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Abstract— This paper characterizes safe following distances
for on-road driving when vehicles can avoid collisions by either
braking or by swerving into an adjacent lane. In particular,
we focus on safety as defined in the Responsibility-Sensitive
Safety (RSS) framework. We extend RSS by introducing swerve
maneuvers as a valid response in addition to the already present
brake maneuver. These swerve maneuvers use the more realistic
kinematic bicycle model rather than the double integrator
model of RSS. We show that these swerve maneuvers allow
a vehicle to safely follow a lead vehicle more closely than the
RSS braking maneuvers do. The use of the kinematic bicycle
model is then validated by comparing these swerve maneuvers
to swerves of a dynamic single-track model. The analysis in
this paper can be used to inform both offline safety validation
as well as safe control and planning.

I. INTRODUCTION

The main bottleneck for the public acceptance and ubig-
uity of autonomous driving is the current lack of safety
guarantees. One approach to establish the safety of an
autonomous vehicle is to gather crash statistics from on-
road driving. However, the amount of kilometers required to
establish statistically significant rates can render this method
impractical [1]. An alternative approach is to use simulation
to test a representative set of situations that model the driving
task [2]. Unfortunately, it can be difficult to capture all of the
challenges associated with driving when constructing such a
set [3]. A third approach for verifying the safety of a system
is formally proving the behavior of a vehicle is safe [1], [4]—
[6]. In order to compute useful safety bounds, this approach
often includes simplifying assumptions. The difficulty with
this method lies in selecting reasonable assumptions to make.
Generally, the stronger the assumptions made, the easier to
prove the system is safe. However, if the assumptions are too
strong, they may not hold in general driving scenarios. An
additional challenge with this method is that to prove safety,
the driving behavior may need to be conservative, or highly
restrictive.

This paper aims to address the latter issue, especially
as it pertains to the Responsibility-Sensitive Safety (RSS)
framework [1]. Fundamental to the RSS framework is its
assumption of responsibility, and that vehicles have a duty of
care to one another. The assumption of responsible behavior
allows for the autonomous vehicle to make meaningful
progress in the driving task. Under other frameworks that
assume adversarial vehicles, the autonomous vehicle often
exhibits over-conservative behavior that impedes progress.
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Fig. 1: (a) The standard RSS braking maneuver for a braking
leading vehicle. Velocity and acceleration arrows point to path
segments where they occur. The coordinate frame origin is the
center of the lane at the rear vehicle’s initial location. (b) The
proposed swerve maneuver for a leading braking vehicle. The green
dot represents the lateral clearance distance y. required by RSS.
(c) The braking maneuver required for a swerving leading vehicle.

This assumption of responsible behavior allows for the
computation of safe following distances such that vehicles
can comfortably brake for a braking vehicle in front of
them, without causing a collision. This following distance
is a function of both vehicles’ speeds and maximum ac-
celerations, as well as the reacting vehicle’s reaction time.
When computing this following distance, the vehicles are
modeled by a kinematic particle model. If all vehicles follow
the RSS framework and maintain this following distance, no
collisions can occur.
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This paper extends the analysis in the RSS framework to
include swerve maneuvers feasible for the kinematic bicycle
model. In particular, we analyze pairwise safety between
swerving and braking agents. Using swerve maneuvers fea-
sible for the kinematic bicycle model ensures that these
maneuvers are more realistic than those possible under the
particle model used in RSS. The simplicity of the bicycle
model also allows for closed form solutions in our safe
following distance bounds. This work then shows that these
swerve maneuvers require less clearance to avoid collision
with a lead vehicle than the braking maneuvers in the RSS
framework.

A. Contributions

The contributions in this paper are as follows. The first
is the derivation of closed form safe following distances
in scenarios where vehicles perform swerve maneuvers that
are feasible for the kinematic bicycle model. These safe
following distances ensure pairwise safety between swerving
and braking agents. To show pairwise safety, in addition to
the scenario of braking for a braking vehicle considered in
RSS, we consider the additional scenarios of swerving for a
braking vehicle and braking for a swerving vehicle.

