Learning Control Sets for Lattice Planners from
User Preferences

Alexander Botros*, Nils Wilde*, and Stephen L. Smith

Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, ON, Canada
{alexander.botros,nils.wilde,stephen.smith}@uwaterloo.ca

Abstract. This work investigates the design of a motion planner that
can capture user preferences. In detail, we generate a sparse control set
for a lattice planner which closely follows the preferences of a user. Given
a set of demonstrated trajectories from a single user, we estimate user
preferences based on a weighted sum of trajectory features. We then op-
timize a set of connections in the lattice of given size for the user cost
function. The restricted number of connections limits the branching fac-
tor, ensuring strong performance during subsequent motion planning.
Further, every trajectory in the control set reflects the learned user pref-
erence while the sub-optimality due to the size restriction is minimized.
We show that this problem is optimally solved by applying a separation
principle: First, we find the best estimate of the user cost function given
the data, then an optimal control set is computed given that estimate.
We evaluate our work in a simulation for an autonomous robot in a
four-dimensional spatiotemporal lattice and show that the proposed ap-
proach is suitable to replicate the demonstrated behaviour while enjoying
substantially increased performance.

Keywords: Motion and Path Planning, Mobile Robots

1 Introduction

In this paper we investigate the design of a motion planner that represents user
preferences. We focus on lattice planners, where the problem becomes one of
learning a control set. Lattice planners are widely used in autonomous driving [1-
5]. Unlike commonly used probabilistic motion planners such as PRM®), RRT™)
or FMT [6], lattices consist of a regular discretization of a robot’s state space
while ensuring kinematic and dynamic constraints on motions. Lattice planners
pre-compute feasible trajectories between a discrete set of robot states. A pair of
states together with a trajectory between the states is called a motion primitive;
a collection of motion primitives forms a control set. Thus, the robot’s dynamics
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do not need to be accounted for during the actual path planning. In Figure 1
we illustrate an example of a state lattice using clothoid trajectories [7], as well
as a set of different trajectories between two fixed states obtained by varying
the maximum curvature and maximum derivative of curvature. There are two
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(a) Clothoid trajectory control set. (b) Sample clothoid trajectories.
Fig. 1: Examples of a lattice control set and different trajectories.

aspects to consider when designing a control set: 1) the set of states the motion
primitives should connect (i.e., the endpoints of each primitive), and 2) the
actual trajectory used to make the connections. We address the second aspect
by estimating the trajectories that a user would take to each goal configuration
in a discretization of the configuration space. Generally, the time to compute a
motion plan and the quality of the resulting plan increase with the number of
primitives [1,8]. Thus we address the first aspect by selecting a subset of the
estimated trajectories with a given size. To estimate the user trajectories, we
consider that the quality of a plan is evaluated by a user who has preferences
with respect to the robot’s motion. In autonomous driving, some users may prefer
the vehicle to drive more aggressively, making sharp turns and maintaining high
speeds, while others may prefer slower speeds and smoother turns [9,10]. To find
trajectories that reflect user preferences, we assume that users evaluate a robot’s
behaviour based on a weighted sum of features, similar to [9,11].

The preferred behaviour of an autonomous robot often depends on situa-
tional context, like type of road or obstacles. Thus, a lattice planner based on
trajectories that reflect the user preferences might only be applicable in certain
scenarios. Complete planners that encompass many scenarios often use special-
ized lattices [9,12,13]. Our methodology is not limited to a specific scenario like
driving on a highway or navigating in close proximity to an obstacle: for any
of these scenarios we can learn a respective control set that captures the user
preferences. Thus, we only consider global features such as trajectory length or
maximum jerk, which are common in autonomous driving [9]. We learn the rela-
tive importance of features from demonstrations from a single user, i.e., estimate
the weights and the user’s cost function. The cost function is then used as an in-
put to a trajectory planner, e.g., for a ground vehicle a Dubins path, clothoid [7]
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or polynomial spiral [14], that computes the optimal trajectories between lattice
states. Thus, our approach is agnostic to the employed local planner.

