and material transport, a group of robots must repeatedly visit
a set of locations with a specified frequency to move and
deliver materials within a factory [9], [10], [11].

In all of these applications, the common aspects are that
tasks must be allocated to the robots and each robot must
plan a route to accomplish its set of tasks (note, the problems
of allocation and routing are typically coupled). Each problem
has additional constraints such as battery life, visit frequen-
cies, robot-task incompatibilities, and carrying capacities. The
typical approach for solving these problems is to create a
roadmap for each robot that captures the environment and its
transition costs [12]. This separates the planner into two parts,
a high-level planer, which is responsible for optimizing motion
plans within the roadmap, and a low-level planner [13], [12],
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Fig. 1: Robot Operating System (ROS) simulation for a sample collection
problem. The left image shows the environment, the layout of the samples,
and the robot solution paths. The right shows the robots returning home after
collecting one of each mineral type from a subset of the samples.

[14], which tracks the resulting path and avoids collisions. In
this paper we focus on the high-level planner and introduce
a common framework in which a broad class of motion
planning problems (including their additional constraints) can
be expressed and efficiently solved. Additionally, for this
paper, we assume collision avoidance between multiple robots
is handled by the low-level planner.

Research in high-level motion planning has followed two
main approaches. The first is to design a custom algorithm for
specific problems. These custom algorithms draw from a broad
range of areas including approximation algorithms [15], [2],
branch-and-bound techniques [3], and advanced heuristics [4].
The algorithms typically leverage some specific structure in
the problem, and thus a drawback is that they are often not
portable to related problems in which a subset of the con-
straints differ. The second approach is to express the problem
in a standard form on which a powerful commercial-grade
solver can be used. For example, a commonly used standard is
integer linear programming (ILp), for which several advanced
and user-friendly solvers exist, including CPLEX [16] and
Gurobi [17]. However, a common difficulty in this approach is
scalability, since there is no way to leverage problem specific
structures such as allocation and routing aspects that are
present in multi-robot planning problems. It is this observation
that we seek to address in our proposed solution methodology.

In this paper we introduce a framework for expressing
and solving high-level motion planning problems. The frame-
work is designed to leverage the problem-specific structure
of high-level planning problems, while maintaining the ability
to express a wide variety of additional constraints such as
interdependencies between tasks, incompatibilities between
certain robots and tasks, battery life, and capacity constraints.
To this end, we introduce a general problem called Sar-Tsp



and an algorithm for solving these problems, called cBTsp. The
problem takes as input a set of weighted graphs, a Boolean
formula, and a cost budget. The graphs are used to represent
the motion roadmap for each robot. The Boolean formula is
used to express the logical constraints on the robots’ motion,
such as task dependencies, incompatibilities, and capacity
constraints. The cost budget is a constraint on the robots’ total
transition costs (distance or time). A SAT-Tsp solution is a set
of paths for each robot that visits a subset of the locations
in the environment, satisfy the constraints of the problem, and
stay within the cost budget. To solve this problem, we propose
an algorithm based on Satisfiability Modulo Theory (Smt). The
algorithm leverages a state-of-the-art Boolean Satisfiability
(Sar) solver [18] to satisfy the constraints of the problem, and
a traveling salesman problem (Tsp) solver [19] to route the
robots through their assigned tasks. The Smt approach enables
these two solvers to coordinate their efforts, with the SAT solver
proposing candidate allocations, and the Tsp solver evaluating
their cost, helping to guide the search.

Contributions:  The contributions of this paper are as fol-
lows. We formally introduce the Sat-Tsp problem and propose
the novel solver cBTsp. We characterize the complexity of this
problem, and show that the proposed algorithm is correct for
instances in which the robotic roadmaps are Tsp-monotonic
(a generalization of metric graphs). We compare cBTsp to a
commercial-grade ILp solver on a set of of three important
motion planning problems: patrolling, sample collection with
multiple robots, and periodic routing. Our results show that
cBTsp often outperforms the ILp solver. Additionally, we have
included a supplementary video, which demonstrates a solu-
tion for a multi-robot sample collection problem in a high-
fidelity ROS [20] simulation.

The Sar-Tsp problem was first introduced in our prelim-
inary works [21] and [22]. These papers proposed solving
problems expressed in Sar-Tsp through 1) a reduction to Tsp,
2) a reduction to the generalized version of Tsp, and 3) a
reduction to the constraint satisfiability problem. The work
also proposed a preliminary version of our brute force solver
as presented in Section IV-A. The contributions of this paper
over the preliminary work is to propose a powerful solution
methodology based on Swmr that far outperforms the methods
in this early work. We also prove that SAT-Tsp is NP-hard, even
when the constraints and the routing aspect of the problem can
be efficiently solved independently. Finally, we express three
planning problems in Sar-Tsp and compare the performance
of the proposed solver against a state-of-the-art commercial-
grade ILp solver.

Organization: The rest of this paper is organized as
follows. In the remainder of this section we review methods
for solving high-level planning problems, and the use of SmT-
based solvers. In Section II we cover the necessary background
needed for this paper. In Section III we formally introduce
the Sar-Tsp problem. In Sections IV and V we describe the
cBTsp solver and our ILp formulation respectively used for
the simulations. In Section VI we detail the three different
path planning problems used for our simulations and describe
how they are expressed in SAT-Tsp and ILp. In Section VII we

detail the simulation setup for each problem and compare the
solution quality of cBTsp to the ILp solver. In Section VIII we
conclude the paper and review future work.

Related work: There are a number of methods for solving
high-level path planning problems. One of the most common
is to use Mixed Integer Linear Programming (MiLp) or Integer
Linear Programming (ILp) [23]. This framework allows the
user to express their problem as a series of linear constraints
along with an optimization objective. There are a number of
powerful solvers that one can use to find optimal solutions
such as CPLEX [16] and Gurobi [17]. In [24] the authors use
Mivp to plan optimal trajectories, and in [25], [26] ILp is used to
solve a multi-robot charging problems. In [27] the authors give
an ILp solution for collision-free multi-robot planning. In this
paper we provide a direct comparison of our SAT-Tsp solver,
cBTsp, to the well known ILp solver, Gurobi, on a similar set
of robotic path planning problems and our results show that
cBTsp often outperforms the ILp solver.

Another common approach for high-level path planning is
to use Linear Temporal Logic (LTL) [28]. The LTL language
allows a user to express a problem as a set of state transitions
such as “if the robot is at location x then the next location
it will visit is y.” Solvers developed in the model checking
community can then be used to compute runs (expressed as
an automaton) that satisfy the LTL formula [29], [30]. In
[31], LTL is used to express a class of persistent patrolling
problems, and the authors propose a method for computing
optimal plans rather than just feasible plans. In [32], LTL is
used to express multi-robot planning problems. A drawback
of LTL is that the problem of determining if a LTL formula
is satisfiable is in the complexity class PSpace-complete [33],
while we show that deciding if a Sar-Tsp problem is satisfiable
(the decision version of Sar-Tsp) is in the complexity class
NP-complete (see Section IV). The LTL language is likely
more expressive than Sar-Tsp, since it is believed that PSpace
is a strict superset of NP. For example, LTL can be used to
express planning problems that consist of infinite length so-
lution paths (i.e., persistent problems), where Sar-Tsp cannot.
However, many important path planning problems lie in NP,
and thus our goal in this paper is to produce a solver that is
tailored to problems in this class.

Other approaches for high-level planning include the
STRIPS problem specification language [34] and its successor,
PDDL [35]. Like LTL, the language allows a user to express
a problem as a set of state transitions, although PDDL is
even more expressive than LTL. There are a number of good
solvers for these expressions such as FF [36] and LAMA [37].
These languages are capable of expressing any problem in
EXPSpace [38], which is widely believed to be a strict super-
set of PSpace and thus NP. In this work we focus on problems
in NP, and thus ILp (which lies in the same complexity class
as Sar-Tsp) will serve as our point of comparison.

Our main solver, cBTsp is based on Smrt, which is an
extension of SaAr that allows for first order logic. SmMT solvers
have previously been proposed for solving path planning
problems. In [39] and [40], the authors solve the high-level
and low-level path planning problems simultaneously. This is



unlike our approach where we leverage the Smr framework
to better solve the high-level problem. In [41], [42] and [43],
the authors use an off the shelf Smr solver to find solutions
for the high-level path planning problem. Our approach differs
from these by using a custom SMmr theory that specializes in
handling the combinatorial nature of sequencing locations. To
the best of our knowledge, we are the first to solve high-level
path planning problems using a custom Swmrt theory to handle
the combinatorial aspect of sequencing.

The Constraint Satisfiability Problem (Csp) is a further gen-
eralization of SmT and thus Sar. Both SmT and Csp are capable
of expressing and solving the types of problems proposed by
this paper. In [44, Appendix B] we expressed Sar-Tsp instances
in both Smr and Csp and then solved instances with state-of-
the-art Smt and Csp solvers. Both methods performed poorly
compared to an ILp solver, and thus we do not use these
approaches as a comparison in this paper.

