
Learning User Preferences from Corrections on State Lattices

Nils Wilde, Dana Kulić, and Stephen L. Smith

Abstract— Enabling a broader range of users to efficiently
deploy autonomous mobile robots requires intuitive frameworks
for specifying a robot’s task and behaviour. We present a novel
approach using learning from corrections (LfC), where a user
is iteratively presented with a solution to a motion planning
problem. Users might have preferences about parts of a robot’s
environment that are suitable for robot traffic or that should be
avoided as well as preferences on the control actions a robot can
take. The robot is initially unaware of these preferences; thus,
we ask the user to provide a correction to the presented path.
We assume that the user evaluates paths based on environment
and motion features. From a sequence of corrections we learn
weights for these features, which are then considered by the
motion planner, resulting in future paths that better fit the
user’s preferences. We prove completeness of our algorithm
and demonstrate its performance in simulations. Thereby, we
show that the learned preferences yield good results not only
for a set of training tasks but also for test tasks, as well as for
different types of user behaviour.

I. INTRODUCTION

Recent research in human robot interaction (HRI) focuses
on enabling inexperienced users to efficiently deploy au-
tonomous mobile robots. Common techniques for intuitive
specification of robot tasks and behaviour are imitation
learning, often based on inverse reinforcement learning (IRL)
[1], [2], active preference learning [3] and learning from
corrections (LfC) [4], [5].

User preferences for how a robot should accomplish its
task can be described by constraints on the robot’s task
and action space. For instance, when a mobile robot acts
in an environment shared with humans, users might want
certain areas to be avoided by the robot while others are
more suitable for robot traffic. A set of such constraints
defines rewards and penalties for corresponding parts of the
task space, usually expressed by weights, which can then be
considered by the robot’s motion planner. However, a user
may find it challenging to specify constraints on robot motion
while ensuring good task performance, for instance traffic
rules for mobile robots performing material transport tasks
[6]. Instead of asking users to define constraints, in the LfC
approach, we suggest a solution for a task, i.e., a path from
a start to a goal location, and then ask the user to provide
a correction if that solution does not fit their preferences.
This can be done on an interface showing a map of the
environment together with the presented path. The user then

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and OTTO Motors.

The authors would like to thank Alex Botros for valuable discussions.
N. Wilde and S. Smith are with the Department of Electrical and

Computer Engineering, University of Waterloo, D. Kulić is with the Uni-
versity of Waterloo and Monash University. (nwilde@uwaterloo.ca;
dana.kulic@uwaterloo.ca; stephen.smith@uwaterloo.ca)

(a) Hidden user preferences on
the environment.

(b) Suggested path (blue) and
user correction (purple)

(c) Sparse preferences learned
from one correction

(d) Generalizing preferences
learned from one correction

Fig. 1: Example of the learning from correction framework,
with an environment with obstacles (black), avoidance areas
(red) and areas where robot traffic is encouraged (green).

can correct the parts of the presented path they dislike by
either setting via-points or by drawing an alternative sub-
path. From the difference between the presented solution and
its correction we learn about the user’s preferences for robot
behavior in different parts of the environment. We illustrate
this in Figure 1. In (a) the environment is shown together
with a penalty area, i.e., the user prefers that a robot does not
traverse the red-shaded area on the right. We do not ask the
user to specify this region, but rather show them the current
optimal solution computed by the motion planner. The user
then provides a correction, as shown in (b), from which
the planner learns that there must be some user preference
making the presented path inferior.

Given a set of tasks, users are queried for corrections
over multiple iterations. From the user feedback, we learn
about user preferences about the robot’s state relative to the
environment, e.g., areas where robot traffic is encouraged
or discouraged, and preferences about the robot’s motion
describing control actions that should be avoided such as
sharp turn maneuvers. It is neither necessary nor realistic
to expect that the learned preferences exactly equal the
hidden ones. Rather, the objective is that the learned
preferences result in a similar behaviour, i.e., the planner
finds paths that are similar to the ones the planner would
find after a user had precisely defined constraints. Further,

the learning should generalize the information obtained
from the corrections, as illustrated in Figure 1 (c) and (d).
When updating preferences without any generalization, the
planner might only avoid the exact part of the environment
traversed by the presented path, or prefer to use the part
of environment used by the correction, shown in sub-figure
(c). As a result, in the next iteration it might propose a
path that is only slightly different than the one presented
previously. The goal of generalizing the learned information
is to infer the user’s intent when they provide a correction.
This can be done by updating the weights for the area
around the presented path and the correction, as illustrated
in sub-figure (d). This potentially allows for faster learning
and might improve the performance on tasks for which
no corrections were obtained, i.e., that were not available
during the interaction with the user.