A major restriction for the performance of lattice planners in high-dimensional
states is the branching factor (the number of connections in the control set).
Higher dimensional states are common in autonomous driving applications where
the set of states can extend to (z,y) position, orientation, curvature, and speed
[4]. To improve runtime of the motion planner, we set an upper bound on the
branching factor. Hence, there might not be a pre-computed trajectory to every
state in the lattice; such states are reached by executing a sequence of trajecto-
ries. A lattice should then be constructed such that over all states for which no
precomputed direct trajectory is in the control set, the sub-optimality of the best
trajectory sequence is minimized. This problem is closely related to the minimal
t-spanning control set problem (MTSCSP) [1,8]. Here, we find an estimate of the
user cost function and compute a lattice with a given maximum branching factor
best suited for the user. Restricting the size of the control set vastly improves
planning time but at the expense of path quality.

1.1 Related Work

Closely related to our work, [12] and [9] learn a human driving style from demon-
strations, using a linear cost function weighting pre-defined features, and then
generating paths using a graph or lattice. In contrast to our approach, both ear-
lier approaches do not compute a new lattice for a learned user cost function,
but instead search over a given graph or lattice, using the updated cost func-
tion. Furthermore, they consider local features that describe the relation of the
vehicle to the environment, together with global features that are independent
of the environment. In contrast, we only consider global features describing the
driving style, i.e., the trade-off between travel time and passenger comfort, given
a situation. Instead of keeping suboptimal trajectories between lattice points, we
recompute all trajectories given a learned preference and then compute a sparse
control set for the lattice. Thus, during the motion planning, the control set
contains only trajectories that are optimal for the learned user preferences.

Research in human robot interaction studies how the behaviour of autonomous
robots can be shaped to satisfy the preferences of users. Similar to work in learn-
ing from demonstration [15] or active preference learning [11,16] we employ a
user cost function that puts weights on a set of features. Given a fixed set of
features, the user’s cost function is learned by estimating the weights on the
features. In [10] tunable parameters are introduced to a motion planner suited
for urban driving while the work of [17] proposes a set of features to identify
different driving behaviours of human drivers.

State lattices have found increasing popularity in motion planning for general
problems in a 2D environment [1, 2], in autonomous driving [4, 5, 18] as well
as high-dimensional systems [19,20]. The authors of [1] proposed the problem
of computing approximated control sets, i.e., smaller control sets that do not
contain a direct motion primitive to every state. These states can still be reached
via concatenations of the motions in the approximated set. The approximation
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is characterized by the cost ratio between the path using concatenations and the
direct motion. In [8] we proved NP-hardness for finding such an approximation
with a given cost ratio, and introduced a mixed-integer linear program (MILP)
formulation. However, [8] does not consider costs other than known path length,
and does not account for user preferences when designing trajectories. In this
paper we show that such an approximation yields an optimal solution for finding
a control set of constrained size that adheres to user preferences on the motions.

1.2 Contributions

We introduce a novel methodology for designing a state lattice planner that
considers user preferences. We pose the problem of simultaneously learning tra-
jectories and a connection set of fixed size given demonstrations from a single
user. The major contribution of this work is showing that an optimal solution to
this problem can be found by applying a separation principle: First, we find the
best estimate of the user preferences given data, which defines trajectories for all
states in the lattice. Then we compute a connection set of given size that min-
imizes the error compared to using all connections in the lattice. We show that
the proposed approach minimizes the maximum relative error of the expected
optimal trajectories. Finally, we demonstrate the performance in simulations
where the average cost of the paths computed with the learned control set is
1.4 of the optimum. Moreover, we obtain a substantial planning time speedup of
more than factor 10 when using the learned connection set compared to planning
with the entire lattice.

