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Abstract— We consider the problem of path planning for a
UAV, deployed to provide sensor coverage ahead of a moving
ground vehicle. The ground vehicle travels a fixed route through
an uncertain environment and requires information about the
area ahead. Given this route, the UAV planner calculates
the regions to be covered and the time by which each must
be covered, as an Orienteering Problem with Time Windows
(OPTW) and solves it using a Mixed Integer Linear Program
(MILP). To improve scalability, we prove that the optimization
can be partitioned into a set of smaller problems, each of which
may be solved independently without loss of overall solution
optimality. Finally, we demonstrate a method of limited loss
partitioning, which can perform a trade-off between improved
solution time and a bounded objective loss. All of our results
are validated in simulation.

I. INTRODUCTION

In applications such as search and rescue, disaster re-
covery, or transportation of goods and personnel in hos-
tile environments, a ground vehicle may have to traverse
uncertain and potentially dangerous terrain. Existing maps
may be used for route planning, but may differ from the
current conditions. Further, obstructions such as buildings
may conceal those differences (e.g., a fallen tree, a bridge
collapsed, or hidden adversaries). A UAV, with its greater
speed, mobility and flight capability [1], can stay ahead of
the ground vehicle and provide real-time imagery for route
planning and mapping, enabling the ground vehicle to adapt
its route as the situation demands.

In [2], we considered a precursor problem which defined
a view corridor along and to either side of the upcoming
route. The UAV provided complete coverage of the corridor,
maintaining a position ahead of the moving ground vehicle.
However, the speeds required from the UAV are very large.
As a result, the ground vehicle must either be restricted
to very slow speeds, or the UAV can cover only a narrow
corridor around the planned route. In this paper we consider
the problem in which the UAV covers only the parts of the
corridor that cannot be observed directly from the ground
vehicle due to occlusions.

As the ground vehicle moves through the terrain, any
occluded parts of the corridor must be visited in advance
by the UAV. See Figure 1. These hidden regions are
approximated by finding areas that are never within the
visibility polygon when viewed from locations along the
ground vehicle’s route [3], [4]. The planner must find a UAV

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo ON, N2L 3G1 Canada (barry.
gilhuly@uwaterloo.ca, stephen.smith@uwaterloo.ca)

Fig. 1: The coverage corridor projected ahead of the ground vehicle with
the observation area highlighted in light grey. The observation area moves
forward with the ground vehicle.

path that covers as much of the hidden areas as possible
within the resource and time constraints available: this is
an Orienteering Problem with Time Windows (OPTW) [5].
Similar to the approaches of [6], [7], we cast a Mixed
Integer Linear Program (MILP) to find a solution. Given that
OPTW problems are proven to be NP-hard [8], we expect
this formulation is likely to be NP-hard as well.

In this paper we focus on the problem of planning cov-
erage for a fixed ground vehicle route. We envision this
solution as part of a receding horizon planner that replans
the coverage path when the ground vehicle’s route is updated
due to newly acquired information on hidden regions. A
complete solution requires a reliable data link between the
UAV and the ground vehicle, to transmit updated waypoints
to the UAV and send live sensor data back to the ground-
vehicle; however, we leave this for future work.

II. RELATED WORK

UAVs and ground vehicles frequently operate in collabora-
tion to complete a task, as in exploration [9], persistent mon-
itoring [10], and search and rescue [11]. Other applications
combine a UAV’s mobility with a ground vehicle’s cargo
capacity and take advantage of the strengths of both [12].
In some situations, a UAV may even serve as the ground
vehicle’s sensors [13].

In Orienteering Problems, an agent must collect some opti-
mal subset of rewards given constraints on limited resources.
The problem may be exploration with a UAV [14], optimal
path planning for views [15], or team oriented planning [16].

Vehicle routing problems are well studied in the litera-
ture. Coverage planning such as [17], [18], [19] solves for
complete coverage solutions and does not allow for partial
coverage planning subject to limited resources (e.g., time,
fuel, etc.). The Vehicle Routing Problem with Time Windows
(VRPTW) studies planning for agents with constraints that
limit the number of vertices to be visited before returning to
the start, resulting in a route with multiple loops [7]. This
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type of problem focuses on optimal scheduling and minimal
travel distances, not on maximizing a potential reward. In
vehicle routing with time constraints [20], [21], an efficient
heuristic solution is developed after discretization, reducing
the problem to a directed acyclic graph. In our case, this
approach isn’t possible as the resulting graph would have
cycles.