Related Work: Our framework for learning from correc-
tions (LfC) combines inverse reinforcement learning (IRL)
[1], [2], [7], [8] and active preference learning [3], [9].

In IRL, or learning from demonstrations, a user usually
demonstrates the desired behaviour, e.g., trajectories [2].
Assuming that the user is optimizing some hidden cost
function, the robot then tries to learn this function in order to
reproduce the demonstrations. In active preference learning
users are presented with possible solutions for a task and
provide feedback by ranking them. From this feedback a
cost function that describes the user’s preferences can be
learned. For a Bayesian user model, [3] presents a near
optimal learning method considering noise. This work was
later adapted by the authors of [9] to a comparison based
learning algorithm that accounts for user uncertainty when
the presented paths are similar. Our previous work uses active
preference learning to revise user specifications [6], [10]
based on spatial features that describe which areas of the
task space are traversed by a robot.

Learning from corrections was proposed as an alternative
to IRL in [4], aiming to reduce the burden on the user by
not asking for optimal demonstrations, but only to iteratively
improve the current behaviour of a manipulator robot. Recent
work in LfC investigates how to extrapolate the information
obtained from a correction to learn about the user cost
function efficiently [11]. The authors of [12] introduce a
Kalman Filter for LfC to express uncertainty for the learned
preferences. In [5] corrective demonstrations are used to
learn about task models described by a finite-state automaton.
In this work we adapt our previous cost function [6] to a
lattice planner [13], evaluating a robot’s motion based on
motion and environment features of trajectories which are
generic, i.e., not explicitly chosen for a specific application
but rather based on the lattice graph.

Contributions: We study a novel framework for learning
user preferences from corrections for a state lattice motion
planner. In our previous work learning from user prefer-
ences [6], [10], our linear cost function considered only
environment features characterizing robot behaviour based
on its current location in the environment. Using a lattice

planner allows us to include motion features that allow us
to model preferences about control actions across the entire
state lattice. From a user’s correction to a presented path we
derive inequalities about weights for both types of features.
Given a sequence of presented paths and their corrections,
we update the weights to satisfy the user’s preferences
while generalizing the information learned about weights to
improve the performance. We prove completeness of our
algorithm and demonstrate its performance in simulations.
Thereby, we show the weights learned over 20 iterations
result in paths similar to the optimal paths for tasks used
during learning as well as for a set of test tasks.

A. Preliminaries

Graph Theory: Following [14], a graph is an ordered
pair G = (V,E), where V is a set of vertices and E is a
set of edges. In a weighted graph G = (V,E,w) a real
valued function associates a weight to each edge of the
graph: w : E(G) → R. A walk between two vertices v1
and vk+1 on a graph G is a finite sequence of vertices
and edges v1, e1, v2, e2, . . . , ek, vk+1 where ei = (vi, vi+1)
for all i = 1, 2, . . . , k and e1, e2, . . . ek are distinct. A
path Pv1,vk+1

between two vertices v1 and vk+1 is de-
fined as a graph ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek}) where
v1, e1, v1, e2, . . . , ek, vk+1 is a walk. On a weighted graph,
the cost of a path is defined as c(P) =

∑
e∈E(P) w(e).

State lattice planner: Following [13] a lattice point is
a triple (x, y, θ) in a two dimensional Euclidean work space
W ⊂ SE(2). We consider a discrete set of lattice points
with a heading set Θ and locations x and y on a regular
grid with ∆x and ∆y resolutions. A robot navigates between
lattice points using a set of pre-defined controls, i.e., motion
primitives, B. For any given heading θ′ ∈ Θ, there exists
a subset B′ with the control actions that can be applied to
all lattice points of the form (x′, y′, θ′). Any lattice points
with identical relative positions are connected by applying
the same motion primitive. The set of all lattice points define
a set of vertices V while the primitive paths connecting any
two lattice points uniquely define edges E. The graph (V,E)
can be weighted using the length of the primitive paths.