II. BACKGROUND

In this section we define Satr and Tsp, review SMT and the
aspects of the Smr solver approach DPLL(T) used by cBTsp.
As well, we introduce some notation for expressing Boolean
formulae.

A. Sar, Graphs, and Tsp

Decision problems are problems that have a yes or no
answer (satisfiable or unsatisfiable). In this paper we also
study optimization problems that aim to minimize the cost
of the solution and, for simplicity, we formally define these
optimization problems as their decision problems versions.

The Boolean satisfiability problem Sar is expressed as a
Boolean formula that contains literals and operators. A literal
is either a Boolean variable () or its negation (—zx). The
operators are conjunction (A, and), disjunction (V, or) and
negation (—, not), which may operate on the literals or other
Boolean formulae. An assignment of the variables (true or
false) results in the formula being satisfied (true) or not (false).
The conjunctive normal form (CNF-SaAT) is the canonical form
of Sar and a formula F' is in its canonical form if the formula
is a conjunction of clauses, where each clause is a disjunction
of literals. In this paper we allow for formulae to be expressed
in non-canonical form.

Definition II.1 (Sat). Given a Sar Boolean formula F', deter-
mine if it is satisfiable.

A graph is expressed as a tuple, (V, E,w), where V is the
set of vertices, F is the set of edges, and w is the weight
function that assigns a cost in R>( to each edge. Note, for
this paper we assume all edges are directed ({v;, v;) is not the
same as (vj,v;)). An induced subgraph, which will be used
in the upcoming sections, is defined as follows.

Definition I1.2 (Induced Subgraph). An induced subgraph
of a graph G = (V, E) for V! C V is a graph G’ = (V', E’)
with B/ = {(v;,v;) € Elv;,v; € V'}. We say that G’ is
induced by V.

A cycle in a graph that visits each vertex exactly once is
called a Hamiltonian cycle, or a tour. The traveling salesman

problem (Tsp) is typically defined as finding the shortest tour
in a graph, and its decision version is as follows.

Definition IL3 (Tsp). Given a complete and weighted graph
(V, E,w) and a cost budget ¢, determine if there exists a
Hamiltonian cycle with total cost ¢ or less.

The optimization version of Tsp minimizes c.

B. Smr and DPLL(T)

The Smt problem is an extension of Sar that additionally
allows for the expression of multiple decidable first-order logic
problems, such as arithmetic logic or quantifiable Boolean
logic. We refer to each additional first-order formal ¢ as a
theory and the set of theories as 7. Each theory ¢ € T is linked
through the propositional logic formula F' (the Sar formula)
using a Boolean variable z; € X, where the value of z; must
agree with the evaluation of ¢ (z; is true if and only if ¢
evaluates to true). The power of this approach is that a Sar
solver can be used to solve the Sar-aspect of the problem,
while a set of specialized solvers can be leveraged for each
class of theory (specializations of first-order logic).

Definition IL.4 (Smt). An Swmt formulation, (F,T), is satisfi-
able if and only if
1) F' is a propositional formula defined over X O X,
2) T is a set of decidable first-order logic problems defined
over (Q such that X C @), and
3) there exists an assignment of () satisfying F' such that
for every t € T, the corresponding predicate variable x;
agrees with the evaluation of x; (true or false).

The DPLL(T) algorithm for solving Smrt instances is based
on the DPLL algorithm for solving SAT instances (proposi-
tional formulae). The DPLL algorithm solves F' by building
a list of assignments for the Boolean variables in F' (a partial
solution). The DPLL/(T) algorithm extends DPLL to allow for
theories by linking the predicates z; € X to the theories
t € T'. Informally the algorithm works as follows: As a partial
solution for F' is constructed by the DPLL algorithm, the
theory solvers are called to confirm that the partial Sat solution
is consistent with the theory instances. If the theory instances
are consistent, then the DPLL algorithm continues, if not, then
the theory solver that detected the conflict constructs a learnt
clause feonfict, Which captures the conflict over the Boolean
variables X. The learnt clause is added to F' < F' A feonflict
and the algorithm backtracks some or all of its assignments
until the partial solution no longer conflicts with the new
F. A trimmed down algorithm for DPLL(T) is shown in
Algorithm 2.

Note ILI.5. The above description of DPLL(T) only captures
the mechanisms of DPLL(T) that are used by cBTsp, a full
description of DPLL(T) can be found in [45].

III. PROBLEM STATEMENT

In this paper we consider path planning problems that
require a set of robots to visit a set of locations in the
environment to accomplish the problem goals (the robots
complete a set of tasks at their locations). An optimal solution
is one that allows the robots to accomplish the goals of the



problem, while minimizing their travel costs. We model these
problems with Sar-Tsp by capturing the transition costs of the
robots in their environment as a set of discrete graphs (one
for each robot) and the logic of the problem is encoded as a
Sar formula. The formula is used to dictate which locations
are visited by which robots. In this way, we can have a
location/task visited by multiple robots or just one robot.
Additionally, the use of multiple graphs for multiple robots
allows for heterogeneous robots (the transition costs can be
different for each robot).

In the rest of this section, we introduce SAT-Tsp and show
how it is used to model a simple path planning example.
Additionally, we classify Sar-Tsp’s complexity and show that
even when it is composed of easy to solve Sar and Tsp
problems, the combination can still be hard.

A. Sar-Tsp Definition

Before we define the decision version of SAT-Tsp and its two
optimization problems, we start with some notation. A Sat-Tsp
instance can take as input multiple graphs G;, each with a
cost budget ¢;. To simplify the notation we sometimes absorb
the cost budget ¢; into the graph’s tuple G; = (V;, E;, w;, ¢;)
(when there is only one graph, we do not absorb the cost
budget). A formula F' has a solution or partial solution M,
which is a collection of variable assignments. A variable x is
assigned true if 27 € M and false if 2" € M, otherwise z is
unassigned.

Definition III.1 (Sar-Tsp). The Sar-Tsp decision problem
takes as input (G1, G, ...,Gy, F,C), where:
o G; = (V;, E;,w;, ¢;) is a directed, weighted graph with
edge weights w; : E; — R>¢ and cost budget c;,
e F'is a Boolean formula defined over X D V3, V5, ..
o (' is a budget imposed on the total path cost.

* Vn,

Then the instance is satisfiable if and only if:

« there exists a tour of each graph G; over a subset V;/ C V;
with cost ¢} < ¢,

e such that 31" , ¢, < C,

« and there exists an assignment M of X satisfying F' such
that a vertex variable v = 1 (T € M) if and only if
veV/uVvju...uVv.

Note IIL.2. The above definition implies that there are two
main types of variables, vertex variables and auxiliary vari-
ables. Vertex variables are used to indicate if a location is
visited or not and auxiliary variables are used to construct
the logic of the problem into a concise formula (all problems
presented in this paper utilize auxiliary variables). Vertex
variables share the same labels as the vertices to emphasize the
link between the variable and vertex, where auxiliary variables
take on arbitrarily labels such as z;.

In this paper we consider two optimization problems for
Sar-Tsp: 1) minimize the total cost budget (minimize C)
and 2) minimize the maximum cost budget of any graph G;
(minimize max ¢;).

Furthermore, the instances studied in this paper can be
expressed as metric-SAT-TSP instances.

Definition II1.3 (Metric-SAT-Tsp). A metric-SAT-Tsp instance
is one where each input graph G = (V, E,w) is complete
and the edges satisfy the triangle inequality: w(v;,vg) <
w(v;, v;) +w(vj,vg) for all v, v;, v, € V such that v; # vy,.

Note that robotic roadmaps are typically metric, as the time
and/or distance to transition from a configuration A to another
configuration C' is less than or equal to that of transitioning
from A to an intermediate point B, followed by transitioning
from B to C. Additionally, if the roadmap is missing edges
(not complete) then one can fill in the missing edges with
shortest paths. For example if (v;,v;) ¢ E then we can add
(vi,vj) to E and set w(v;,v;) to the cost of the shortest path
between v; and v; in the roadmap.

Example II1.4 (Modeling a Problem in Sar-Tsp). Consider
two robots: robot 1 has a battery life of 10 minutes and
can travel at 2 m/s, while robot 2 has a battery life of 12
minutes and can travel at 1 m/s. The environment contains
locations L = {1,2,...,|L|}. Each location must be visited
by either robot 1 or 2, but not both. We encode this as a
Sar-Tsp instance by first creating two graphs (i.e., roadmaps),
Gy = (V1, Ey,wr,c1) and Gy = (Va, Ea,we, ca) to capture
the transition costs for each robot. Specifically, each graph G,
contains a vertex v; € V,. for each location ¢ € L and an edge
(vs,v;) in the graph represents the transition from location ¢
to j. The weight of the edge (v;,v;) in each graph is given by
the time for the corresponding robot to travel from location @
to location j. If the distance from i to j is d; ;, then the weight
for robot 1 is wy(i,j) = d; ;/2 and the weight for robot 2 is
ws(i,j) = d; ;. Now the tuple (V7, Eq, w1, 600) captures the
transition system for robot 1 and its battery budget, similarly
tuple (Va, Ea, ws, 720) for robot 2.