The second contribution is a validation of our use of the
kinematic bicycle model by comparing our swerve maneu-
vers to maneuvers generated under a dynamic single-track
model [7]. As part of this dynamic model, we include a
Pacejka tire model [8] to account for road surface traction.
We show that the kinematic model, when lateral acceleration
is constrained, can form an accurate upper bound on the
longitudinal distance required to perform swerve maneuvers
using the dynamic model.

B. Related Work

Previous work on swerve maneuvers for autonomous
driving have often focused on feasible maneuvers according
to various kinodynamic models [9]. In particular, many of
these papers have assumed some variant of the bicycle
model [10]-[13] and performed optimization to generate
optimal swerve maneuvers. However, under these models
the optimal solution is not generated through a closed form
solution, which makes formally proving safety challenging.

Other work has instead simplified the vehicle model to a
point mass model [14]-[16] in order to yield closed form,
optimal solutions. However, this comes at the cost of the
nonholonomic constraint present in the bicycle model, which
results in maneuvers that would be unrealistic for a car to
execute. The goal with this work is to yield closed form,
feasible solutions to swerve maneuver boundary condition
problems, while still preserving the kinematic constraints that
allow the maneuver to be executable by a real vehicle.

Previous work on using the kinematic bicycle model for
autonomous driving has shown it is an effective model for
tracking trajectories in MPC [17], and as such, contains
important kinematic constraints that capture some of the
limits of vehicle motion. Past work has also shown that
the kinematic bicycle model is an accurate approximation to

vehicle motion at low accelerations [18], which we expect
to see as well in our validation.

II. PRELIMINARIES
A. Responsibility-Sensitive Safety (RSS)

In this paper, we rely on two aspects of the RSS frame-
work; the longitudinal and lateral safe distances required
between two vehicles. In particular, we examine how the
longitudinal safe distance for a swerve maneuver compares
to that of a brake maneuver, while maintaining an appropriate
lateral safe distance when required. In this work, we compare
swerve maneuvers moving to the left as in Figure 1 (safe
distances are computed for the red car), however, the same
analysis applies to swerves moving to the right.

In RSS, safe distances are a function of several variables
that describe the situation. The initial speed of the rear
autonomous vehicle is given by v,, and the initial speed
of the front vehicle is denoted by wv;. The reaction time
is given by p. The interpretation of the reaction time is
the duration after which a vehicle can apply a mitigating
action. During the reaction time, both vehicles apply the most
dangerous acceleration possible, amax accel, @max,brake 10 the
longitudinal case, and a!®,  in the lateral case. To ensure
passenger comfort, as well as to prevent tailgater safety
issues, the mitigating reaction of the rear vehicle is assumed
to be a comfortable deceleration, denoted @min,brake. This
term comes from RSS, and is interpreted as the threshold
for a safe, responsible braking response for the autonomous
car. Note that these accelerations are magnitudes.

We denote the positive part of an expression with [-]4.
Velocities are signed according to Figure la, and accelera-
tions are unsigned parameters of the framework. If the post-
reaction speeds v, , and vy , are given by
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The longitudinal safe distance is between the frontmost
point of the rear vehicle and the rearmost point of the
front vehicle along the longitudinal direction, and the lateral
safe distance is between the rightmost point of the rear
vehicle and the leftmost point of the front vehicle along



the lateral direction. These are left implicit in the original
RSS formulation, but since swerves involve rotation of the
chassis, we make them explicit in this work. The longitudinal
safe distance djong is the distance required such that the
rear vehicle can maximally accelerate during its reaction
time, then minimally decelerate to a stop, all while the front
vehicle is maximally braking, without causing a collision.
The lateral safe distance dj, is the distance required such
that both vehicles can maximally accelerate towards each
other during the reaction time p, then minimally decelerate
until zero lateral velocity, while still maintaining at least a
1 distance buffer.

To ensure safety for swerve maneuvers, the vehicle must
maintain these safe distances with other relevant vehicles.
These vehicles are relevant according to longitudinal and
lateral adjacency, as defined below. We denote the vehicle
dimensions dy, d,, b;, b, as in Figure 3a. We assume all
vehicles have the same dimensions for simplicity, but this
can be easily generalized.