Notation: Vectors are written with bold, lower case
letters, e.g., v, we address elements of the vector with
a subscript index vi. A superscript index vi identifies a
specific vector. Sets are denoted by upper case letters (G).

II. PROBLEM FORMULATION

In the problem we consider the following input:
• A directed graph G = (V,E, t) induced by a state lattice

[13] with a control set, i.e., motion primitives, B. The
graph G encodes a robotic road-map of the environment.
The travel times ti are non-negative for all ei ∈ E.

• A set of training tasks, T train and a set of hid-
den test tasks T test. Both contain ordered pairs
{(s1, g1), (s2, g2), . . . } where sj and gj are vertices on
G and constitute the start and goal, for which we want to
find the shortest path that satisfies all user preferences.

• A grid-based cost map M [13] of the environment. Each
cell µi ∈M has a hidden user weight w∗i where w∗i ∈
[0, wmax]. Weights wi > 1 express that it is undesired
for robots to visit cell µi while wi < 1 correspond to a
reward. We collect all weights in a vector w∗ ∈ R|M |≥0 .

• A hidden vector u∗ ∈ R|B|≥1 where each u∗l describes
the user’s preference for the robot using the motion
primitive bl ∈ B.

• Vectors w0 and u0 with prior weights.
• A user providing feedback: Given a path P for a task

(si, gi) the user provides a corrected path Q.
The graph G can be combined with weights w and u to

obtain the graph Gw,u = (V,E, c). Given an edge e and
its primitive path, let φj(e) be the length of the section
of its primitive path in the cell µj . Further, let ηl(e) be a
binary function indicating if the edge e is an instance of the
primitive bl. The cost ci of an edge ei is then defined as

ci =
∑
µj∈M

wj · φj(ei) +
∑
bl∈B

ul · tl · ηl(ei). (1)

Thus, each wj expresses a relative reward or penalty for
an edge passing through the cell µj . The weight ul describes
a preference for using the corresponding motion primitive.
As wj ≥ 0 for all µj and ul ≥ 1 for all bl, we ensure that
ci ≥ 0 always holds. As a consequence, the graph cannot
contain negative cycles. As w∗ and u∗ are hidden we can
only obtain the graph G0, composed of G, w0 and u0.
The objective is to learn about all weights w and u such
that the behaviour of a robot planning with the learned
weights is equivalent to the behaviour described by w∗

and u∗, i.e., that the optimal solution for all tasks is the same.

A. User cost function

We model the user to have an internal linear cost function
for paths, extending our prior work in [6] to incorporate
both environment and motion features. Given a graph Gw,u

combined from G with some w and u, the cost of a path is

C(P,w,u) =
∑
ei∈P

ci. (2)

Let φ(P) be the vector summarizing the path length for each
cell µ ∈M , defined as

φ(P) =

[∑
e∈P

φ1(e)
∑
e∈P

φ2(e) . . .
∑
e∈P

φ|M |(e)

]
. (3)

Similarly, η(P) counts how often each primitive b ∈ B is
used on the path P and multiplies it with the duration of b:

η(P) =

[∑
e∈P

t1η1(e)
∑
e∈P

t2η2(e) . . .
∑
e∈P

t|B|η|B|(e)

]
.

(4)
This allows us to rewrite the cost function as

C(P,w,u) = φ(P)w + η(P)u. (5)

Similar to reward functions in reinforcement learning,
φ(P) and η(P) describe features of a path, which are
then weighted by w and u, respectively. We call φ(P)
environment features as they describe a preference for the
robot’s behaviour in particular regions of the environment.
The vector η(P) expresses motion features for the robot;
they describe preferences over the motion primitives in the
lattice and apply globally. For instance a user might want
the robot to avoid sharp curves to reduce risk, or left turns
as they can affect performance in dense traffic.