Contributions: There are three main contributions in
this paper. First, we present the problem of providing UAV
coverage path planning to a moving ground vehicle and solve
it as an OPTW. A MILP is formulated to maximize the cov-
erage area while minimizing UAV path length. Second, we
prove this coverage problem, under certain conditions, can
be exactly partitioned without loss of optimality, resulting
in shorter and more predictable solution times. Third, we
present a method of limited loss partitioning, for which the
loss in solution quality is bounded.

III. PROBLEM STATEMENT

Let E be a planar environment in R2. The environment
contains a set of m polygonal obstacles O1, . . . , Om that
could be buildings, or other objects. Each obstacle is assumed
to be tall enough that it blocks the ground vehicle’s line
of sight. The ground vehicle follows a collision free route
P (t) through E with velocity Vgv for t ∈ [0, T ] as shown in
Figure 1. We define an area of the environment immediately
ahead of the ground vehicle and centred on the route as the
observation area, with width w and extending distance d in
front of the ground vehicle. As the ground vehicle traverses
P , the observation area moves forward as well.

The leading edge of the observation area is denoted as the
deadline. As the ground vehicle traverses P , the deadline
remains a distance d ahead. If we define ∆t = d

vgv
as the

time required for the ground vehicle to traverse d, then the
deadline is at P (td) where td = t+ ∆t.

We define the region of E that is swept by the deadline
from time 0 to a time t ∈ [0, T ] as the coverage corridor
A(t). The close time tclose for any point in A(t) is defined
as the first time the deadline sweeps over that point. An
open time is also defined for each point, capturing the earliest
time the point is usefully observed. The open time is relative
to the velocity of the ground vehicle and the close time:
topen = tclose − d/vgv.

Let V (t) be the set of points in E visible by the ground
vehicle when located at the point P (t) on the path, as
illustrated in Figure 2. A point p ∈ A(T ) is said to be hidden
if it is has not been observed by the ground vehicle prior
to the deadline passing it. We let Rhidden denote the hidden
region, which is the set of all hidden points in the coverage
corridor A(T ). More formally, consider a point p ∈ A(T )
and let td be the time when the deadline passes p. Then, p
is hidden if p /∈ V (t) for all t ∈ [0, td −∆t].

The UAV flies over E with velocity Vuav. We assume
that the UAV flies at sufficient height that its environ-
ment is obstacle-free. Thus, it can travel over the obstacles
O1, . . . , Om. We assume that the UAV model has a steering
function available that generates a path between any two

Fig. 2: Illustration of the visibility region for the ground vehicle, used to
calculate the hidden regions.

points in E . The UAV has a downward focused camera
providing coverage information to the ground vehicle. The
functional size of the sensor footprint on the ground is f×f .
Finally, we assume the velocity of the UAV is greater than
that of the ground vehicle.

With this background, our primary problem can be stated.

Main Problem III.1 (Selective Coverage Path). Given a
ground vehicle moving through the environment along the
route P , plan a path for a UAV to maximize the area of
the points within Rhidden that are covered within their time
windows.

Solution Approach: Our approach starts by converting
the continuous environment A(T ) into discrete cells and
computing the hidden regions Rhidden. We then utilize sweep
lines to cover each connected component of the hidden
region. Next a graph with vertices representing sweep lines
and edges representing transitions is constructed. We cast a
MILP to solve for a path that maximizes the total coverage.

We develop a divide and conquer approach of partitioning
the graph into subgraphs while provably preserving the
overall optimal solution. We then describe a method of
lossy partitioning that allows for even smaller subgraphs,
while providing a guarantee on the maximum amount of
lost coverage. The full UAV path is then constructed by
concatenating the paths found in each subgraph in temporal
order, starting with the earliest.

IV. DEVELOPMENT OF MILP SOLUTION

We begin by describing the method for finding the hidden
regions and placing the coverage sweep lines. Then, given
the set of coverage lines, we derive a graph representation
and subsequently solve for optimal coverage using a MILP.