Let R = {1,2} be the set of robots. Then we construct the
formula F' using the set of variables X = {v; .|i € L,r € R}
to represent if vertex v; € G, is in the solution or not (true
or false). We start by adding the set of clauses (v;1 V v;2)
to F' for each 7 € L, to express that each location ¢ € L
must be visited by at least one robot. Then we add the clauses
(—v;1 V —w;2) to express that each location ¢ € L can be
visited by at most one robot.

Finally, we choose a value for the total cost budget C, to be
any value > 1320, since any solution satisfying the individual
robot budgets will also satisfy this C. If we wish to find
the solution with the lowest total cost, we search for feasible
solutions that minimize C. .

Remark IIL.5 (Modeling Path Planning Problems). Sar-Tsp as
a modeling language, is most suited for expressing planning
constraints as a SAt formula and motion transitions as one
or more Tsps. Theoretically, like ILp, SAT-Tsp can efficiently
model any decision problem in NP but practically there are
limitations. For example, it is arguably cumbersome to use
Sar-Tsp for counting constraints (e.g., visit five red locations).
This is due to the simple structure that SaT uses for expressing
logic. However, this structure has led to the success of modern
Sar and Smr solvers [18], [46], [45], which cBTsp takes
advantage of. Furthermore, we demonstrate in Section VI
and VII that Sar-Tsp can be successfully used for small
counting constraints.



B. Complexity of Sar-Tsp

The decision version of SaT-Tsp is NP-complete. This
follows from the fact that Sat (an NP-hard problem) reduces to
Sar-Tsp and a Sar-Tsp solution can be verified in polynomial
time.

We also classify the complexity of Sar-Tsp when it is
composed of easy Sar and Tsp problems. Let SaT* C Sar and
Tsp* C Tsp be the set of problem instances that are solvable in
polynomial time. An example of a Tsp instance that is easy to
solve (in Tsp*) is an instance with a complete graph that has
all of its edge weights equal to 1. Finding an optimal solution
of cost |V| is accomplished in polynomial time by choosing
any ordering of the vertices. We are interested in Sar-Tsp
instances composed of easy Sar and Tsp instances because it is
often the case that Tsp solvers work very well on Tsp problems
encountered in practice, such as those in the Tsp library [47].
Similarly, SaAT solvers are quite efficient on practical SaAT
problems, such as instances in the SaAt library [48]. So does
this mean that if our Sar-Tsp problem is composed of easy
instances in SAT* and Tsp*, then it is easy to solve?

Theorem III.6. Consider the subset of Sar-Tsp problems
composed of instances from SAT" and Tsp*, then this subset
of Sar-Tsp remains NP-complete.

Proof. We prove the above result by reducing a NP-complete
problem to a Sar-Tsp problem composed of Sar* and Tsp”
problems. Specifically, we do this for the SET-Cover problem.
This problem takes in as input (U, S, C'), where U is a universe
of finite elements (a set), S is a collection of sets, for which
each set S; € S contains a subset of the elements from U
(S; CU), and C is a cost budget, then a solution is a subset
S’ C S that covers all of the elements in U with S’ and
|S’| < C. The reduction maps the sets .S; € S to vertices v;
in the complete graph G = (V, E, w), where the edges in the
graph all have a weight of 1. The inclusion/exclusion of a set
S; is indicated by the Sar-Tsp tour visiting the vertex v; € V.
The Sar-Tsp formula

=\

u; €U

Vow
{ilu;€8:}

is used to ensure that each element u; € U is covered by at
least one set .S;. A solution to the Sar-Tsp problem (G, F’, C)
(C' is given as input to the set cover problem) is a tour of
length ¢’ < C, which translates to a set cover solution with ¢/
sets (|S7| = ¢).

The Tsp instance G and sub-instances have the trivial
solution of any tour (all tours have the same cost since all
edges have weight 1). The Sar instance F and sub-instances
also have trivial solutions since there are no negative literals
in the formula (we simply assign all the literals to be true).
Thus, both the Sar and Tsp instances are solved in linear time
(polynomial time) and since SET-Cover is NP-hard, then it
must be the case that Sar-Tsp remains NP-complete despite
the fact that the Sar and Tsp problems are in Sar™ and Tsp*
respectively. O

Theorem IIL.6 proves that Sar-Tsp is NP-hard even when its
sub-problems are easy. Thus, we cannot expect to construct a

polynomial time solver for Sar-Tsp even when we have access
to polynomial time solvers for its subproblems (unless P =
NP). One could speculate that a similar consequence of the
theorem would be that a good Sar-Tsp solver would require
more sophistication than a naive combination of a Sat and Tsp
solver, which would be to solve the Sar instance then solve
the Tsp instance.

In the next section we start by exploring the BRUTE solver,
which naively solves the Sar and Tsp instances separately.
The result is that it explores every Sar solution (possibly an
exponential number of solutions). The cBTsp solver improves
upon the BRUTE solver by adding the ability to negate partial
solutions and leverages the sophistication of the Sar solver’s
branch heuristics. The ability to negate partial solutions allows
cBTsp to more effectively prune the search space and the
branch heuristics prioritizes the assignment of variables that
are involved in the most number of conflicts.

IV. cBTsp: AN SMT-BASED APPROACH FOR SAT-Tsp

In this section we provide a simple BRUTE solver as a lead-in
to the cBTsp solver. Then we provide a high-level description
of cBTsp and the conditions under which it can be used.

A. The Brute Approach, A Lead-in to cBTsp

The BRUTE approach decouples the Sar-Tsp instance by
first solving the Sar instance and then the Tsp instance. For
simplicity, Algorithm 1 implements a Sar-Tsp solver that only
takes instances with one input graph. The algorithm is easily
extended to take multiple graphs by replacing Line 5 with
multiple calls to the Tsp solver and bookkeeping the additional
cost budgets.

The sequence of the BrUTE solver is as follows. First it
uses a SAT solver to find a feasible set of included vertices V'
(Lines 2 and 3). Next, it uses the Tsp solver, TspP-SOLVE, to
find the minimum cost tour, p’, with cost, ¢/ < C (Line 5), of
the induced subgraph, G’ (Line 4). It negates the solution to
prohibit it from reoccurring (Line 10) and repeats the process
until it has checked every solution (Line 1). The problem with
this approach is that there may be an exponential number of
solutions to find and negate.

Algorithm 1: BRUTE-SAT APPROACH(G, F, C)

1 while SATISFIABLE(F) do

2 M’ < SOLVE(F)

3 V' {veVpTeM}

4 G’ <~ SUBGRAPH(G, V")

5 (p', 'y < Tsp-SOLVE(G', C)

6 if ¢ < C then

7 ‘ return (M’ p’, ")

8 else

9 f/ = (/\UEV’ U) A (AwEV\V’ —n))
10 F+ FA=f

11 return ()

If we were solving metric instances, a less naive approach
would be to replace Line 9 with f’ < (A, v). This would



allow the algorithm to negate the solution, as well as all
supersets of V', thus more effectively pruning the solution
space. This approach would be valid for metric instances since
we cannot lower the solution cost by adding vertices to the
solution tour. The cBTsp approach works in this way, but it is
also able to negate partial solutions. In fact the cBTsp solver’s
parameters (found in Appendix B) allow it to be configured as
a non-naive brute approach (negate supersets of full solutions
but ignore partial solutions). In this way, we can start to see
how cBTsp is a sophisticated extension of the BRUTE approach.

B. The cBTsp Solver

The cBTsp solver builds on the BRUTE approach by using
partial solutions to prune the search space. This allows for
significant computation savings. We begin by casting the
Sar-Tsp problem in the SmT framework. We use the DPLL(T)
algorithm (Algorithm 2) to couple a Sar and Tsp solver.
The cBTsp solver only works for Tsp-monotonic instances
(Definition IV.2), which essentially means that the cost of
partial solutions cannot be reduced by adding vertices. Tsp-
monotonicity is a necessary property needed to prune partial
solutions. Additionally, metric Sar-Tsp instances are Tsp-
monotonic (Theorem IV.6).

Definition IV.1 (Partial Solution). Given a SAT-Tsp instance
(G1,Ga,...,Gp, F,C), a partial solution M is a True/False
assignment for a subset of the variables in X. The subgraph
G/ induced by M is the subgraph induced by the vertices
V! C V; when the corresponding variables in M are true.
Definition IV.2 (Tsp-Monotonicity). A graph G = (V, E, w)
is Tsp-moneotonic, if for any vertex subsets of the following
form V; C V5 C V the induced subgraphs GG; and G5 have
Tsp costs ¢; < co.

The Tsp-monotonic property allows for the negations of
partial solutions that exceed the cost budget(s), since including
more vertices cannot lower the solution cost. Specifically, if
the partial solution exceeds the cost budget(s), then we exclude
the responsible vertices and their supersets from reoccurring
(the negation details are given in Algorithm 3, Lines 6 and 9).