B. Problem Statement

We consider arbitrary weights w and u defining a graph
Gw,u, as well as the hidden optimal weights w∗ and u∗

defining a graph G∗. The graphs Gw,u and G∗ have the
same vertices and edges, but different costs c on the edges.
For any task (sj , gj) we can find a shortest path on Gw,u,
denoted by Pj and a shortest path on G∗, denoted by P ∗j .
Finally, let C(Pj ,w

∗,u∗) denote the cost of a path Pj on
G∗. This allows us to define the loss function for a set of
tasks T as the summed relative error in cost:

L(T ,w,u) =
∑

(sj ,gj)∈T

C(Pj ,w
∗,u∗)

C(P ∗j ,w
∗,u∗)

− 1. (6)

We notice that this error cannot be calculated as w∗ and u∗

are hidden. Nonetheless, the objective is to find weights w
and u that minimize the error for all tasks.

Problem 1 (Learning user preference). Given G and T train

and a budget of K user interactions, find weights
[
wK uK

]
where[

wK uK
]

= arg min
[w′ u′]

L(T train ∪ T test,w′,u′)

s.t. 0 ≤ w′j , j = 1, 2, . . . , |M |
1 ≤ u′l, l = 1, 2, . . . , |B|.

(7)

III. APPROACH

We present our framework for solving Problem 1 in
Algorithm 1. The approach is similar to active preference
learning [10], [15], but while an active preference learning
algorithm proposes at least two new paths in each iteration,
LfC presents only one path and asks the user for a correction.
In contrast to our previous work [6], [10], the user is not
required to provide any initial input such as specifying
constraints. In each iteration k we maintain an estimate of
the weights

[
wk uk

]
, based on the user corrections obtained

so far. A planner can compute shortest paths for all tasks
based on

[
wk uk

]
, from which we randomly select one path

that is shown to the user (line 5). After the user provides a
correction (line 6), the weights are updated (line 11).

In the next sections we describe our user model for how
they provide corrections and show how weights are updated.
Finally, we prove completeness of the algorithm.

A. User Model

In our framework users are presented with a path for a
task (sj , gj) and provide feedback in the form of corrections:

Algorithm 1: Learning from Corrections

Input: G, T train,
[
w0 u0

]
, K

Output:
[
wk uk

]
1 Initialize Ψ = ∅, T = T train

2 for k = 1 to K do
3 if T = ∅ then
4 return

[
wk uk

]
5 P k, (sj , gj)← Sample new path(T)
6 Qk ← Get user correction(P k)
7 if Qk = ∅ then
8 T = T \ (sj , gj)
9 continue

10 Ψ← Ψ ∪ {P k, Qk}
11

[
wk uk

]
← Update(w0,u0,wk−1uk−1,Ψ)

12 return
[
wk uk

]

Given a path P they return a corrected path Q. We assume
that the correction fits the user preferences better than P ,
i.e., has a lower cost with respect to the hidden weights, as
summarized in the following Assumption:

Assumption 1 (User feedback). Given a path P with
C(P,w∗,u∗) > C(P ∗,w∗,u∗) the user returns a corrected
path Q such that

C(Q,w∗,u∗) < C(P,w∗,u∗). (8)

If C(P,w∗,u∗) = C(P ∗,w∗,u∗) an empty set is returned.

In case the presented path is optimal and thus an empty set
was returned the algorithm cannot learn about the weights
any more from that task and discards it (line 8).

B. Learning from Corrections

In order to update the weights in line 11 of Algorithm
1 we show how information about weights is derived from
user corrections. Using the user cost function from equation
(5) allows us to rewrite inequality (8) as

(φ(Q)− φ(P))w∗ + (η(Q)− η(P))u∗ < 0. (9)

To avoid a strict inequality we use some small ε:

(φ(Q)− φ(P))w∗ + (η(Q)− η(P))u∗ ≤ −ε. (10)

This then defines a half-space for feasible weights for each
(P k, Qk). Hence, any weight [w u] within that half-space
guarantees that Qk has a lower cost than P k. Further, as
we can only observe corrections, all weights within the half-
space are indistinguishable from [w∗ u∗] with respect to the
user cost function, and thus we can pick any such [w u].