2 Problem Statement

2.1 Preliminaries

Graph Theory Following [21], a graph is an ordered pair G = (V, E), where V
is a set of vertices and F is a set of edges. In a weighted graph G = (V, E, ¢)
a real valued function associates a cost to each edge of the graph: ¢ : E — R.
We define a path P, ; between two vertices s and g in V' as a sequence of edges
P, , = (eq,...,ex) where e; = (v;,011), Vo = 8, V11 = ¢, and v; # vy, for all
jsm €{0,...,k +1}. The cost of a path is defined as ¢(Ps,g) = > .cp,  c(e).

Spatio-Temporal Lattice Planner Following [2], given the state space of a mobile
robot X, let V C X denote a regularly spaced, finite subset of robot states, also
called lattice states, and let s € V' denote an arbitrary starting state. Further,
B = {(s,j) : j € V} is the set of tuples of s and all vertices j € V. We call
any £ C B a connection set. Each tuple can be thought of as a start-goal pair
of states in the configuration space. Let T' denote a set containing a unique
trajectory from s to j for each (s,j) € B. The key idea is that connections in
B — together with their associated trajectories — can also be applied on other
vertices j € V to reach another state ¢ in X. By pre-computing trajectories from
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s to j for all j € V, we can construct trajectories from s to ¢ via successive valid
concatenations [8] of the trajectories in T

Given a set of connections £ C B the tuple (£,T) is called a control set of
the lattice. For any b = (s,5) € &, and trajectory T, € T from s to j, we call
the tuple (b,T) € € x T a motion primitive. For a given control set (£,7T) with
£ C B, we may define a weighted, directed graph G4 = (V, E,c). The edges E
are all those pairs (7,7) such that there exists a connection b = (s, k) € £ that
takes ¢ to j. The cost ¢ of the edge (i, 7) is the cost of the trajectory from s to
k. This cost is assumed to be an almost-metric (that is, it satisfies all properties
of a metric except for the symmetry property). The weighted, directed graph
G, is called a state lattice, or lattice graph. Similar to G5 we can define a graph
GB = (V, B, c) where B are all edges defined by connections b € B.

Minimal Connection Sets This section reviews the work presented in [2,8]. Given
G% = (V,E,c) let cf» be the cost of the minimal-cost path from s to vertex j € V'
in G%. This definition, together with the assumption that c is an almost metric
(and therefore satisfies the triangle inequality), implies that cf is the cost of the
direct trajectory s to j, i.e., the trajectory computed without concatenation, and
that ch < cf». To evaluate the quality of a control set £, we use the t-error of £,
defined here:

Definition 1 (t-error). Given a lattice graph G5 = (V, B,c), the t-error of a
subset £ C B is given by
¥
(€) = mapx <F/c5 1)
For each j € V, the value Cf/cf represents the ratio of the cost-minimal path
using connections only in € to the cost of the direct trajectory from s to j.

The Minimum t-Spanning Control Set Problem (MTSCSP) is formulated as
follows: Given a state lattice G? and a real number ¢t > 1, compute a set £ C B
of minimal size such that 7(£) < t. This problem is NP-complete [8].

2.2 Problem Formulation

In the preliminaries, we discussed the problem of computing a minimal ¢-spanning
control set of a lattice GE = (V, B, ¢). However, the formulation of this problem
requires that the set of trajectories T', and thus the costs ¢, are known. Different
users might have individual preferences for trajectories, which can be described
by a respective cost function c. We model users who evaluate a trajectory Tj
from s to j as a weighted sum of features ¢(T;) = [¢1(T}) ¢2(Tj) ... on(T})]:

C(ij w) =w- ¢(T])7 (2)

where w is a vector of weights [wl Wy ... wn} The features can represent prop-
erties such as travel time, lateral acceleration, maximum jerk, etc. Similar user
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cost functions have been used in [11,15,16,22]. Without loss of generality, we as-
sume that w € [0,1]™. Given a user weight w, we denote the cost of the optimal
trajectory from s to j with respect to the weights w as