To find optimal solutions the cBTsp approach solves a series
of Sar-Tsp problems (G1,Gs,...,G,, F,C) formulated as
Smt problems. The SmT formulation uses a custom Tsp theory
(Algorithm 3) to construct the induced subgraph (Lines 2 and
3) and answer the decision problem of whether or not a Tsp
solution exceeds the cost budget(s). The SMmT problem is as
follows: the propositional formula is F' Az, where F' is the
Boolean formula in the Sar-Tsp instance and the predicate x4,
is decided by the custom Tsp theory (x4, is true if and only if
the theory can find a Tsp tour of the included vertices within
the cost budgets). The Smr theories have prior knowledge of
the ground variables X, the graphs G, and the cost budget(s).
The cost budget(s) are set by the user or a binary search
algorithm used to find optimal solutions. The Tsp theory is
as follows:

Definition IV.3. The Tsp—Theory takes as input the tuple
(G1,Ga,...,Gy,C) and M, where

e (G1,Gs,...,Gy, C) is the input to setup the theory and

o M is the input when called by the Smt solver.

e Each G; = (V;, E;, w;, ¢;) is a Tsp-monotonic graph with
a cost budget c;,

o C is the total cost budget, and

e M is a partial or full assignment of the ground variables
in F.

Then the theory is satisfiable (x5, = 1) if and only if

« there exists a tour for each graph G, of cost ¢; or less
over the set of vertices {v € V;|vT € M},

« and the total cost of the solution does not exceed C.

In the Smr formulation, the x, predicate is forced to be
true, thus all solutions and partial solutions must not exceed
the cost budget(s). If the Tsp theory finds that there is no
solution, then a learnt clause is constructed (Lines 6 and 9
of Algorithm 3) and added back to the formula F' (Line 6 of
Algorithm 2). The DPLL(T) solver is subsequently tasked with
solving the new formula (which includes the learnt clause).

At a high-level, cBTsp solves decision instances as follows:

1) set up the Tse—Theory with the graphs and budgets
(G1,Ga,...,Gp, C),

2) call DPLL(T) on F' (Algorithm 2),

3) build partial solutions (Line 3),

4) check the consistency of the Tse—=Theory (Line 4),

5) negate partial solutions if there is a conflict (Line 6),

6) return the solution if satisfiable, otherwise return §.
The optimization version of cBTsp uses binary search to find
a solution with the minimum cost budget (minimize C' or
minimize the maximum c¢;) by solving a series of Sar-Tsp
decision instances with different cost budgets. Details of the
binary search algorithm is found in Appendix A.

Algorithm 2: Overview of DPLL(T) on F
precondition: Tse—Theory.setup(Gy,...

1 M0

2 while 3z € X s.t. {27, 2FyNn M =0 do

3 Add a new variable assignment to M

4 feontiict ¢ Tse—Theory(M)

5 if fwnflict # @ then

6 L F «+ F/\fconﬂict

7

)Gnac)

Backtrack M to some point that does not
conflict with F'

8 if M solves F' then
9 ‘ return M

10 else

1 | return ()

Note IV.4. Algorithm 2 is a simplified version of the DPLL(T)
logic used in cBTsp. The real algorithm is more sophisticated
than what is depicted. For example, in addition to keeping
track of M, we also keep track of the solution paths and their
costs, and we only call the Tsp theory if M contains a change
to the set of included vertices.

Example IV.S (Illustration of the cBTsp Approach). This
example demonstrates the interaction between the Sar solver
(based on DPLL) and the Tsp solver (the Tsp theory) in



Algorithm 3: Overview of Tse—Theory (M)

1 for each graph G; do

V! {v; e ViJv] € M}

G, < INDUCEDGRAPH(G;, V)
¢; = TSPSOLVE(G, ¢;)

if ¢/ > ¢; then

L return — (AUjev.' Uj)
if >~ ¢, > C then
s | VieViu..uV/

9 | return — (/\D‘7 cvr Uj

N oA W N

=)

~

return ()

-
=

cBTsp. Suppose we have one input graph G = (V, E, w,c)
and suppose the solver has constructed a partial solution
M = {zd,v¥ o oL vl vI}. Then suppose that the Sar
solver extends the partial solution by assigning vg to be true.
Once the assignment vg is added to M, the Tsp theory solver
is called to make a consistency check. The Tsp theory uses
M to construct the Tsp problem G’ for the set of included
vertices v1,v4,vs and vg. Note xgg and xg7 are not vertex
variables (they are auxiliary variables) and so they do not
appear in this set. The Tsp theory then calls the Tsp solver
with input (G’,c) and if a tour is found within the budget
the theory returns true (consistent). The DPLL solver (Sar
solver) continues to build upon the partial solution. If no tour
is found within the budget the check is inconsistent and the
learnt clause feonficc = —(v1 A vy A s A vg) is constructed to
be added to F' so that the Sar solver avoids this solution in
the future. The Sar solver then backtracks (revert some of the
partial solution) to avoid the inconsistency and searches for a
new solution that satisfies F' A feonflict- °

C. Correctness of cTsp

In this section we show that metric instances are Tsp-
monotonic (Definition IV.2) and prove that cBTsp yields the
correct solution for Tsp-monotonic instances.

Theorem IV.6. Metric graphs are Tsp-monotonic.

Proof. We use contradiction to prove the above. Assume that
there is some subset V; C V and Vo = V4 U {v;} such that
the induced subgraphs G; and G5 have Tsp costs ¢; > co.
This means that the tour of Gy can be shortened if we include
the vertex v;. Suppose the shortest tour of G has the edge
(vi,vj) in the path. We construct the graph G’ to be a copy
of graph GG; and replace the weights of the outgoing edges
for v; with w] (i, k) = w2 (4, j) + w2 (4, k). Now the graph G
will have the same optimal tour cost as GG but since the edge
weights of G| compared to G are equal or larger (triangle
inequality) the optimal tour cost of G cannot be lower than
the optimal tour cost of G.

It follows that we cannot incrementally add vertices to V;
to lower the Tsp cost of the new graph. Consequently, the Tsp
costs ¢; and co for V; and V5 satisfies ¢; < c¢o. Therefore
metric graphs are Tsp-monotonic. O

Theorem IV.7. The cBTsp approach is correct (i.e., sound and
complete) on Tsp-monotonic decision instances.

Proof. We first prove that the Smt formulations used by cBTsp
are sound and then we prove that the Smt solver approach
(DPLL(T) on F') used by cBTsp is sound and complete.

The soundness of the SMT formulation follows from the defi-
nition of SAT-Tsp (Section III) and Definition IV.2. Specifically,
the SMT formulation allows for the negation of partial solution
vertex sets and supersets for induced subgraphs that exceed the
Tsp budget(s). This does not remove any solutions in the search
space that could have Tsp costs within the budget, since the
graph(s) are Tsp-monotonic. Furthermore, a full SMT solution
consists of Tsp tour(s) of the included vertices and a satisfying
assignment of F', which is a solution to the Sar-Tsp instance.
Therefore, the SmMt formulation is sound, since it has the same
solution set as the Sar-Tsp formulation.

It follows that the solver approach for Smt instances is sound
and complete, since it is based on the sound and complete
algorithm DPLL(T) [45]. Therefore the cBTsp approach is
correct on Tsp-monotonic instances. O

D. Relaxing Tsp-Monotonicity

In this section we expand on the class of instances solvable
by cBTsp (Tsp-monotonic instances). Specifically, we describe
a relaxation of Tsp-monotonicity that can be used in practice
with cBTsp when we have prior knowledge of a vertex set
A C V that must be included in the solution. The knowledge
of this set allows us to relax the Tsp-monotonicity property
to apply to sets Vi O A. The cBTsp solver in turn avoids
partial solutions that exclude vertices in the set A and thus
the correctness of negating partial solutions is still valid.

To motivate this direction, let us consider the following
example. Let G be a metric graph with a start vertex v, and a
goal vertex v,. Next, remove all the incoming edges of v, and
all the outgoing edges of v, other than the one edge connecting
Vg to vs. Also, modify F' to be I' = F'AvgAvg. This example is
not Tsp-monotonic. However, the addition to the formula is so
simple that the cBTsp solver’s preprocessing will assign v and
vy to be true (include v, and vy in the solution). Thus all partial
solutions that cBTsp checks will satisfy the Tsp-monotonicity
property, since the graph is otherwise metric (preprocessing
happens before any calls to the Tsp theory).

The set of required vertices A, must not conflict with the
formula F, i.e., F' is satisfiable if and only if

()

is satisfiable. However, for this to work in practice, the
decision to include the vertices in A would need to be done
in the preprocessing step of cBTsp (before the DPLL solver is
called, which is not discussed in this paper). This happens for
atomic clauses (clauses with one literal), e.g., given the clause
(v), the prepossessing phase would assign a true value to v so
that the clause is satisfied.

Definition IV.8 (A-Tsp-Monotonicity). Given a graph G =
(V,E,w) and a subset A C V, then G is A-Tsp-monotonic if
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Fig. 2: A-TSP-monotonic example, where the black locations represent the
set A. Interconnecting edges to or from a graph G; represent a collection of

edges that connect every vertex in the source to every vertex in the destination.
The edge weights of the interconnecting edges satisfy the triangle inequality.

for any vertex subsets V3 C Vo C V such that A C Vi, the
induced subgraphs GG; and G5 have Tsp costs ¢ < co.