Definition II.1. If x;, x5 denote the longitudinal position of
each vehicle, and then the vehicles are laterally adjacent if
2o —dr —df <21 <20 +dy +dy.

Definition I1.2. If y;, y» denotes the lateral position of each
vehicle, then the vehicles are longitudinally adjacent if vy —
by —br — diat <y1 < y2 + by + b + diar-

Combining the definitions for safe distances and adjacency
gives us a definition of safety.

Definition IL.3. A vehicle is laterally/longitudinally safe
from another vehicle if it is not laterally/longitudinally
adjacent to the other vehicle, or if it is laterally/longitudinally
adjacent to the other vehicle and there is at least dja/diong Of
distance between them.

Definition II.4. For a swerving vehicle and a non-swerving
vehicle, as well as a given swerve maneuver, we define
the lateral clearance distance, ., as the earliest point in
the swerve at which the swerving vehicle is no longer
longitudinally adjacent to the non-swerving vehicle.

In Figure 1, y. is reached at the green dot along the
swerve. The lateral clearance distance allows us to compute
the longitudinal distance covered by the swerve, which is
denoted by x.. We then use z. to compute the equivalent of
diong for a swerve maneuver, and compare it to Equation (4).

B. Vehicle Models

The analysis in this paper relies upon three different kin-
odynamic models. The first is the particle kinematic model,
which is used in the RSS framework. Through all of these
kinodynamic models, x is longitudinal displacement and y
is lateral displacement. The control input is the acceleration
in each dimension

jﬁ':ara

= ay. (6)

Fig. 2: (a) The kinematic bicycle model, along with its associated
variables. (b) The dynamic single track model used for valida-
tion [7]. Drag forces are omitted for simplicity, but are included in
our computation.

When computing swerve maneuvers, we wish to model
the non-holonomic constraints on a car’s motion to make
the maneuvers realistic. To do so, we rely on the kinematic
bicycle model, a model commonly used in autonomous
driving [17], [19], [20]. This is illustrated in Figure 2a. In this
model, v is the velocity of the vehicle, v is the heading of
velocity at the centre of mass, 6 is the yaw of the chassis, 3
is the slip angle of the centre of mass relative to the chassis,
a is the input acceleration, § is the input steering angle, R,
is the turning radius of the centre of mass, and [,. and [; are
the distances from the rear and front axle to the centre of
mass, respectively

& =wvcos(v + 5), B =tan~! (l Tlf tan(é)),
y = vsin(y + B), 0= -5,
_ vtan(d) 6] < 6
l,r_ +lf ) — max
2
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Finally, to verify our kinematic approximation is valid,
we compare our swerve maneuvers to those executed by a
dynamic single-track vehicle model [7] with tires modelled
using the Pacejka tire model [8]. This model is shown in
Figure 2b. In this vehicle model, v, ¥, 8, d, Iy, and I,
are the same as the bicycle model. The slip angles of the
front and rear tires are oy and «., respectively. The lateral



tire forces on the front and rear tires are denoted Fy and
F,, respectively, and Fjr and Fj, denote the longitudinal tire
forces at the front and rear tires, respectively. The drag mount
point is denoted egp, and Fy, and F}, are the longitudinal
and lateral drag forces, respectively. The yaw rate is w,, and
ws is the input steering rate. The mass of the car is m, and
I, is the inertia about the z-axis. We omit the equations of
motion for brevity, but they are presented in the reference [7].

III. PROBLEM FORMULATION

The fundamental problem this paper addresses is to com-
pute the longitudinal safe distance required when there is a
free lane (or shoulder) to the left or right of the vehicle,
allowing for an evasive swerve maneuver. This requires
knowing the longitudinal safe distance required for the
scenarios illustrated in Figure 1. As can be seen, when
computing the longitudinal safe distances for swerves, one
needs to consider both longitudinal and lateral clearance,
since swerves involve lateral and longitudinal displacement.