¢j(w) = min w - §(T}). (3)
J

For a given set of weights w € [0,1]", and a given set of connections £ C B,
let GE¥ = (V, E,c*). Here, E is the set of all pairs (i, ) such that there exists
a connection b = (s, k) € £ taking ¢ to j, and ¢*(i,j) = ¢j(w). For any weight
w € [0,1]™, let Pf be a path from s to j on graph G€*. For every edge e in a
path Pjg there is an associated connection b € £, and for every connection b € &,
there is an associated trajectory 1, € T. Thus a path Pf from s to j defines a
trajectory from s to j which is the sequence of trajectories associated with each
edge in the path. Let (77,7, ...) be the sequence of trajectories associated with
the edges (e1, es,...) in a path Pf. We extend the cost function ¢ for trajectories
to a cost function u of paths: For each feature ¢; there exists a feature function

H(PE) = fil{en(Th), d(T2), ... }). (4)

Here f; depends of the trajectories associated with the edges in e1,eq,--- € P]‘-g.
Further, we only consider functions f;(-) that are monotone, i.e., f;(P') < f;(P?)
if P! C P2. For example, let ¢; be the length of a trajectory, then f; describing
the length of a path sums over all ¢;(T}), ¢;(Tz),.... Furthermore, for other
features we might require a non-linear mapping, e.g., the maximum curvature of
a path is the maximum curvature among its trajectories. The user cost function
of a path is then given by the weighted sum of all features

w(PE,w) = wi f1(PF) + -+ + wn fr(PF). (5)

We notice that u is a generalization of the cost function ¢, i.e., c evaluates a single
trajectory while u is a function of a set of trajectories which form a path. The
user cost function w is similar to a reward function in reinforcement learning.
However, it is challenging for users — especially non-experts — to specify weights
for such a reward function [11]. Summarizing all weights in a row vector w and
all features in a column vector f (PJ‘»g ) allows us to write u(Pjg, w) =wf (P]‘-g).
Given weights w, we define the optimal path as

E,w .
P7Y = arg min u(P]‘-S7 w). (6)

J

Observe that this definition implies that

w(PP™,w) = ¢} (w). (7)

Indeed, for connection set B there exists a direct connection taking s to j for all
J €V, and the cost of the minimal trajectory given w is given by cj (w).

Given a set of connections &, and weights w, let T = {T, : b € £} where
Ty solves (3) for each b € £. That is, T is the set of minimal cost trajectories
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with respect to w for each connection in £. We observe that a control set (£,T)
can thus be determined by the tuple (£, w). For the remainder of this paper,
we focus on computing the tuple (£, w). Based on our cost function, the user-
optimal behavior between all connections in B can be described by a control
set (B, w*) where w* denotes the true user weights. Users cannot provide w*
directly, and we learn about w* from demonstrations. The true user weights may
be dependent on the situation (e.g. highway vs city driving). This work focuses on
a single situation but could be extended to account for multiple situations with
the result being several control sets, one for each situation. For a given situation,
we treat w* as a hidden parameter which we have to estimate. Consider a path
Pf’wl that is optimal for a control set (£, w;), and a second weight ws. The

cost of path Pf’wl can be evaluated by ws, which we write as:
uj (€ wi|wz) = wy - f(P7™") = u(P)™ wy). (8)

We read this as the cost to j using control set (£, w1), evaluated by weights wa,
i.e., the cost of the path that is optimal given weights w1, for a user whose weights
are wa. This concept is similar to the regret of optimization problems [23]. Based
on this notation, we can now pose the main problem statement:

Problem 1 (User control set). Given a finite set of lattice states V' with start
state s € V', hidden user preferences w*, and a budget on the number of allowable
connections, k € Zxg, find a control set (£, w), with £ C B, w € [0, 1]™ such that

N TN I
(€, w) = arg min max %(5*,7w*|w)
Ew' jEV c;(w*) 9)

st | <k, w' €10,1]".