Proposition IV.9. The cBTsp approach is correct on A-Tsp-
monotonic decision instances if the decision to include the
vertices in A is done so in the preprocessing phase of the
solver (before DPLL is called).

Proof. The proof follows Theorem IV.7’s proof — the instance
behaves like a Tsp-monotonic instance once DPLL is called.
O

Remark IV.10 (A Sufficient Construction for Achieving
A-Tsp-Monotonicity). Given a graph G = (V,E w) the
problem is A-Tsp-monotonic for a set A if the following is
true for every pair of edges (v;,v;), (vj,vr) € E such that
v, v € Vand v; € V\ A

1) the edge (v;,vx) must also be in F,

2) and w(v;, vg) < w(vs, v5) + w(v;, vg).

[ ]

Notice that our motivating example with G, v,, and v,
satisfies the above construction for A = {v,,v,}. However, if
we were to remove the edge (v, vg>, then the instance would
not satisfy the above construction and it would not be A-Tsp-
monotonic. This is due to the fact that the infeasible partial
solution of v, and v, can be made feasible by adding any
additional vertex to the solution.

Figure 2 illustrates a more complex example that was con-
structed using Remark IV.10. Here a set of metric subgraphs
G1,Go, ..., G, are connected together with a ring graph to
dictate the order that the metric graphs are to be traversed.
The ring graph is constructed from vertices in A (the black
vertices) and the metric subgraphs are connect to A in between
adjacent vertices in the ring.

V. AN INTEGER PROGRAM FORMULATION FOR SAT-TsP

In this paper we are interested in path planning problems
that require robots to travel between multiple task locations
(patrolling, sample collection, and periodic routing). Specifi-
cally, all of the path planning problems seek to find shortest
tours over a subset of the vertices (not necessarily a fixed
set of vertices) in each input graph (i.e., robotic roadmap).
This section describes the standard method for expressing
such problems as an integer linear program. The additional
constraints that define the specific problem and guide the
solution to choose the set of visited locations are added to
the formulation in subsequent sections. The ILp formulation
for the Tsp aspect of the problem is drawn from the vehicle
routing literature [49] and is a standard method used in the
operations research community [49].

To be able to solve multiple Tsp instances simultaneously,
we require that each instance has a home location that must
be visited. In this way we are able to eliminate sub-tours that
do not visit one of the home locations.

Let the set of binary variables eﬁ ; € {0,1} represent
the inclusion or exclusion of the edge (v;,v;) € Ej from
the solution (ef, i = 1 indicates inclusion). Similarly let

vF represent the set of Boolean variables representing the

K3

inclusion/exclusion of the vertex v; € V* from the solution.
Additionally, without loss of generality, let v¥ be the home
location in each graph Gy.. The following ILp template encodes
Tsp problems with multiple graphs over a non-fixed set of
vertices and minimizes the max cost of the individual tours.

The formulation for minimizing the total cost simply replaces

k k
the objective with S7_, 31V le“;‘ w(vi, v5) €f ;.

minimize
CIII&X (1)
subject to
n [VFVF|
> 2. D> wnlvivy) ef; < C @)
k=1 i=1 j=1
subject to, for each k € {1,2,...,n}
vf =1, 3)
(V¥
efﬁj = vf, for each v; € Vj, 4)
i=1
(V¥
e ; = vy, for each v; € Vi, (5)
j=1
k k k
DD el =) vl
iePjeP icP
for each P C {2,...,|V¥|}, and some I € P (6)
[VE[VE
D> wi(vi,vy) ef ; < min(ck, Cmax) (7
i=1 j=1

Constraint (2) ensures the total solution cost is within the
budget C. Constraint (3) forces the solution to include the
home vertices. Constraints (4) and (5) restrict the incoming and
outgoing degree for each location to be one only if the vertex is
included. Constraint (6) is the sub-tour elimination constraint,
where the sub-tour is represented by the set P, which can
not include the home location. The sub-tour is eliminated by
ensuring that the number of edges between vertices in P is less
than |P| (a sub-tour would have |P| edges). If one or more
locations are not visited in P, i.e., P is not a sub-tour, then the
inequality is satisfied by the fact that each included vertex has
at most one incoming and one outgoing edge (a strict subset
of P can have at most |P|— 1 edges). In practice the sub-tour
elimination constraint is lazily implemented (if a constraint
in (6) is violated during the construction of the solution, then
the constraint is added to the formulation) to avoid expressing
an exponential number of constraints. Finally, Constraint (7)
ensures the individual tours are within the budgets ¢ and it



ensures that the individual tour costs are equal or lower than
the optimal value cyax.-

VI. ROBOTIC APPLICATIONS AND EXPRESSIONS

In this section we describe three robotic path planning
problems (patrolling, sample collection, and periodic routing)
and show how they are expressed in both SAT-Tsp and ILp. The
Sar-Tsp expressions for these problems utilize at-most-one-in-
a-set constraints (also known as mutual exclusivity). We define
this type of constraint here and use it throughout the rest of
the section.

Definition VI.1 (At-Most-One-In-A-Set Constraint). Given a
set X’ C X of variables, the at-most-one-in-a-set constraint
states that at most one variable in the set X’ can be assigned
true. The following Boolean formula expresses the constraint:

N @A),

zyeX'|z#y

A. The Patrolling Problem

We consider patrolling problems that require each point
of interest to be observed from multiple viewpoints. These

problems were inspired by patrellingproblems-that-allow-the
points-ofinterest-to-be-observedfrom-multiple-viewpeoints [50],

[51]. Our patrolling problem is defined on a metric environ-
ment that contains m points of interest, n — 1 “observation
locations” and one home location. The robot must visit a
subset of the observation locations to observe all of the
points of interest and return home. A point of interest p is
observable from a location v if the distance between p and
v is less than or equal to a threshold (provided by the user).
Each point of interest p must be observed by at least two
complementary locations, referred to as a “complementary
pair”. An observation location v; is complementary to v; if
both points observe p from perspectives that are separated by
a minimum threshold angle (provided by the user).

A solution is a tour that visits a set of observation locations
with minimum length such that each point of interest is
observed by at least one complementary pair. An illustrative
example of this problem is given in Figure 3 (left illustration).

To aid in the expression of the problem, we let the set V,,
represent the set of observation locations that can observe the
point of interest p. The set ‘A/pl represents the set of locations
that are complementary observation locations of v; for p and
the set P ={1,2,...,m} represents points of interest.

Sar-Tsp expression:  This problem is encoded into Sar-Tsp
by constructing a formula F' that captures the logic of visiting
the home location and at least one complementary pair for each
point of interest. The clause (vp) captures the home location
requirement (v, is the robot’s home) and the set of clauses

\/ v; N\

v, €Vp

\/ v; | , for each p € P
v €Vp.i
captures the logic of visiting at least one complementary

pair for each point of interest (p is observed from v; only
if it is observed by at least one of its complements v;).

Patrolling

Sample Collection

RN y,

Fig. 3: On the left is a UAV patrolling example and on the right is a UGV
sample collection example. The robot’s path is indicated with a solid line in
both illustrations and the location marked by an “H” represents the robot’s
home. For the patrolling problem, points of interest are buildings represented
by large squares, the faint circles represent the radius that the building can
be observed from, and the gray triangles indicate the different observation
perspectives. In the sample collection problem, the labels above the locations
represent the mineral types that are within the sample (large samples have
three minerals and small samples have one). The gray contours represent
obstacles.

Now the tuple (G, F,C) encodes the patrolling problem as
a Sar-Tsp instance, where G is the discrete graph representing
the distances between observation locations and C' represents
the maximum cost of the solution tour (finding the minimum
C solves the optimization problem).

ILp expression:  To express this problem as an ILp, we build
upon the formulation given in Section V. Let the set of binary
variables 0, ; € {0, 1} represent whether or not v; is part of
a complementary pair observing the point of interest p. The
following are the additional constraints in the ILp formulation.

for each p € {1,2,...,m}

Up i < v, for each v; €V, (8)
Opi < Z v;, for each v; € V, 9)
’UjEVpJ
D =1 (10)
v €Vp

Constraint (8) restricts the indicator @, ; from being true
(Dp,s = 1) if the location v; itself is not visited, Constraint (9)
restricts the indicator from being true if none of the comple-
mentary locations of v; are visited, and Constraint (10) ensures
that at least one complementary pair is visited.

B. The Sample Collection Problem

The following problem is inspired by sample collection
problems that arise for science rovers, as described in [6].
In this problem, we have a set of R robots, n — 1 samples,
one home location, and a set of m different minerals that can
appear in the n — 1 samples. Each sample in the environment
is either small, medium, or large. Small samples have within
them one type of mineral, medium samples have up to two
different minerals, and large samples have up to three different
minerals. There are two types of robots used to collect sam-
ples, small and large. A small robot can collect an unlimited



number of small samples and up to one medium sample but no
large samples. A large robot cannot collect small samples, but
it can collect an unlimited number of medium samples and up
to one large sample. The small and large robots have different
speeds. Each robot is given the same time budget to collect
samples and return home. Since each location only contains
one sample, multiple robots are restricted from visiting the
same location.