Since vehicles rotate during swerves, rotation must be
compensated for when computing these clearances. After
compensating for rotation, the longitudinal swerve distance
z. can then be used to compute the longitudinal safe distance
required for a swerve. In RSS, safety was proved for a
particle model. This paper extends those results to prove the
safety for swerves feasible for the kinematic bicycle model.
Section V then shows how this result can be applied to
more general models. This task then breaks down into three
subproblems.

Subproblem 1. Given the initial speed of a swerving
vehicle v;, the vehicle dimensions dy, d,, b;, b, as in Fig-
ure 3a, and parameters u and p, compute a lateral clearance
distance y. sufficient for lateral safety when a swerving
vehicle becomes laterally adjacent to a lead vehicle.

Subproblem 2. Given the kinematic constraints in (7), the
initial vehicle speeds v,- and vy, the lateral clearance distance
Ye, and parameters p, amax, Gmin,brakes @max,brakes almatax, and
al® _ compute a longitudinal safe distance sufficient for
safety when swerving for a braking lead vehicle. This is
illustrated in Figure 1b.

Subproblem 3. Given the initial vehicle speeds v, and vy,
the clearance point ¥., and parameters p, Gmax, Gmin,brakes
al® . and @' . compute a longitudinal safe distance suffi-
cient for safety when braking for a swerving lead vehicle.
This is illustrated in Figure lc.

The first subproblem is addressed in Section IV-A, the
second in Section IV-B, and the the third in Section IV-C.

The work in this paper makes the following assumptions
on responsible behavior:

1) A vehicle will only perform a swerve maneuver if it is
not braking, and will only perform a brake maneuver
if it is not swerving.

2) For every swerve maneuver, each vehicle reaches the
lateral clearance distance only once. As a result, once
a vehicle has committed to a lane change by reaching
the lateral clearance distance, it will not return to its
previous lane.

3) Each vehicle moves forward along the road, v > 0 and
F<y<T

IV. COMPUTING THE LONGITUDINAL SAFE DISTANCE

A. Lateral Clearance Distance

To compute the lateral clearance distance y., we modify
Equation (5) to account for vehicle rotation. If we know
the maximum chassis yaw 6, during the maneuver, we
can compute an axis-aligned bounding rectangle as an outer
approximation to the vehicle footprint. This is useful for
safety analysis, as we can now bound the swept area during
the maneuver, and it is illustrated in Figure 3a.

(b)

Fig. 3: (a) An outer approximation to a vehicle chassis that rotates
by Omax. The distances d' and d are used for longitudinal buffers
during swerve maneuvers, and b’ is used as a lateral buffer. (b) An
inner approximation to a rotating vehicle chassis.

The three distances we need for safety analysis are from
the centre of mass to the front of the bounding rectangle, d’,
from the centre of mass to the side of the bounding rectangle,
b, and from the centre of mass to the rear of the bounding
rectangle, d. The distances from the centre of mass to the
rear and front of the chassis are d, and dy, respectively.
The distances to the left and right of the chassis are b; and
b.., respectively. As the vehicle rotates, the length and width
of the bounding rectangle increases until 6,,,,, reaches the
angles from the centre of mass to the corners of the rectangle.
Further rotation past these points decreases the dimensions
of the bounding rectangle. We can write these angles in terms
of ¢ and ~, illustrated in Figure 3a. The equations for the
bounding rectangle distances are then d’, d, and V' are

d/ df COS(Gmax) + br Sin(gmax) amax < ¢v ]
IR RV Omax > &, ®
5 dy cos(Omax) + b1 Sin(Omax)  Omax < 7,
Je ‘ ( . ) + b sin(fmax) T (9
Vaz+ b} Omax > 7,



b/ _ dr Sin(emax) + br Cos(emax) emax S g - 77 (10)
NGRS Omax > T — 7.

We now have an expression for the bounding rectangle
distances of a rotating vehicle in terms of 6.y, Which is
computed in Section IV-B.

Using b’ and the lateral safe distance dj, we can now
compute the lateral clearance distance, y. required for Sub-
problem 1.

Ye = + b + dia. (11)

Let us denote the time g, is attained as t..