A. Placing Coverage Lines

The environment E is first discretized into cells. The
size of each cell is determined by the accuracy desired
and the computational time available. Each cell uses topen
and tclose of its centre. Next the hidden regions, Rhidden, are
calculated by sampling the views along the ground vehicle
route P and converted into a cellular representation. A cell is
considered to be within a hidden region if its centre is within
the boundary of the region. Finally, the enclosing hulls are
calculated for the cells in each hidden area. The result is a
set of polygonal approximations of the hidden regions.

Parallel line segments, separated by f , are placed to
provide complete coverage of each polygon found for the
hidden regions. To minimize resource consumption [22], the
segments are placed with an orientation that is perpendicular



Fig. 3: Every coverage line Li has two associated directional vertices in
the graph representation, v2i−1 and v2i. The UAV only visits one of these
when moving from S to F .

to the minimum altitude line of each polygon [23], [18].
The resulting coverage lines, when followed by the UAV,
completely cover the polygon. A brief greedy optimization
is then applied to reduce the total coverage distance required.

The closing time for a sweep line is the latest time before
which the UAV will be able to successfully cover that line.
Closing times must take into account both the earliest closing
time of all the cells that fall within the the UAV sensor
footprint as the UAV transits the line, and the time required
to transit the entire line. The closing time for the ith sweep
line is defined as the minimum tclose of all the cells within
f/2 of the line minus the UAV traversal time.

The opening time for a sweep line is the earliest tclose of all
the cells within f/2 minus the time required for the ground
vehicle to traverse the observation area. If the UAV arrives
at a sweep line prior to this time, it must wait, adding idle
time to the solution. Note that the length of any sweep line
is limited such that oi < ci.

The reward Ri for sweep line i is the number of cells
within f/2 of the line.

B. Graph Representation

The coverage problem is represented as a directional graph
with time constraints, parameterized as G = (V,E, s, t) with
time windows (o, c) and rewards R. There is a pair of vertices
in V for each of the two directions that a line may be
traversed (See Figure 3). There is also one vertex for each
of the start and finish positions. The open and close times
for each vertex are o and c respectively, and when referring
to a vertex v we will write the times as vopen and vclose.

The edges E of G are not fully connected. Given two
vertices a and b, then edge {a, b} is added to the graph if
vertex a and vertex b do not represent the same sweep line,
and if aopen + sa + ta,b ≤ bclose, where sa is the service cost
of a and ta,b is the transit cost for edge {a, b}. The service
cost sa is the time required to traverse the sweep line. Since
visiting a vertex necessitates a physical transition in space,
the travel costs between vertices are asymmetric. The last
parameter, R, is the reward acquired for visiting a vertex.

NP-hardness: This formulation of the OPTW problem
can be seen to be NP-hard as it contains the Euclidean TSP
as a special case when the time windows for each vertex are
[0,∞) and the segment lengths are zero.

C. Formulation of the Mixed Integer Linear Program

To solve the Selective Coverage Path Problem on a given
graph G, we formulate a MILP. Each pair of vertices repre-
senting a sweep line in G is identified sequentially v2i−1, v2i
for i ∈ {1, . . . , |V |2 }. The start and finish vertices are v0 and

vN+1 where N = |V |. The variables of the MILP are defined
as follows:
• vi - 1 if vertex i is in the solution, 0 otherwise, i ∈
{0, . . . , N + 1}.

• xij - 1 if we travel from vertex i to vertex j, 0 otherwise.
• ui - service start time at vertex i.
• Ri - reward collected from vertex i.
• si - cost to visit vertex i (graph parameter s).
• tij - travel cost for edge xij (graph parameter t).
• Tmax - total time budget, generally the time the ground

vehicle arrives at the finish.
• Oi, Ci - open and close times for vertex vi.
• M - a suitably large number (2Tmax is used here).
The MILP has three objectives, which are solved in a

hierarchical manner. Initially, we optimize for the collected
reward (1). This produces a maximum coverage plan within
the constraint imposed by the UAV’s capabilities.

max

N∑
i=1

Rivi (1)

Subject to: (2)
uN+1 ≤ Tmax (3)
N∑
i=1

x0i =

N∑
i=1

xi(N+1) = 1 (4)