A solution to this problem is a tour for each robot that
satisfies the time budget, starts at the home location, and visits
a set of locations in the environment that allows the robots to
collect a set of samples that contain one of each type of mineral
found in the environment. An optimal solution minimizes the
total time taken by the set of robots. An illustrative example of
this problem is given in Figure 3 (on the right). In this example
there are no samples with mineral 2 and so a feasible solutions
do not collect mineral 2. Additionally, we demonstrate a
sample collection solution in our supplementary video!. This
solution utilizes one small and one large robot to collect seven
different mineral types.

To express this problem we introduce the following. Let
V; be the set of locations that contains a mineral of type ¢;
let Vg, Vi and Vi, be the set of locations that respectively
have small, medium and large samples; let Rg, R, and R =
{1,2,...,|R]} respectively be the set of small, large, and all
robots; and let 7' = {1,2,...,m} be the set of minerals that
exist in the environment.

Sar-Tsp expression:  The problem is encoded as a Sar-Tsp
instance by constructing a graph G, for each robot » € R and
a formula F' that captures the goals and capacity restrictions of
the robots. Each graph G, contains all of the locations in the
environment and its edge weights are given by transitions for
robot r to move within its environment. The set of variables
v;, 1s used to indicate if robot r visits location 7. When
the location/robot pair is incompatible, such as location ¢
contains a large sample and robot r is small, the variable
is negated. We chose this approach instead of constructing
graphs without incompatible location/robot pairs to simplify
the Sat-Tsp expression for this paper.

We start our expression by forcing each robot to visit the
home location using the clauses /\TEthﬂ"’ where v, € V
is the home location for the robots. Next, we negate all
incompatible location/robot pairs (e.g., small robot and large
sample) /\vi ex, Wi, Where X = {virlvi € Vp,r €
Rs} U {v”]vi € Vg,r € Rp}. We encode the goal of
collecting at least one of each mineral (if the mineral exists),
with a disjunctive clause for each mineral

Al Voo
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To restrict multiple robots from visiting the same location v;,
we use at-most-one-in-a-set constraints (Definition VI.1) for
the sets {v; ,|r € R} for each v; € V. Finally, we restrict the
robots’ carrying capacity with at-most-one-in-a-set constraints

I'See supplementary video attachment.

on the sets {v; ,|v; € Vas} for each small robot r € Rg and
{vir|v; € V} for each large robot r € Ry,.

The tuple (G1,Go,...,G g, F,C) now encodes the prob-
lem as a Sar-Tsp instance, where G, = (V,., E,., w,, ¢,.) is the
discrete graph for robot 7 that captures the time transitions, c,
is the robot’s time budget, F' captures the goals and constraints
of the problem, and C' encodes the maximum total time
incurred by all of the robots. The total time budget C' can
be minimized to find the optimal solution.

ILp expression: To express this problem as an ILp, we
build upon the formulation given in Section V. Similar to
the Sar-Tsp expression we negate incompatible location/robot
pairs instead of altering the previously established ILp formu-
lation. For example, a location ¢ would be incompatible with
the small robot r if it contained a large sample. The incom-
patibility is negated with the assignment v; = 0 (notation
defined in Section V). The following is the extension of the
ILp formulation:

szle, for each t € {1,2,...,m} ®)

v;€EVr TER

Z vl <1, for each v; € V )
reR

Z vl <1, for each r € Rg (10)
v €V

Z v <1, for each r € Ry, (11)
v, €VL

v; =0, for each v; € I (12)

where
I=A{v]|v; e V,r € Rg}U{vj|v; € Vg,r € R},

is used to represent the set of incompatible location/robot
pairs. Constraint (8) encodes the goal of retrieving at least one
of each mineral type, Constraint (9) restricts multiple robots
from retrieving the same sample, Constraint (10) restricts
small robots from collecting more than one medium sample,
Constraint (11) restricts large robots from collecting more than
one large sample, and Constraint (12) negates the incompatible
location/robot pairs.

C. The Period Routing Problem

The period routing problem [9], [11] requires a robot to
service a set of n — 1 locations over a set of m periods. In
each period the robot starts from a designated home location
and travels to a subset of the service locations. Each location v
requires f(v) < m out of m periods of service and has restric-
tions on which periods or period combinations are allowable.
For this paper, all period combinations that avoid back to back
visits are allowed (the first and last period are considered back
to back). This problem arises in collection [11] and delivery [9]
tasks. Also period routing problems often contain a capacity
that limits the number of tasks that can be performed.

A solution to this problem is a set of tours, one for each pe-
riod that meets the service demands of the locations, respects
the capacity limits, and respects the service restrictions. The



optimal solution minimizes the maximum length tour over the
m periods.

Sar-Tsp expression:  The problem is encoded as a Sar-Tsp
instance by constructing a graph for each period and a formula
that captures the goals and restrictions of the problem. Each
graph G, represents the transition costs for the robot to move
within its environment during period p (all graphs are the
same).

The problem goals of providing a specific number of service
periods to the locations is captured with the standard technique
of using adder circuits [52], which are efficiently translated to
a Boolean formula [53] and added to F'. A brief overview of
how adder circuits are used within this context can be found
in Appendix C. These adder circuits take as input the set
of location/period variables for each location {v;,|p € P}
and output a set of Boolean variables {b; 1,b;2,b; 4, ...} that
capture the binary encoding of how many of the inputs are
true. Next, the outputs of the adder circuit are forced to the
desired service demands, f(v;). As an example, if v; requires
two visits, then we force the twos bit b; », to be true and the
remaining bits to be false. This is accomplished by adding the
following to F' <— F' A _‘bi,l A\ bi72 A\ _\bi,4 VAN

We force the robot to visit the home locations with the
clause /\pe p Uh,p, Where v, € V is the home location of
the robot. The back to back period restriction is exhaustively
handled by negating every possible illegal combination.

=(vip Ay p+) for all v; € Vip e P,

where p™ = (p+ 1) mod m.

The tuple (G1,Ga,...,Gp, F,C) now encodes the prob-
lem as a Sar-Tsp instance, where: G, = (V,, E,, wp,cp) is
the discrete graph for period p; the cost budget C' is set to co
to indicate that there is no budget; F' captures the goals and
constraints of the problem; and ¢, encodes the maximum cost
of graph G,’s path which is minimized to find the optimal
solution.

ILp expression:  To express this problem as an ILp, we build
upon the formulation given in Section V. The following are
the additional constraints in the ILp formulation,

Z v¥ = f(v;), for each v; € V (6)
peP
vf+vf+§1, foreachv eV and pe P 7

where p™ = (p+1) mod m. Constraint (6) encodes the goal
of servicing each location the proper number of times and
Constraint (7) restricts back to back visits.

VII. SIMULATION RESULTS

In this section we present simulation results that compare
cBTsp to an ILp solver on the instances presented in Section I'V.
Additionally, we explore the scalability of Sar-Tsp with respect
to the number of robots. The problem instances in this section
all have metric travel costs and are thus solvable by cBTsp
(metric instances are Tsp-monotonic).

Gurobi cbTSP
No n m Best  Avg. Cost Best  Avg. Cost
1 40 5 2,268 2,292 2,260 2,260
2 40 10 1,812 1,812 1,812 1,812
3 40 20 3,171 3,171 3,111 3,111
4 60 7 1,825 1,925 1,801 1,801
5 60 15 2,615 2,845 2,430 2,430
6 60 30 3,252 3,346 3,176 3,176
7 80 10 2,020 2,227 1,903 1,903
8 80 20 2,948 4,681 2,533 2,602
9 80 40 4,640 6,920 3,244 3,585
10 100 12 2,398 3,265 1,937 1,939
11 100 25 2,825 4,324 2,431 2,473
12 100 50 7,385 8,273 3,803 4,104

TABLE I: Experimental results for patrolling problem instances (300 second
trials). The left three columns indicate the patrolling instance number, the
number of observation locations (n), and the number of points of interest
(m) in the environment. The best results are highlighted.

A. Simulations

We ran all simulations on an Intel Core i7-4600U, 2.10GHz
with 16GB of RAM. The cBTsp solver used a custom DPLL(T)
solver (based on MiniSar [18]) to test partial solutions by
making external callbacks to a Tsp solver (a version of
LKH [19] we modified to solve decision Tsp problems). The
cBTsp solver takes as input the SAT-Tsp instance, a time budget,
and a set of parameters used to configure the solver. The best
solution found within the time budget is returned. The solver
parameters are used to configure the behavior of cBTsp’s Sar
and Tsp solvers as well as a few cBTsp specific behaviors.
The details of these parameters and their values are given in
Appendix B. The ILp solver, Gurobi [17], was accessed through
Python and also takes as input a time budget. To make a fair
comparison we restricted Gurobi to a single process (thread).
Additionally, we seeded the solver with a random seed each
time it was called to ensure each run was different from the
last (set using Gurobi’s parameters).