C. Updating weights

Feasible weights: Our primary objective is to find
weights wk and uk that minimize the loss function
L(wk,uk). However, as w∗ and u∗ are hidden L(wk,uk)
cannot be computed. Nonetheless, we say weights are fea-
sible if they are consistent with the user feedback, i.e.,

satisfy the inequalities based on Assumption 1. Given
a sequence of paths and their user corrections Ψ =(
P 1, Q1, P 2, Q2, . . . , P k, Qk

)
, we can intersect the half-

spaces described in equation (10) to define a convex set
of feasible weights. This allows us to write the objective
as a constraint in the optimization problem: To minimize
L(wk,uk) we have to pick weights wk and uk such that
equation (10) holds for all k = 1, 2, . . . ,K.

Generalization: Among all weights that satisfy the
inequalities from Assumption 1, we want to choose wk and
uk that generalize the information we obtain for each (P,Q).
As we express the objective from equation (7) as constraints,
we can choose a new objective function g(w,u), leading to
the optimization problem[

wK uK
]

= arg min
[w′ u′]

g(w′,u′)

s.t.
(
φ(Qk)− φ(P k)

)
w′

+
(
η(Qk)− η(P k)

)
u′

≤ −ε, for k = 1, 2, . . . ,K

0 ≤ w′j , for j = 1, 2, . . . , |M |
1 ≤ u′l, for l = 1, 2, . . . , |B|.

(11)

The idea of generalization is that the learned weights do
not only affect edges that belong to the presented path or the
obtained correction, but to rather obtain more homogeneous
environment weights, i.e., encourage neighbouring cells to
have the same weight. This is motivated by observations from
previous user studies, where users typically have preferences
for areas in the environment instead of single locations [6].
Let N(µj) be the set of cells in M that are adjacent to µj .
We want to minimize the mean square difference in weights
between neighbours. On the other hand, it is desirable to
avoid weights wj 6= 1. This can be captured by an l2-norm
regularization as used in machine learning [16]. Combining
the generalization with the regularization, we obtain

g(w) = λ
∑
µi∈M

∑
µj∈N(µi)

(wi−wj)2+(1−λ)
∑
µi∈M

(wi−1)2.

(12)
Thereby, λ takes values in [0, 1) and balances between

generalization and regularization. We do not allow λ = 1
as this would result in all weights being close to zero. For
the motion features we only use a regularization g(u) =∑
bl∈B(ul−1)2. Finally, we define the objective in equation

(7) as g(w,u) = g(w) + g(u). We notice that g(w,u) is
a convex quadratic function implying that the optimization
problem in equation (11) can be solved in polynomial time.

D. Completeness

Based on the user model and the proposed weight update
we now show that Algorithm 1 is complete.

Proposition 1 (Completeness). For each problem instance
there exists a finite K such that Algorithm 1 finds an
optimal solution, i.e., returns weights

[
wK uK

]
where

L(wK ,uK) = 0.

(a) Hidden user weights w∗ with initially
presented path and optimal correction.

(b) Learned weights w20 using λ = 0.5
with learned path and optimal correction.

(c) Hidden environment user weights u∗

(d) Learned motion user weights u20.

Fig. 2: Environment with learned environment and motion weights. Red cells indicate a weight of wj > 1, i.e., a penalty.
Green cells correspond to weights wj < 1 belonging to a reward while grey cells have a weight of wj = 1. The blue and
purple lines show the learned path and the optimal path for an example task. In (c) and (d) red indicates weights ul > 1.
Even though the learned cost map in (b) has different weights on many cells than the optimal cost map in (a), they lead to
similar optimal paths on the training and test task set.

Proof. Consider the case that the path P k presented to the
user is optimal. Then the corresponding task (sj , gj) gets
removed from T and C(Pk

j ,w
∗,u∗)/C(P∗j ,w

∗,u∗)− 1 = 0 (line
8 in Algorithm 1).

If P k is not optimal, a correction Qk satisfying Assump-
tion 1 is obtained from which we derive an inequality as in
equation (10). Then all weights

[
wl ul

]
where l > k satisfy

this inequality, implying that for any l > k the path P k is
never optimal for any feasible weight vector

[
wl ul

]
and

thus cannot be presented again. That guarantees that each
update removes at least one path from the set of all paths
that could be shown for the same task in a later iteration.