N∑
i=0

xik =

N+1∑
i=1

xki = vk,∀k ∈ {1, . . . , N} (5)

v2k−1 + v2k ≤ 1 ∀k ∈ {1, . . . , N/2} (6)
ui + si + tij − uj ≤M(1− xij),
∀i ∈ {0, . . . , N}, j ∈ {1, . . . , N + 1} (7)

Oi ≤ ui ≤ Ci,∀k ∈ {1, . . . , N} (8)

The amount of time for travel is limited and the plan
must return to the finish before resources are exhausted (3).
The solution must start at the initial vertex and end at the
final vertex (4). For each vertex, there can be at most one
connection in and one out (5). The solution has at most
one vertex from each pair that corresponds to a coverage
line (6). Subtours are eliminated and service times calculated
by (7). Finally, visit times are confined to the specified time
windows (8). The values of xij and vi are binary variables,
and the service times are positive real:

xij , vi ∈ {0, 1}, ui ∈ R+,∀i ∈ {1, . . . , N}.

The path found by the first optimization maximizes the
reward, but there may exist a shorter path that collects the
same reward. If time permits, the solution is reoptimized for
length including the found maximum reward as a constraint.
Finally, a third round of optimization minimizes the total
service time uN+1, removing any unnecessary idle time.

V. PARTITIONING TO IMPROVE SCALABILITY

The exponential solution times of the MILP means that
for many problem instances, an optimal solution is not found



before the solver exhausts its time budget. However, in this
section we describe how we can exploit the structure of
the time windows to partition G into subgraphs that can be
solved independently.

A. Exact Partitioning

At any time t ∈ [0, T ], the vertices V in G may be divided
into two sets

Lt = {u ∈ V |uclose ≤ t}, Ut = V \Lt. (9)

By convention, the start vertex is in Lt and the finish vertex
is in Ut. The sets Lt and Ut can be said to partition V ,

Lt ∩ Ut = ∅, Lt ∪ Ut = V,Lt 6= ∅, Ut 6= ∅.

Lemma V.1 (A Single Edge). Given a time t, let

Lt = {u ∈ V |uclose ≤ t}, Ut = V \Lt.

If for every u ∈ Lt, and v ∈ Ut, we have

vopen ≥ uclose + su + tu,v, (10)

then in any optimal solution S∗ there is exactly one edge
between Lt and Ut, and it is directed from Lt to Ut.

Proof. We will prove by contradiction. Assume the route P
is cut at t and the inequalities in (10) hold. The vertices of V
are partitioned into Lt and Ut. Consider any optimal solution
S∗ – there are two possible cases:

No vertices in Ut appear in S∗: If the optimal solution
includes no vertices in Ut, then there are no edges from
Lt to Ut. After visiting the last vertex u ∈ L, the UAV
returns. However, by definition Ut is non-empty, and by (10),
any vertex v ∈ Ut can be visited from the latest closing
time of any vertex in Lt. Therefore Ut is either empty or
the proposed solution is not optimal, both of which are
contradictions. Therefore, there must be at least one vertex
from Ut in S∗.

There is at least one edge from Ut to Lt: For there to
be more than one edge in S∗ from Lt to Ut, there must be at
least one edge from Ut to Lt. However, by (10), every vertex
in Lt must have closed before any vertex in Ut opens. This
case is not possible and there can be no edges from Ut to
Lt. Therefore, there can be only one edge between Lt to Ut

in S∗, and it is directed from Lt to Ut.

From this Lemma we obtain a simple procedure for par-
titioning the graph into independent subgraphs. This method
is detailed in the following.

Divide and Conquer Method:
1) Sort the vertices of G in order of vclose.
2) For each unique close time t, partition G into disjoint

subgraphs Lt and Ut.
a) If the conditions of Lemma V.1 are not satisfied,

continue from Step 2 at the next t.
b) Otherwise, add a dummy finish vertex to Lt with

a zero cost from any vertex in Lt. Add a dummy
start vertex to Ut with zero cost to any vertex in
Ut.

c) Store subgraph Lt as Gi, incrementing i.
d) Continue from Step 2 with G ← UL until all

possible partitions are tested. Store the remaining
Ut subgraph as Gn.