All of our simulations use a 300 second time budget and the
best solution found within the budget is reported in our results.
As well, we track the solvers progress within its time budget
to compare the solver’s results as they are found. The use of a
fixed time budget allows us to simulate real world conditions
where the robot must make decisions while it operates as
opposed to letting the solvers run overnight (or longer) to com-
pletion. In the latter case of running the solvers to completion,
comparing solution quality would be meaningless since both
approaches would find optimal solutions. Thus, using a fixed
time budget allows us to compare the solver’s ability to find
solutions quickly. Typically, both solvers consume their entire
time budget and so we do not explicitly report solver times
as they would all be 300 seconds. Instead we compare the
average solution quality found over ten separate runs for each
solver with tables and track the solution quality found over
time in Figure 5.

The time budget does not include the time taken to create
the Sar-Tsp and ILp instances (reduction time) as we do not
wish to benchmark this process. However, the reduction times
are polynomial with respect to the input size.
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Fig. 4: A simple period routing example for material transport within a factory.
There are only two periods of service and a location can either require service
for one or both periods (as indicated on the graph). The home location is
labeled with an “H”.

B. Patrolling Problem Setup and Results

The patrolling problem instances were generated as follows.
All of the locations (the n—1 observation locations, the robot’s
home, and the m points of interest) were uniformly randomly
distributed in a 1000 x 1000 meter two dimensional square.
A point of interest p = (zp,y,) is observable from location

v = (2y,Yy) if
4000

< —/—/—
lp—v| < S

for which the equation was designed to help ensure that most
randomly generated instances will have a feasible solution
(one where each point of interest can be observed by a
complementary pair). A location u is complementary to v for
p if

(0, —0,) mod 360 > 60,
where
6, = tan~! (yp — yv) and 6, = tan™! (yp — yu) .
Tp — Ty Tp — Ty

An illustrative example of this problem is given in Figure 3
(on the left).

We compared cBTsp to the ILp solver, Gurobi, on a set of
12 instances as shown in Table I. As we can see cBTsp outper-
forms Gurobi on almost every instance and as the instances
get more difficult (lower in the table) the performance gap
increases as shown by the first and last instances in the table
— Gurobi has an average cost of 1.01 times more than cBTsp
on the first instance and an average cost of 2.01 on the last.

C. Sample Collection Setup and Results

The sample collection problem instances we tested were
generated as follows. There is one home location and n — 1
sample locations in the environment and the set of samples
contain up to m different mineral types. All locations (sample
locations and the home location) were uniformly randomly
distributed in a 1000 x 1000 meter two dimensional square.
The distribution of sample sizes are as follows: 3:1 for small
to large and 2:1 for small to medium. The types of minerals
in each sample are uniformly randomly distributed (the same
mineral type may reoccur in a sample). There are two types of

Gurobi cbTSP
No. n m Best  Avg. Cost Best  Avg. Cost
1 10 10 3,500 3,500 3,500 3,500
2 20 10 3,355 3,356 3,355 3,355
3 20 20 8,563 8,563 8,563 8,563
4 40 10 1,876 1,893 1,876 1,880
5 40 20 5,251 5,429 5,117 5,397
6 40 40 9,117 9,682 8,812 9,235
7 60 10 1,613 1,730 1,591 1,603
8 60 30 - - 11,809 13,077
9 80 10 1,382 1,580 1,299 1,332
10 80 40 10,941 11,009 10,453 12,073
11 100 10 1,883 2,863 1,363 1,419
12 100 50 - 14,668 14,949

TABLE II: Experimental results for sample collection instances (300 second
trials). On the left we indicate the instance number, the number of samples
(n), and the maximum number of different minerals (m) in the environment.
The best results are highlighted. Results that are shown with a dash indicate
that the solver was not able to solve the instance.

robots used to collect samples, small and large, three of each,
six in total. Each robot has a time budget of 25 minutes to
collect samples and return home and the small robots travel
at a speed of 2 m/s, while the large robots travel at half that
speed (1 m/s).

Note VIL1. Although the large robots can complete the task
by collecting about half the samples, it costs double to travel
the same distance. Furthermore, it is equally likely for a
mineral type to be found in a small, medium, or large sample.

We compared cBTsp to the ILp solver Gurobi on 12 sample
collection instances and reported the data in Table II. The
results show that cBTsp is competitive with Gurobi. Specifi-
cally, both solvers find the same quality solutions for the easy
instances (instances 1-3 in the table); then as the instances
get more difficult (instances 4-7), cBTsp starts to outperform
Gurobi; and for the most difficult instances (instances 8—12),
cBTsp often outperforms Gurobi by quite a bit. Here, Gurobi
only outperforms cBTsp on one instance and fails to find
feasible solutions for two out of five instances.

Physics-based simulations: ~ We have also performed sim-
ulation experiments for sample collection in more complex
environments (shown in Figure 1) where travel costs are
shortest collision free paths. These simulations utilize the
Clearpath Husky robot model within Gazebo. The robots use
the ROS navigation stack [20] to move within the physics
simulator. An example simulation, visualized with RViz, is
included as a supplementary video. In the video there are two
robots, each with different speed. The slower Husky emulates
the large sample collecting robot and the faster Husky emulates
the small robot. The collection task requires collecting seven
different mineral types from the environment.

D. Period Routing Setup and Results

The period routing problem instances were generated as
follows. All of the locations (the n — 1 service locations and
the robot’s home) were uniformly randomly distributed in a
1000 x 1000 meter two dimensional square. There are six
service periods and each service location may require either
one, two, or three periods of service (uniformly randomly



Gurobi cbTSP
No. n Best  Avg. Cost Best  Avg. Cost
1 15 2,278 2,392 2,212 2,212
2 15 1,968 2,055 1,904 1,904
3 20 2,200 2,382 2,022 2,022
4 20 1,807 2,016 1,670 1,670
5 25 2,706 3,718 2,310 2,347
6 25 2,638 2,869 2,057 2,057
7 30 2,877 3,133 2,342 2,358
8 30 3,040 3,811 2,433 2,439
9 35 3,738 3,944 2,502 2,610
10 35 3,667 3,902 2,404 2,506
11 40 4,369 4,680 2,727 2,954
12 40 3,934 4,529 2,594 2,678

TABLE III: Experimental results for period routing problem instances (300
second trials). The left two columns indicate the instance number and the
number of locations in the environment. The best results are highlighted.

assigned) out of the six periods. An illustrative example is
shown in Figure 4.

We have compared cBTsp to the ILp solver, Gurobi, on
12 period routing instances, for which the results can be
found in Table III. The table shows that cBTsp outperforms
Gurobi on the majority of the instances and like the other
two applications, as the instances become more difficult the
performance gap between cBTsp and Gurobi grows. This can
be seen as a trend between the first and last instance in the
table. The results in the table show that Gurobi starts out
finding solutions that are close to the quality of cBTsp (1.08
times the cost) then degrade as the instances become more
difficult to 1.69 times the cost found by cBTsp.

E. Solution Quality as a Function of Runtime

Both cBTsp and Gurobi provide updates on the quality of
the solutions found during run time. This is particularly useful
for online robotic applications where the robot can decide to
accept a solution that is good enough instead of waiting for a
better solution.

Figure 5 compiles all of the solver data for all three libraries.
From the data we can see that cBTsp is able to able to find more
feasible solutions than Gurobi with less time. Additionally, we
can see that the quality of these solutions quickly improve
within the first 60 seconds, while the solutions found by
Gurobi improve at a slower rate. One thing to note is that
the solution quality data is an average of the solutions found
by these approaches, so making a direct comparison of the
two approaches can be misleading since the data for one solver
may include an average of an instance that the other solver has
not been able to solve yet. This accounts for the degradation
of Gurobi’s solution quality at around 10 seconds. Here new
solutions are added to the average that were not part of the
average before and in the case that these new solutions have a
larger normalized cost, the new results will degrade the overall
average.

FE. Scaling with Number of Robots

In this section we explore scalability with the number of
robots. We consider the patrolling problem as described in
Section VI-A. To scale the problem we allow multiple robots
to visit the same location and set the objective to minimize
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Fig. 5: A comparison of CBTSP to Gurobi of how solutions evolve over time.
The top plot captures the average solution quality, normalized with the best
known result and the bottom plot captures the number of solver runs that do
not have feasible solutions.

100000

10000

1000

100

10

Solver Time (s)

1

01

10
Number of Robots

Fig. 6: Runtime to solve patrolling problems as a function of the number of
robots. The boxes capture 50% of the trials, while the tails capture 100% of
the trials. The curve shown for scale is 10| R|2.

the maximum length robot tour. This is a natural alternative to
minimizing the sum of tour lengths, and encourages all robots
to be utilized in the solution (rather than having a single robot
tour the observation locations). The formula is updated with
the following set of clauses for each v; € V

V; (Ui,l Vs V... \/’Ui7|R|) s

to capture whether or not a location was visited by any robot.