The control set (€, w) minimizes the maximum ratio of path costs evaluated
by w* to the cost of the optimal direct trajectory to j, given a budget of k
connections. In essence (€, w) is the control set with the minimal ¢-error and is
therefore the most robust control set.

3 Approach

Problem 1 consists determining a control set (€, w) that minimizes the maximum
ratio between path cost and optimal cost. We introduce a model for how users
provide demonstrations and then analyse how the unknown parameter w* in
equation (9) can be substituted by an estimate of the user weights given data.
We show that the optimal solution is a pair (£, w) where w is the best available
estimate of w* and £ can be computed via a mixed-integer linear program. This
allows for a simple, yet effective method for solving Problem 1.

3.1 User model

We consider a user with a preference w*. Let d be a demonstrated trajectory
from a start state s to a goal state j € X. We do not require j to be a lattice point
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as we can still evaluate features f(d) and thus assign a cost u,;(d, w) as in (5). We
denote d¥” the minimal-cost demonstration from s to j given weights w*. Users
cannot perfectly demonstrate d* . Thus we use the features of demonstrations
to formulate a probabilistic user model:

Assumption 1 (User Model). A user with a preference w* provides a demon-
stration d from s to j with features f(d) where the density p(f(d)|w*) is:

p(F(d)|w*) ~ N(f(d), o). (10)

Similar user models have been used in [19,22]. Thus, users provide demon-
strations such that the features follow a normal distribution centred at the fea-
tures of the optimal demonstration. That is the user demonstrations are unbi-
ased and, given a large enough data set, the average features of demonstrations
equal the optimal features. Following (5), two demonstrations with equal features
have the same cost for any user and thus are indistinguishable with respect
to the cost function. Hence, we consider only features of demonstrations. Let
D = (dy,ds,...) be a sequence of demonstrations. We then find the conditional
expectation of w given D by taking the Bayesian posterior:

1
BulwlD) = o 3 Bl f@@) = g S [ wsflw) st

deD
(11)
Finally, we can approximate the integral by summing over a set of N samples:

dED i=1

3.2 Estimation of the loss function

We now use the user model to find a solution to Problem 1, given a set of
user demonstrations D. We consider two approaches. The first is taking the
conditional expectation over equation (9), given D:

(& w!
(€,w) = argmin E,, max W‘D]

Ew'! j
st & <k, w' €]0,1]".

(13)

The second approach is to use the expectation @ = E[w|D] to compute (&, w),
also known as the plug-in estimator [24]:

5_, 7 arg min max ——————=
( ) gg/ w’ JeEV C;F('U)) (14)
st |E <k, w' €10,1]".

While it is an approximation, (14) approaches the desired Problem 1 as |D| — oc.
Thus, this work focuses on solving (14).
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3.3 Main Results

In this section, we present the main theorem of this paper that proposes a solu-
tion to the minimization problem in (14). The high-level idea is: given demon-
strations D, the expected user weight @ is computed. This user weight is used
to calculate trajectories that minimize the user cost for all connections in B.
Finally, a set £ C B of size < k is found to produce a control set (€, ). In order
to illustrate how the connection set £ is computed, we present a variant of the
MTSCSP from [2,8] that is used in the main results of this paper.

Problem 2 (Minimum k-spanning Connection set Problem (MKSCSP)). Given
a tuple (V, B, ¢), and an integer k > 0, compute a set £ such that
&= i &, 15
arg min, (&) (15)
&<k
where 7(€) is defined in (1) with ¢(j) = ¢§ for all j € V. If € solves (15), and
T(E) < 0o we say that & is a minimal k-spanning connection set (MKSCS).

We make an observation about the cost function u, that motivates our main
results.

Observation 1 (Weight Choice). For any set of connections &, any vertex j € V|
and any pair of weights w, w’ € [0, 1]™, it must hold that

u; (€, wlw) < u;(€, w'|w). (16)

Indeed, from the definition of paths Pf’w and user costs in (6), and the definition
of user costs evaluated by other weights in (8), we observe that

i (€, wlw) = u(PE w) < u(PE w) = uy (€, w'|w). (17)

Theorem 1 (Problem Solution). If the tuple (£, w) is a solution to mini-
mization problem (14), then w = W, and € is a MKSCS of the lattice whose
costs are computed using weights W (i.e., the lattice GB™®).