3) Independently solve each stored subgraph,
G1, G2, . . . Gn. Construct the solution S by removing
the dummy vertices of Gi, Gi+1 and connecting the
last vertex in the solution of Gi to the first vertex in
the solution to Gi+1∀i = 1, . . . , n− 1.

Proposition V.2 (Divide and Conquer Solution is Optimal).
Any optimal solution of the Divide and Conquer method in
Section V-A is an optimal solution to the Selective Coverage
Path Problem III.1.

Proof. If the conditions of Lemma V.1 are satisfied, then the
graph has the following properties at t:
• The vertices of u ∈ Lt, v ∈ Ut are strictly ordered:

uopen < uclose < vopen < vclose. (11)

• On any path from Lt to Ut, the UAV always arrives at
v ∈ Ut before or just as the time window for v opens.

• There are no edges from Ut to Lt.
Irrespective of the path selected in Lt, the UAV must

always wait at the first vertex in Ut in the solution of S∗.
Further, from (11) it can be seen that there are no edges (and
therefore no paths) from Ut to Lt, no solution for Ut can
affect the solution of Lt. Therefore, the two sections of the
path are independent and may be solved separately.

B. Limited Loss Partitioning

The conditions of Lemma V.1 are restrictive and frequently
do not allow many partitions. This is particularly true when
the environment contains a dense set of obstacles close to
one another, and the resulting vertices in the graph have
overlapping time windows. However, these are also regions
in which partitioning would be most useful. Looking at the
structure of the open and close times, there are locations in
the graph where, if some vertices are “temporarily” removed,
the conditions of (10) can be met. The temporarily removed
vertices may not be included in the final result and so we
define their associated rewards as the potential loss. Thus,
we generate as many partitions as possible while bounding
the sum of the potential losses as a function of the total path
reward RT . This observation leads to a limited loss method
of applying Lemma V.1.

Limited Loss Divide and Conquer:
1) Sort the vertices of G in order of vclose.
2) For unique close times tj , j ∈ {1, . . . , n} in G, find

the number ` of vertices v with tj−1 < vclose ≤ tj ,
where t0 = 0. Apply Lemma V.1 at tj .

a) If (10) is satisfied, then store (`j = `, cj = 0)
and continue from Step 2.

b) Otherwise, temporarily remove the next vertex
with close time > tj and mark it. Re-test (10).
If the partition is not exact, repeat for the next



vertex until (10) is satisfied or no further vertices
remain.

c) Evaluate the potential loss c as the sum of the
rewards of the marked vertices at tj . Store the
vertex count and loss (`j = `, cj = c) and
continue from Step 2.

3) Find the subset of cuts using (`j , cj) for j =
1, 2, . . . , n that minimizes the number of vertices in a
subgraph, with a potential loss less than the predefined
fraction ρ ∈ [0, 1) of the total reward RT in G.

4) Solve the subgraphs sequentially and in temporal order.

Remark (Temporal Order). The subgraphs must now be
solved in increasing temporal order as limited loss parti-
tioning no longer results in independent subgraphs. The last
vertex and visit time from the solution of the prior subgraph
act as the starting vertex and time for the following subgraph,
preserving the overall graph timing.

Remark (On Removed Vertices). The marked vertices are
not actually removed when the graph is partitioned in Step 3.
Those vertices are included in the subgraph immediately fol-
lowing the boundary where their potential loss was identified.

C. A Dynamic Programming for Min-Max Partitioning
To optimize our limited loss partition method, we select

the partition of G that is the most advantageous. Since the
number of variables in the MILP grows by the square of
the number of vertices in the graph, the best choice is the
partition that minimizes the size of the largest subgraph while
respecting the specified maximum loss. Selecting a subset of
cuts from a list is similar to the dynamic programming 0-1
knapsack problem [24].

We start with a graph G and a list of n possible cuts
(`i, ci), each cut i having a length `i and a potential loss
ci. For any two cuts i, j ∈ {0, . . . , n}, i < j, we define
the length between cuts as the number of vertices from i
to j, written `i,j = `i+1 + · · · + `j . Given a loss budget
B = ρRT , we seek the list of cuts I = (i1, i2, . . . , ik),
i1 < i2 < . . . < ik where

∑
i∈I ci ≤ B, that minimizes the

maximum length between cuts max{`0,i1 , `i1,i2 , . . . , `ik,n}.
We define the subproblem

L(j, b) = {the min-max length of cuts
up to cut j, with budget b},

with the constraint that cut j must be included in the solution
of the subproblem or the length is defined as +∞. The
smallest subproblems which start the recursion are

L(0, b) =

{
0 if 0 ≤ b ≤ B,
+∞ if b < 0.