For every pair (sj , gj) there exists only a finite num-
ber of paths; hence, a path P l where C(P lj ,w

∗,u∗) =
C(P ∗j ,w

∗,u∗) must be presented to the user after a finite
number of iterations, and C(P l

j ,w
∗,u∗)/C(P∗j ,w

∗,u∗) − 1 = 0
for every task (sj , gj) is achieved.

Proposition 1 ensures that the presented framework learns
weights for robot motion planning that result in the same
behaviour as described by the hidden optimal weights w∗.
In the next section we evaluate the performance in a realistic
transportation scenario.

IV. EVALUATION

In the evaluation we use a state lattice with 11, 008
vertices, based on the layout of the campus of the University
of Waterloo, and a cost map with 2, 752 quadratic cells.
The user corrections are simulated. Each simulated user has
a hidden cost map with weights w∗ such that the map is
structured into neighbourhoods of multiple cells that have
equal weights. This allows to define areas in the environment
that are rewarded or penalized, i.e., have a weight different
than one, which we call constraints. In each trial the user

weights are generated by randomly drawing from a subset
of 60 constraints. These constraints were predefined such that
narrow gaps on the environment might be blocked by penalty
constraints while wide open areas are usually rewarded.
An example specification with 25 constraints is illustrated
in Figure 2 (a), Further, in the experiments we use the
control set B = {(0, 1, 0), (1, 1, π/2), (−1, 1−π/2), (2, 1, π/2),
(−2, 1,−π/2), (1, 2, π/2), (−1, 2,−π/2)}, always with motion
user preferences that heavily penalize left turns and slightly
penalize right turns, as shown in sub-figure (c).

We consider two types of user behaviour: Optimal users
that always provide a correction that is an optimal solution
for the task, and uniform users who randomly generate a
correction satisfying Assumption 1. As the optimal weights
w∗ and u∗ are known to the simulated user, optimal paths
can be computed using shortest path search. For uniform
users, the correction is the shortest path Q for some weights
w̄ and ū. We generate w̄ using a random walk: Let w be
the weight for which the presented path P is optimal. Then,
the random walk to find w̄ is constrained by the polyhedron
{w′ ∈ [0, wmax|min{wi, w∗i } ≤ wi ≤ max{wi, w∗i }, ∀µi ∈
M}. This ensures that Q has a lower cost than P .

All experiments were repeated for 24 trials where each
trial runs Algorithm 1 with K = 20 and a uniform prior for
w and u. In every trial the set of training and test tasks are
randomly generated pairs of vertices. The run time for the
quadratic program with 2752 variables is ≈ 9s; finding a new
query takes ≈ 11s for 5 training tasks and up to 20s for 10
training tasks. However, the query generation can potentially
be sped up using a parallel implementation.

Experiment 1 - Generalization: First, we investigate
how different values for λ affect the algorithm. We use an
optimal user, 25 constraints, 5 training and 20 test tasks.

Fig. 3: Comparison of different values for λ.

We illustrate the relative errors L(T test ,wK ,uK) and
L(T train,wK ,uK) before and after learning in Figure 3.

We observe no conclusive difference in the test error
between λ = 0.0 and λ = 0.5 . However, the final median
training error is 0.09 for λ = 0.0, i.e., paths generated
with the learned weights have 9% higher cost than those
with the hidden user weight. The final median training error
for λ = 0.5 is 0.01. Thus, using a generalization allows
for more efficient learning on the training set, as it avoids
presenting paths that are too similar to those previously
presented. On the other hand, the training and test error is
worse for λ = 0.99 than for λ = 0.5. A large generalization
overestimates the size of user constraints and leads to poor
behaviour. In the subsequent experiments we use λ = 0.5.

Experiment 2 - Naive algorithm: In the second ex-
periment we compare the presented algorithm to a naive
approach. Given a pair (P,Q) the naive approach updates the
weights on the cost map by directly penalizing cells that are
traversed by the presented path but not in the correction and
rewarding cells which are traversed by only the correction.
Hence,

wk+1
j =

2wkj if φj(P) > 0 and φj(Q) = 0,
1/2wkj if φj(P) = 0 and φj(Q) > 0,

wkj otherwise.
(13)

We use the same experimental setup as before, but with 10
training tasks to reduce the risk of over-fitting for the naive
approach. The results are illustrated in Figure 4.