Proof. Let € denote a MKSCS of the lattice GB®. Note that Observation 1
implies that the optimal value for w in equation (14) is given by b for any set of
connections &’. Indeed, for any weights w’ € [0, 1], equation (16) implies that
u (&' w'|w) > u; (&', w|w). Thus, for any &', the pair (£, w’) must result in
paths whose cost is at least (£/, ). This allows us to simplify equation (14) to

. ! apy |l
£ = arg min max M
e jeV ci(w) (18)

st & < k.

We will now show that € solves (18). Observe that the t-error for any set £’ given
the lattice GB¥ is exactly uj (€', ®|®)/cx () which appears in the minimization in
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(18). Therefore, it must hold that if # = 7( A) given the lattice GB® | then for
any other set of primitives £ C B such that || < k we have
°).

T(€) < 7(E (19)

This follows from the assumption that € is a MKSCS for the lattice GB®. Thus
& solves the minimization problem (18). Finally, let € be any solution to (18).
Then, it must hold that 7(€) = £, implying € is also a MKSCS of the lattice
GB®_ Therefore, we have that w’ is a weight that solves (14) if and only if
w’ = . Given that w’ = W, we may reduce (14) to (18) which is solved by a
connection set &, if and only if € is a MKSCS of the lattice GB®. O

Corollary 1. If the control set (£,w) is a solution to equation (9), then w =
w*, and € is a MKSCS on the lattice GBw" .

The proof of Corollary (1) follows closely the proof of Theorem 1, and is
therefore omitted. Letting £ denote a MKSCS of the lattice GB*®, Theorem 1
shows that (£,4) solves (14). The next theorem extends this result to a lattice
whose trajectory costs are given by their expected costs, given D, if the features
fi,i € {1,...,n} are piece-wise continuous functions of w. We say that a multi-
variate function f;(w) is piece-wise continuous on the compact set [0, 1]™ if for
any two weight vectors w1, ws € [0, 1], the function f; is piece-wise continuous
on the line-segment connecting w1, ws.

Theorem 2 (Solution for the Expected Cost Lattice). Let (€, 1) be a
solution to problem (14). If the features f; are piece-wise continuous functions
of w for all i € {1,...,n} then it holds that

: B [u; (&', w'|w)|D]

‘o
(6,0) = arg Wi e = [ (w)D)

(20)

That is, the control set (é’, W) minimizes the t-error given a lattice whose trajec-
tory costs are defined by their expected costs given D.

Proof. We first show that for any fixed & C B and j € V, the function
u; (&', wlw) is a piece-wise linear function of w. If we fix the first argument
as w = w’, the cost function u;(£’, w'|w) becomes linear in w. Indeed, from (5)
and (8), we have u; (&, w'|lw) = w - f(Pjg,’wl), where f(Pf/’w/) is constant for
a fixed control set (€', w’). Because the features f are assumed to be piece-wise
continuous, we can conclude from (8) that u(€’, w|w) is also piece-wise contin-
uous. Let € > 0, w1, wy be such that u(&’, w|w) is continuous on a line-segment

L= {)\1’(01 + dowsy : A € [—671 + 6]7 Ay = (1 — /\1)} (21)