(12)

All other subproblems are solved with the recursion

L(j, b) = min
i∈{0,...,j−1}

max{L(i, b− ci), `i,j},

and the final answer given by

min
j∈{0,...,n}

max{L(j, b− cj), `j,n}.

From the solution to the subproblems we extract the cuts
that form the boundaries of the optimal partition of G.

Time Complexity: One complication in the application
of dynamic programming to this problem is that all of the
potential losses are real values, not integers. As a result,
the size of the table required to look up repeated values
is unbounded. In order to provide computational guarantees
the potential losses are scaled to an integer value B′ and
rounded up such that c′i =

⌈
ci
BB
′⌉. For a graph with |V |

vertices, scaling and rounding guarantees a solution with at
most |V | ·B′ values and eliminates floating point errors. The
value of B′ is selected to be large enough that the results
remain accurate, while limiting the cost of computation.
After scaling, the final dynamic programming solution has
time complexity of O(|V |2 ·B′).

D. Proof of Limited Loss

Based on the discussion of Sections V-B and V-C we arrive
at the following proposition. In this proposition we use R(S)
to denote the reward collected by a path S. We use RT to
denote the sum of all rewards in the graph:

RT =

|V |∑
i−1

Ri.

Proposition V.3 (Limited Loss Partitioning). Given a value
ρ ∈ [0, 1), the Limited Loss Divide and Conquer method of
Section V-B produces a solution S with reward

R(S) ≥ R(S∗)− ρRT ,

where R(S∗) is the reward collected by the optimal solution.

Proof. Given a ρ ∈ [0, 1), the Limited Loss Divide and
Conquer method produces a partition of G into k subgraphs
G1, . . . Gk. Let G′1, . . . , G

′
k be the subgraphs after removing

the marked vertices (as described in 2b of the algorithm)
from G1, . . . Gk. These marked vertices have a total reward
of at most ρRT . The graphs G′1, . . . , G

′
k satisfy Proposi-

tion V.2 and thus we can find a solution S′ = {S′1, . . . , S′k},
obtained by concatenating the optimal solutions on each
subgraph. We let R(S′1), . . . , R(S′k) be the rewards collected
by the S′ in each of these subgraphs. The optimal solution
S∗ on G must contain some vertices in each G′i, call them
S∗i , such that R(S′i) ≥ R(S∗i ). That is, the optimal solution
S∗ may contain exactly the same vertices as S′i or fewer
vertices. Thus,

R(S′) =

k∑
i=1

R(S′i) ≥
k∑

i=1

R(S∗i ). (13)

The total reward for the optimal solution is

R(S∗) ≤
k∑

i=1

R(S∗i ) + ρRT (14)

Therefore, after combining (13) and (14), the reward from
partitioning G′ is R(S′) ≥ R(S∗)−ρRT . Since each solution
S′i for the subgraph G′i is a feasible solution in Gi (the
graph Gi with the marked vertices included), it immediately



Fig. 4: The simulation environment, with the ground vehicle route running
from top left to bottom right. Calculated hidden regions and the UAV’s
planned flight path are also shown.

follows that the optimal solution on G1, . . . , Gk is at least
that of the optimal solution obtained from G′1, . . . , G

′
k.

Remark (Conservativeness of Bound). As ρ becomes larger,
the bound in Proposition V.3 becomes very loose. To obtain
the bound, we assume that S∗ collects the entire ρRT reward
of the removed vertices. In practice this will not be possible.
In addition, when implementing the Limited Loss Partition,
because vertices are not actually removed, the solution S can
potentially collect rewards in addition to R(S).