Theorem 1. Equation (11) gives a lateral clearance distance
sufficient for lateral safety when a swerving vehicle becomes
laterally adjacent to another braking vehicle, or any time

before.

Proof. To show lateral safety, we must show that laterally
adjacent vehicles are at least dj,, from one another, as given
in Equation (5). Since the swerving vehicle’s lateral speed
is variable but nonnegative, a conservative lower bound
on its lateral velocity is zero when computing dj. From
assumption 1, since the other vehicle is braking, it is not
swerving, and therefore has zero lateral velocity during
the swerve. The required dj, can then be computed using
Equation (5), taking v!* and viﬁ“ to be zero, and using the
parameters a'® o and p.

For ¢ < t., the swerving vehicle is not laterally adjacent
to the other vehicle, and is laterally safe. For ¢ > ¢., from
Assumption 2, . is the time at which the two vehicles are
closest while laterally adjacent. From Equation 11, there is
at least dj,, of distance between the vehicles, and thus they
are laterally safe Vt > t¢.. O]

B. Swerving for a Braking Vehicle

We can now use y. to compute the longitudinal safe
distance, d; 5, required when swerving to avoid a braking lead
vehicle. We wish to do so under the constraints of the bicycle
model outlined in Section II-A. In addition, if o« denotes the
lane width, ¢; denotes the end time of the swerve, and the
origin of the coordinate frame is at the centre line of the
current lane at the rear vehicle’s position at ¢ = 0, we would
like the swerve to satisfy the following boundary conditions:

0(ty) =0, y(ty) = a. (12)

However, to compute the optimal swerve maneuver with
respect to longitudinal clearance is an optimization problem
with no closed form solution [11]. Instead, we can compute
a swerve maneuver feasible for the bicycle model, and use
that to obtain an upper bound on the actual longitudinal
distance required by a swerve constrained by the bicycle
model. Further details are present in the reference [21].

As in Equation (4), the lead vehicle is travelling with
velocity vy, and then brakes at Gmax brake during the entire
maneuver. The swerve is preceded by the rear vehicle maxi-
mally accelerating during the reaction delay p, at which point
it begins the swerve maneuver with initial speed v, ,. To
ensure monotonicity in the gap between the rear and lead

vehicles, a lower bound on the distance travelled until ¢ by
the lead vehicle is used, denoted x .

The swerve we consider is bang-bang in the steering
input with zero longitudinal acceleration, and is illustrated
in Figure 4. We denote the longitudinal distance travelled by
the swerving vehicle until the swerving vehicle reaches the
lateral clearance distance as x.

For the swerve maneuver, the turning radius of the circular
arcs depends on the maximum lateral acceleration, as well
as the kinematic limits of the steering angle. The constraints
on steering angle and lateral acceleration from (7) give two
constraints on the turning radius

2
L+l v
tan(émax)2+l$’ min,a lat °

min

Rmin,é = (13)

To ensure both constraints are satisfied, we set R. from (7)
to the maximum of the two. From this turning radius, we
can compute the steering angle J. and the slip angle S,

(i, +zf)2> . (lrtan(éc))
S T ) B =tan | ol )
R2 2

L+ lf
(14)

5, = tan"! (

Fig. 4: The swerve maneuver used for safety analysis. The red path
is taken by the center of mass, and the blue path is taken by the
rear axle. The distance between lanes is o, d. is the steering angle,
Bc is the slip angle. The maximum angles achieved by the chassis
yaw and the velocity of the center of mass are given by Omax and
PYmax, respectively. The turning radius of the rear axle and center
of mass’s paths are given by R, and R., respectively.

We can now compute the 6, required to satisfy the
boundary conditions in Equation (12). From the rear axle,
the two circular arcs are symmetrical in lateral distance
traveled, as in Figure 4. Therefore, we can compute the angle
along the first circular arc required to reach a lateral distance
of 5. First, we compute the turning radius at the rear axle,
R,

L+ lf
= — 15
tan(s.) (15
Using the value of §. computed above, 0, is then
_ «@
O = cOS ™! (1 - ZRT) : (16)



To compute z., the longitudinal distance traveled during
the swerve, and ¢, the clearance time, there are two cases,
depending on if y,. is reached in the first or second circular
arc. We can compute ¥yax using (7). From Assumption 3,
we have that ¥ax < 5. Thus, the first case occurs if

Ye S RC(COS(BC> - Cos(wmax))a

otherwise the second case occurs. The equations and deriva-
tions of x. and t. in each case is given the reference [21].