The naive approach shows moderate results for the train-
ing data with a final median error of 0.19. However, the
progress on the test error is marginal with a final median
of 0.41. In contrast, our algorithm improves on both sets
of tasks, achieving a final median error of 0.06 on the
training and 0.07 on the test set. We conclude by noting
that the optimization problem in equation (11) generalizes
about environment weights and achieves good performance
on training instances. Moreover, the algorithm successfully
generalizes the information obtained from the corrections and
thus achieves good results on the test tasks.

Experiment 3 - User types: In this experiment we
investigate how our algorithm behaves for the two different
types of users, using the same setup as for the previous
experiment. The results are summarized in Figure 5. Overall

Fig. 4: Comparison between the naive and the proposed
approach, with λ = 0.5.

Fig. 5: Relative error when using λ = 0.5 for optimal and
uniform user corrections.

we observe that the learning behaves similarly for both
user types. The optimal user shows a better result on the
training data where 42% of trials achieve a final error of 0,
compared to 31% for the uniform user. However, the final
median values are 0.02 and 0.01 for the test and training
error of the optimal user and 0.03 and 0.02 for the uniform
user, respectively. Hence, the optimal user leads to only
marginally better results. In conclusion, the third experiment
shows that the presented algorithm learns about the user’s
preferences efficiently even when the user is not always
providing optimal corrections.

V. DISCUSSION AND FUTURE WORK

We propose an LfC framework for a state lattice planner
that learns about environment and motion user preferences.
We update weights using a quadratic program, which is
constrained by the assumption that users provide corrections
that fit their preferences better than the presented path, while
the objective function combines generalization with regular-
ization. In simulations we show that the proposed approach
generates paths that closely approximate user preferences for
both training and test tasks after only a few corrections, with
either optimal or non-optimal user corrections.

Future work directions include a more robust user model
by introducing noise as well as an active selection of the path
that is presented. Further, a user study should investigate how
well the learning framework captures the preferences of real
users from observing corrections.

REFERENCES

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[2] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[3] D. Golovin, A. Krause, and D. Ray, “Near-optimal bayesian active
learning with noisy observations,” in NIPS, 2010, pp. 766–774.

[4] A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learning preferences
for manipulation tasks from online coactive feedback,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 10, pp. 1296–1313,
2015.

[5] R. A. Gutierrez, V. Chu, A. L. Thomaz, and S. Niekum, “Incremental
task modification via corrective demonstrations,” in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1126–1133.

[6] N. Wilde, A. Blidaru, S. L. Smith, and D. Kulic, “Improving user
specifications for robot behavior through active preference learning:
Framework and evaluation,” The International Journal of Robotics
Research, 2020.

[7] A. Shah, P. Kamath, J. A. Shah, and S. Li, “Bayesian inference of
temporal task specifications from demonstrations,” in Advances in
Neural Information Processing Systems, 2018, pp. 3804–3813.

[8] S. Thakur, H. van Hoof, J. C. G. Higuera, D. Precup, and D. Meger,
“Uncertainty aware learning from demonstrations in multiple contexts
using bayesian neural networks,” pp. 768–774, 2019.

[9] R. Holladay, S. Javdani, A. Dragan, and S. Srinivasa, “Active com-
parison based learning incorporating user uncertainty and noise,” in
RSS Workshop on Model Learning for Human-Robot Communication,
2016.

[10] N. Wilde, D. Kulić, and S. L. Smith, “Bayesian active learning
for collaborative task specification using equivalence regions,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1691–1698, April
2019.

[11] J. Y. Zhang and A. D. Dragan, “Learning from extrapolated correc-
tions,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 7034–7040.

[12] D. P. Losey and M. K. OMalley, “Including uncertainty when learning
from human corrections,” in Conference on Robot Learning, 2018, pp.
123–132.

[13] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[14] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 4th ed. Springer Publishing Company, Inc., 2007.

[15] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active
preference-based learning of reward functions,” in Robotics: Science
and Systems (RSS), 2017.

[16] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