VI. SIMULATIONS AND RESULTS

We demonstrated selective coverage and the effectiveness
of partitioning in a randomized software environment. At the
start of each trial, the ground vehicle is given a map of the
obstacles. A route is planned for the ground vehicle using
an RRT* planner [25] and relayed to the UAV planner to
calculate the obstacles and plan the UAV path. The planner
must find a path that covers as much of the expected hidden
regions as possible given the UAV’s operational constraints.
As shown in Figure 4, each environment E is generated with
20 to 120 randomly placed obstacles. The start and finish
positions are a constant 3000m apart. The vehicle parameters
are Vgv = 1m/s, Vuav = 5m/s, w = 200m, d = 300m, and
f = 25m.

All simulations1 are implemented in C++ using the fol-
lowing libraries and tools: Visibility polygons [26], Compu-
tational geometry functions from Boost [27], Minimum poly-
gon heights [23], Concave polygons [28], QuickHull [29],
and Polygon decomposition [30]. The Dubins curve li-
brary [31] provides our steering function for the UAV path,
adding a radius of 1m to all turns. We solved the MILP using
Gurobi [32], allowing up to ttotal = 1000s on a Ubuntu 18.04
desktop PC with an Intel(R) i7-7700K CPU and 32GB RAM.

1A video demonstration of the simulation environment is available:
https://youtu.be/mOyUuMXjomo

In our results, we present data from four different solution
methods: Optimal, ExactDnC, DnC30 and DnC50. Optimal
uses the unmodified graph G. ExactDnC allows partitions
according to Lemma V.1. DnC30 and DnC50 allow lossy
partitioning limited to 30 per cent and 50 per cent of the total
coverage reward RT , respectively. The results are grouped
and plotted as a function of the number of vertices in G,
which are directly proportional to the number of sweep lines
in E . As the number of obstacles in the coverage corridor
increases, so too does the number of sweep lines, indicating
a greater difficulty in providing an optimal solution given a
fixed time budget for the MILP solver.

Subdivision of Available Solution Time: The MILP
solver is given a fixed time budget ttotal, to be divided
between the subgraphs. Since the number of variables in the
MILP grows as the square of |V | (see Section IV-C), we allot
time proportional to the square of the number of subgraph
vertices. Unused solution time is passed to the next subgraph.

A. Exact and Limited Loss Partitioning

Figure 5a compares the time required to find a solution
to the MILP using the four different solution methods as
a function of the number of vertices in the full graph G.
After five hundred simulations, the results are collected and
plotted by vertex counts. The plots show the mean value and
95% confidence interval for each vertex value. Initially, all
methods terminate prior to their time budget. However, as
the number of vertices increases, the time required to solve
either of the Optimal or ExactDnC cases quickly reaches the
maximum limit. There is large variability in solutions times,
as Gurobi solves some instances very quickly, while others
of similar size use the entire time budget. This commonly
occurs when solving NP-hard problems. The lossy methods,
DnC30 and DnC50, are able to solve much larger problems
within the allotted time. Figure 5b plots the number of
covered cells in simulation, when following the UAV path
generated by the planner. The simulations are consistently
close to the expected MILP reward.

B. Path Lengths

In this experiment we ran 1000 trials, increasing Vuav to
20 m/s and limiting the MILP to ttotal = 120 s. The results
can be seen in Figure 5c. Under these conditions, as the
scale of the problem increases, the Optimal and ExactDnC
solutions are clearly not capable of minimizing the length of
the path in the available time.

VII. CONCLUSIONS AND FUTURE WORK

We formulated a MILP that solves the Selective Coverage
Path Problem. We then proved that the coverage problem can
be exactly partitioned while retaining the optimal solution
under certain conditions. We also developed a limited loss
partitioning method which found an optimal partition within
a bounded loss in coverage reward. The lossy method al-
lowed the coverage problem to be subdivided in cases where
the exact partition was not possible. Lossy partitioning may
also provide better solutions for scenarios where the solver

https://youtu.be/mOyUuMXjomo


(a) (b) (c)

Fig. 5: (a) MILP solution time. The solver is limited to 1000 s. (b) Simulated Coverage - the count of cells covered through simulation, validating MILP
reward. (c) UAV path distance with velocity constraints lifted. For the largest problems, the Optimal and ExactDnC methods produce paths that are as
much as double the length of the lossy methods DnC30 and DnC50.

fails to complete before allotted time expires, although we
have not fully explored this possibility. We validated both
the exact and lossy methods through simulation.
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