We can then replace the rear braking distance in Equa-
tion (4) with the longitudinal swerve distance x.. In addition,
to ensure a monotonically decreasing gap between the two
vehicles, we set the initial speed of the lead vehicle (as a
conservative approximation) to

a7

v} = min(vg, v, co8(Ymax))- (18)

The braking distance of the lead vehicle occurs during the
reaction time p and the swerve clearance time t., giving a
front vehicle braking distance of

amaxbrake(p + tc>2
5 .
Using the parameters amax,accel; £ introduced in Section II-
A, the longitudinal safe distance between a swerving rear
vehicle and a braking lead vehicle is

zp=vp(p+tc) — (19)

+d +d.
JF

dsp = |vrp+ *amax,acce1p2 +x.—xy (20

2
Theorem 2. Equation (20) gives a longitudinal safe distance
sufficient for safety when swerving for a braking lead vehicle.

Proof. For t > t., y(t) > y., and therefore the swerving
vehicle is no longer longitudinally adjacent to the lead
vehicle, so is safe from the lead vehicle’s braking. For ¢ < ¢,
from Equation (18), we use a conservative lower bound for
the speed of the lead vehicle to ensure the lead vehicle’s
speed is less than the swerving vehicle during the entire
swerve. This implies the gap between the two vehicles is
monotonically decreasing. This means the minimum gap
between the two vehicles occurs at time ¢..

The swerving vehicle travels z.+v, p+%amax,acce1 p2, and a
conservative lower bound on the lead vehicle’s travel distance
is v}(p +te) — %amax,bmke(p +t.)?. There is at most d’ of
distance from the center of mass to the front of the swerving
vehicle. Thus, if a swerving vehicle maintains distance d;,
it is safe from the lead vehicle at time ¢.. Since the gap is
monotonically decreasing for ¢ < ¢, it is safe Vt < t..

O]

C. Braking for a Swerving Vehicle

The longitudinal safe distance required to swerve for a
braking vehicle was computed in the preceding section, and
this section considers the opposite problem, computing the
longitudinal safe distance required to brake for a swerving
lead vehicle without collision. Since the lead vehicle intends
to occupy the other lane, it requires less longitudinal distance
for the rear vehicle to brake to avoid the swerving lead
vehicle than it would for it to brake for a braking lead vehicle.

We assume the front vehicle is performing the same swerve
discussed in Section IV-B. To account for rotation of the front
vehicle, d is used to compensate as defined in Section IV-A.
We use z. and . from Section IV-B when analyzing the
front vehicle’s swerve. As in Equation 4, we assume that
the rear vehicle accelerates maximally during its reaction
time, and then brakes comfortably until ¢.. As before, denote
the rear vehicle’s post-acceleration velocity as v, ,. Then its
minimum velocity during the braking maneuver is

=r));0).

As in Section IV-B, the proof of safety is simplified if the gap
is monotonically decreasing until lateral safety is reached. To
ensure this, the lead vehicle speed is conservatively bounded
with v’

2y

Ur,min = max(mln(vra Ur,p — amin,brake(tc

v} = min(vy cos(Ymax ), Vr,min)- (22)

A conservative lower bound for the longitudinal distance
traveled by the swerving front vehicle is then

zp= v}tc. (23)

The distance x; is a lower bound on the distance traveled
by the front vehicle during the swerve that creates a mono-
tonically decreasing gap.