The simulations range from 1 to 20 robots and the solver
is allowed to run to completion. The environment is scaled as
follows: the number of points of interest in the environment
is 10|R| and the number of observation locations is 20|R|,
where R is the set of robots available. With this scaling,
each robot visits approximately four locations. The constructed
Sar-Tsp instance has both its environment size (input graphs)
and its formula size proportional to RZ2. Thus, the problem
size grows quadratically with R while its search space grows
exponentially with R. Figure 6 plots the time needed to solve
the instances as a function of the number of robots available.
The runtimes range from a few seconds for instances with
a single robot, to approximately 5,000 seconds for instances
with close to 20 robots. Note that the log scale in the plot
highlights that the growth in runtime is not exponential even
though the search space grows exponentially, instead the solver
time approximately grows quadratically with the number of
robots, like the problem size.

VIII. CONCLUSION AND DISCUSSION

We introduced the Sar-Tsp problem and the effective solver
cBTsp, which enables us to express and solve discrete robotic



motion planning problems with complex constraints. We have
demonstrated that cBTsp often outperforms a commercial grade
ILp solver, showing that cBTsp is a good choice for the
problems demonstrated in this paper. One can obtain the cBTsp
solver from https://github.com/fcimeson/cbTSP.

There are a number of directions we are pursuing for our
future work. One direction is to implement some of the
advanced techniques used by DPLL and DPLL(T), such as
clause forgetting, propagations, and custom search heuristics.
Although, we have not found memory blow up to be a
problem, clause forgetting would help avoid this potential
problem by forgetting conflict clauses that our method added
to the formula but are rarely if ever part of a conflict. With
propagations, we could implement custom Smt theories useful
for planning such as location ordering constraints, which in
turn would offload some of the logic from the Sar formula and
put it into a more compact form that the custom Swmr theory
can solve. Currently cBTsp uses search heuristics from the
Sar solver to choose the order of variable assignments, which
does not utilize knowledge of the Tsp problem. We believe
we could use this knowledge to improve the search heuristic
and thus improve the solver’s performance. Additionally, we
plan to investigate the effectiveness of using Sar-Tsp for
collision avoidance problems. Our approach would extend the
environment graph to incorporate discretized time steps. In
this way, we can use the location/time vertices to prohibit
multiple robots from occupying the same location during the
same discrete time step, as in [27]. Finally, we are working
on a re-planning scheme that preserves aspects of the solution
that can be used for the new problem.
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APPENDIX A
cBTspr: BINARY SEARCH

The cBTsp solver uses a modified version of binary search
to find optimal solutions. Algorithm 4 shows this approach
for optimization problems that aim to minimize the cost
C. The bdiv parameter is configured through the cBTsp
interface (default setting is 10) and upper_bound is an
upper bound on the worst cost solution that can be set to
> MaX(y, v,)eE; Wi(Va; Up)|Vi|. The same basic algorithm
is used to find optimal solutions for problems that aim to
minimize the maximum cost ¢; (subgraph path cost) by
replacing C' with ¢; and for each G; = {V;, E;, w;, ¢; } replace
c; with ¢; so that ¢; now constrains the maximum subgraph
cost for each G;.

Algorithm 4: Binary Search(G1, Go, . ..
C™+0
CT «+ upper_bound

1
2
3 C* «+ upper_bound
4 while C— < C* do

Ce ot - |G|

;Gn, F)

wn

bdiv
O/(—CBTSP(GhGQ,...
if C' >0 then
Ct«(C' -1

?G7L7F7C)

e e N

C* '
10 else
1 L C-+«C+1

12 return C*

Parameter Value

PATCHING_A 2
PATCHING_C 3

Parameter Value

PRECISION 10
MOVE_TYPE 5
RUNS 1

TABLE IV: Default LKH Parameters

APPENDIX B
cBTspP: SOLVER PARAMETERS

The cBTsp solver can take in a number of parameters to
configure the Tsp solver, the Sar solver and the cBTsp solver.
This section details the cBTsp specific parameters as well as
the default settings.

A. MINISAT

The configurable parameters of MiniSar are the conflict
budget and the propagation budget. Both parameters by default
are unlimited. All other MINISAT parameters are used as default
and are non-configurable through the cBTsp interface.

B. LKH

The LKH parameters configured by cBTsp are:
PROBLEM_FILE, TOUR_FILE, TIME_LIMIT,
STOP_AT_MAX_COST, and MAX_COST. The last two
parameters are customizations we added to allow for LKH
to solve decision problems. All other LKH parameters are
configurable, the default settings that deviate from the LKH

default settings are given in Table IV.

C. cBTsp

This section documents the configurable parameters for the
cBTsp solver. Default values are given in parenthesis.

The callback interval (cb_interval=1): This parameter
configures the Tsp callback interval. A setting of = indicates
that the Tsp theory consistency checked is performed when
the following is satisfied: |V| mod x = 0. A value of
x > |V|, behaves, as a non-naive BRUTE solver (described
in Section IV-A). The default settings for the parameter
cb_interval was chosen after comparing different values
of cb_interval on a set of small experiments documented
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Avg. Solver Cost

instance/cb_interval 1 2 10 BRUTE
patrolling06 3176 3182 3631 3631
patrolling10 3442 3908 4018 4120
sample04 1883 2089 4207 5324
sample08 12395 13380 16157 -
period11 2804 2896 1387 4071
period12 2669 2697 3247 4078

TABLE V: Tuning experiments for different values of the CBTSP parameter,
cb_interval (CBTSP becomes BRUTE when cb_interval > |V, we
chose a value of 999). Each test was run four times and the average cost
is reported. The instance name captures the problem type and the instance
number matches up with Section VII. The best results are highlighted.

in Table V. Here we take two instances from each problem
application (patrolling, sample collection, and period routing),
six in total and compare the quality of the solver’s results with
the same setup as in Section VII. As we can see from the Table,
a value of cb_interval=1 has the best performance. One
thing to note from the results, is how the non-naive BRUTE
approach (cb_interval=999) fails on instance sample08.
We believe this is due to the battery constraint of the sample
collection problem. Here the solver finds a solution and then
negates it if it exceeds the battery budget. This is unlike the
other two problems, which find feasible solutions and then
negate them from reoccurring. Thus, without the guide of
the Tsp theory, the solver seems to struggle finding feasible
solutions for the sample collection problem.

Conflicts (nConflicts=-1): The cBTsp solver adds
conflict clauses back to the sat formula to narrow down
the search space, as described in Section IV. The number
of conflict clauses cBTsp adds back to the formula can be
exponential in size, thus the parameter nConflicts=x limits
the number of additional clauses to « (-1 for unlimited) and
once that number is reached, it returns with the best known
solution. One can check the output text of the solver to confirm
whether or not the budget was reached.

Query budget (max_query_time=-1): The cBTsP
solver searches for solutions with a series of Sar-Tsp decision
queries, where each search has a different cost budget set
by either a binary or linear search algorithm. By default (-
1) the queries are given an unlimited amount of time but if
this parameter has a positive value of x then each query is
terminated after x seconds and is assumed to be unsatisfiable.

Search method (search_method=binary): This pa-
rameter is used to choose between binary and linear search.

The binary search parameter (bdiv=10): This parameter
configures the division size of the binary search as shown in
Algorithm 4. Due to the fact that most unsatisfiable instances
are harder to prove than satisfiable instances, it is desirable
to have this parameter larger than the nominal value of two.
The default settings for the binary search parameter bdiv
was chosen after comparing different values of bdiv (and
comparing it to a linear search) on a set of small experiments
documented in Table VI. Here we take two instances from
each problem application (patrolling, sample collection, and
period routing), six in total and compare the quality of the
solver’s results with the same setup as in Section VII. As we

Avg. Solver Cost

instance/bdiv 2 10 20 Linear
patrolling06 3177 3176 3177 3177
patrolling10 3653 3442 3496 3972
sample04 1899 1883 1882 2291
sample08 12993 12395 12051 14731
periodl1 2925 2804 2937 3578
period12 2973 2669 2708 3148

TABLE VI: Tuning experiments for different values of the CBTSP parameter
bdiv (the search is linear is when bdiv=999999). Each test was run four
times and the average cost is reported. The instance name captures the problem
type and the instance number matches up with Section VII. The best results
are highlighted.
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Fig. 7: An adder circuit summing up Boolean input variables X’ =
{z1,x2,...,25} and outputting the Boolean variable by, as well all the
carry out bits.

can see from the Table, a value of bdiv=10 yields a good
result.

APPENDIX C
ADDER CIRCUITS

In this section we provide an overview of how adder circuits
are used to count the number of true variables in a set X’. In
general we can input the negation of a variable (its negative
literal) but for this document we only count variable inputs if
they are assigned true. Adder circuits are used in electronics
to do rudimentary mathematical operations [52]. The example
circuit shown in Figure 7 takes as input X’ = {x1,z2,..., 25}
and outputs by. This circuit is composed of four two bit adder
circuits and correctly constrains the binary one bit b; to the
number of true input variables in X', there would be a similar
circuit for the twos bit that takes in as input all of the carry
out bits from the example. The complete binary circuit can be
constructed using techniques in [52]. The circuit is translated
to a Boolean formula (SAt) in polynomial time using methods
from [53].
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