The distance traveled by the rear braking vehicle during
its reactions delay and its braking maneuver is denoted
by z,. This distance depends on the clearance time t.,
similar to the distance traveled by the front vehicle in the
preceding section. The distance traveled during the rear
vehicle’s braking maneuver, T, prake, iS given by

Ur,p(tc —p)— )
Amin brke (e —=p)” _ _Urp
Ly brake = 2 v te—p = Qmin,brake | 24
) )
U7~,p _ Vr,p
20 min, brake ’ te—p> Qmin,brake

Following this, the distance traveled by the braking rear

vehicle is ( )
Vp + Urp)p
% + T brake-

Using Equations 23 and 25, the longitudinal safe distance
when braking for a swerving vehicle, dj; is then

(25)

Ty =

dys = [xp — x5, +dy +d. (26)

Theorem 3. Equation 26 gives a longitudinal safe distance
sufficient for safety when braking for a swerving lead vehicle.

Proof. Fort > t., the swerving vehicle is laterally clear from
the rear braking vehicle, and therefore the rear vehicle is
safe. The velocity used for the lead vehicle is a conservative
lower bound on its true speed V¢ < t., as per Equation 22. In
addition, v} < w,, Vt <t and as a result the gap between
the two vehicles is monotonically decreasing on that interval.
The minimum distance between the two vehicles thus occurs
at time t.. Equation 26 thus gives enough clearance such that
no collision occurs at time ¢, so the rear vehicle is safe at
time .. Since the gap is monotonically decreasing over the
interval, the rear vehicle is safe Vt < t.. ]



By maintaining a following distance of at least d;, and
dps as defined in Equations (20) and (26), we ensure that
an autonomous vehicle has enough clearance to be safe
from both braking and swerving vehicles. We denote this
longitudinal safe distance by (ilong, and it is given by

CZlong = maX(ds,by db,s)- 27

V. VALIDATION AND RESULTS

A. Simulation Setup

In this section, we verify that our kinematic approximation
is valid by comparing the longitudinal swerve distance under
a dynamic model to the distance computed in the preceding
sections. We analyze both the cases when the dynamic model
is constrained by @min brake and a]:fm, and when it is not. We
wish to show that our acceleration constrained bicycle model
swerve distances bound the swerve maneuver distances of a
dynamic model employing both swerving and braking whose
accelerations are unconstrained by comfort, but instead con-
strained by feasibility. We would also like to see at which
speeds the constrained kinematic bicycle swerve distance
is close to the dynamic model swerve distance when the
dynamic model is constrained by comfort. We focus on the
ability of the dynamic model to swerve, and not an associated
controller, and as a result generate the maneuvers in open
loop. However, doing a grid search over all possible control
inputs to find the best swerves is impractical. Instead, we
assume that the steering input is broken into 4 equal length
intervals of time, and perform binary search over steering rate
magnitudes until the boundary conditions in Equation (12)
are satisfied. In addition, we also perform linear search over
brake input and the total time of the maneuver and select the
maneuver that minimizes the longitudinal swerve distance
z.. Note that these generated swerves are not optimal for
the dynamic model, but are feasible.

Longitudinal Distance Comparison

— Bicycle Upper Bound

—— Bicycle Lower Bound

2004 —— Braking

—— Dynamic Model Unconstrained
Dynamic Model Constrained

150

Distance (m)

100 4

5 10 15 20 25 30
Initial Speed (m/s)

Fig. 5: A comparison of the longitudinal distance traveled during
swerve and brake maneuvers, for varying initial velocities. For
very low speeds the dynamic model swerves behave poorly and
are omitted.

The parameters used in our validation are summarized in
Table I. We choose amin brake to represent braking at the limit
of comfort, and we choose amax,brake tO Tepresent a hard,
uncomfortable brake. The swerves generated for various
initial speeds are illustrated in Figure 6.

TABLE I: Parameters Table

m 1239 kg ly 1.19 m Iy 1.37 m
I, 1752 kg - m? esp 0.5 m R 0.302 m
cw 0.3 Parag 125 X A 1.438
By 10.96 Cy 1.3 Dy 4560.4
E; 0.5 B, 12.67 C 1.3
D, 3947.81 E, 0.5 Gltax 40 %
Ot 20 3 Aminbrake 2.0 F o 0.1 m
Gmax,accel 20 5 @maxbrake 8.0 3 P 0.1s
a 3.7 m d, 2.3 m dy 2.4 m
by 09 m by 0.9 m Omax %

Using these computed swerves, we then compute the
lateral clearance distance y. as before and find the longi-
tudinal swerve distance traveled x. that occurs at time ¢..
Substituting this value in at Equations (20) and (26) then
gives the required longitudinal safe distance for the dynamic
model. For the range of initial vehicle speeds where swerving
is more efficient than braking, the longitudinal safe distances
required for the dynamic model are plotted and compared to
those computed in Section IV in Figure 5. We also compare
these dynamic model swerve distances to a lower bound on
the swerve distance traveled by a bicycle model, which is
derived in the reference [21].

Dynamic Model Swerves

50

x (m)

Fig. 6: The swerve maneuvers generated according to the dynamic
model. Each swerve is for a different initial speed in the interval
[10, 30] *. The arrows denote the heading of the vehicle.

B. Simulation Results

In Figure 5, we compare the braking distance and the
swerve longitudinal distance traveled when avoiding a sta-
tionary object. This plot illustrates the advantage of swerves;
for initial rear vehicle speeds greater than 8 T, the swerves
reach safety using less longitudinal dlstance than braking
does. We note that as @min brake 1S increased, the crossover
point of velocity where swerves become advantageous in-
creases as well. However, due to the quadratic nature of
the braking distance, swerves always eventually become
more advantageous at high speeds. From the figure, we can
see that when the accelerations of the dynamic model are
constrained, the swerve distance of the kinematic model
is a reasonable approximation of the dynamic model for
speeds up to 15 %, with error between 0.7-7.7%, which is
reasonable to expect for a kinematic approximation [18].
In the case where the dynamic model is unconstrained
by comfort (only by feasibility), the longitudinal swerve
distance required is within 15.6-24.0% error of the upper



bound distance of the kinematic model, and is completely
bracketed by the kinematic upper and lower bounds across
a range of speeds from 8-30 7. This shows that our accel-
eration constrained kinematic approximation can accurately
approximate the swerve distance required by the comfort-
constrained dynamic single-track model up to mid-ranged
initial speeds, and can bound the swerve distance required by
the comfort-unconstrained dynamic model across the entire
range of speeds.

Clearance Comparison
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Fig. 7: Comparison between the braking (red) and swerving (blue)
distance required when a rear vehicle travels at v, = 15 "' (dashed)
and v, = 20 % (dotted), as the speed of the front vehicle is varied
within the range [0, 25]%.

In Figure 7, we compare the longitudinal safe distance
czk,ng required as clearance for a rear vehicle to swerve or
brake for another vehicle in front of it. In the figure, the rear
vehicle speed is v, = 15 for the dashed lines and v,, = 207
for the dotted lines. The speed of a front vehicle is varied
in the range of [0,25]%. The braking distances are colored
red, and the swerving distances blue. It is clear from the plot
that the longitudinal safe distance required when swerving
is less than what is required when braking. In fact, swerving
allows for a 28-64% reduction in clearance distance when
Vp = 15% and a 65-79% reduction in clearance distance
when v, = 20%. This shows that the required braking
distance increases more rapidly than swerving distance does
as speed increases, which matches the plot in Figure 5.
We note that the swerving distance flattens out once the
front vehicle speed reaches the rear vehicle speed due to
our conservative bounds, however, it is still lower than the
braking distance at said speed.

VI. CONCLUSIONS

In this work, we computed safe following distances be-
tween vehicles performing brake and swerve maneuvers in
a manner similar to that done in the RSS framework. We
proved the safety of these following distances under a set of
reasonable assumptions about responsible behavior, while in-
corporating the original assumptions in the RSS framework.
In addition, we showed that bicycle model swerve distance
bounds the distance required for swerves executed by the
dynamic model, validating our kinematic assumptions.

In the future, we would like to extend our work on pairwise
safety by computing a following distance that guarantees
“utopian” safety similar to that in the RSS framework. We
would also like to compare the swerve maneuvers of the
kinematic bicycle model with those of a dynamic model that
includes pitching, rolling, and combined tire slip. Finally, we
would like to extend our work to curved roads.
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