That is, u(&’,w|w) is continuous on a line segment containing and extend-
ing a small distance depending on € past wi,ws. Observe that the linearity
of u(&’, w'|w) for any fixed weights w’, together with Observation 1 imply that
u; (" Mwi + Aawa| A\jwy + Aawo)
=Mui (€', Mwy + Aawo|wy) + Aauy (E, Mjwr + Aows|ws) (22)
>Aui (€, wi|wy) + Auj (€ wa|ws).
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Thus, the function u; lies above the line passing through u,(€’, wq|w;), and
u;(E', walws). Since this holds for all w), w4 € L, and u; (€', w|w) is continuous
on the line connecting w , w}, it must be linear there. Thus, if f(w) is continuous
on any line segment, then u;(£’, w|w) is linear there. Were the values of A1, A
in (22) restricted to [0, 1], it would only imply concavity, but (22) holds for all
A1, A2 € R, implying piece-wise linearity. By the linearity of the cost function,
u; (&', w'|w) in w for fixed w’, we have E[u; (£, w'|w)|D] = u;(£', w'|w). By
the linearity of u;(£’, w|w) in w for any & C B, and (7) we have Eq[c}(w)|D] =

*

¢;(@). Thus the minimization problem (20) reduces to (14), the solution to which

is given by (€, w) in Theorem 1. O

3.4 Computational Complexity

In this section we prove the NP-completeness of the decision version of the
minimization (9). We begin by stating the decision version of Problem 2.

Problem 3 (Decision version of MKSCSP). Given tuple (V, B, ¢), integer k > 0,
and a real number ¢ > 1, does there exist a set £ C B with |£] < k and 7(€) < t?

Theorem 3 (NP-completeness). Problem 3 is NP-complete.

Proof. The MTSCSP in the preliminary section was shown to be NP-complete
in [8]. Its decition version is: Given a lattice GB*, a real number t > 1 and
an integer k > 0, does there exist a set € C B where 7(€) <t and |E| < k?
We reduce the MTSCSP decision problem to Problem 3. Given a lattice G5,
and t > 1,k > 0, we construct an instance of the MKSCSP as follows: let
V ={j:(s,j) € B}, and let c(j) = c¢}(w) for all j € V. Then we observe that
Problem 3 on this instance is identical to the decision version of the MTSCSP.
Thus, Problem 3 is NP-hard because the MTSCSP decision problem is. Observe
that a potential solution £ C B to Problem 3 can be verified in time polynomial
|V| by iterating over all vertices j € V to check 7(€) < t, and additionally
checking that |£| < k. Hence, Problem 3 is in NP and thus NP-complete. O

3.5 Computing an optimal control set

We now briefly summarize the proposed solution to problem (14). By Theorem
1, the solution is a tuple (5’ , W), where W can be approximated using (12), and
the MKSCS, € is computed via a variant of the MTSCSP mixed-integer linear
program from [8]. This is done by adding the constraint that |£| < k, and
changing the objective of the problem from minimizing |é | to minimizing T(é)

4 Evaluation

We now demonstrate the performance of the proposed approach in simula-
tions. We consider a known, static environment, discretized into four-dimensional
states. Each state consists of a (x,y) position, an orientation 6 and the current
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Fig. 2: Demonstrated and learned behaviour in the training environment. The color of

the path indicates speed, where blue corresponds to slow and red corresponds to fast.

speed v. We considered 3 discrete values of speed, and 8 discrete headings (car-
dinal and ordinal). All used environments consisted of 15 x 15 grid of (x,y)
positions and hence of 15 x 15 x 8 x 3 = 5400 states (vertices). The lattice had
pre-computed trajectories for z-values between 0 and 4, y-values between —3
and 3, all 8 headings and all 3 speed values. Trajectories were computed using
clothoids, a subset of the used lattice is illustrated in Figure 1. Each vertex has to
be reached from a start for every discrete speed value and from a cardinal and or-
dinal orientation, yielding 6 different starts (0,0, 7,v;),7 € {0,7/4},i € {1,2,3}.
Thus, the connection set B for each start contains up to 672 connections.

We model users who evaluate trajectories based on three features: travel
time, longitudinal acceleration and lateral acceleration. User demonstration were
simulated by sampling features from the distribution in (10). We consider three
preferences corresponding to different driving styles: An aggressive style which
prefers short travel times, a cautious style that favours low accelerations, and a
moderate style that balances the features more equally. For all user types we set
the covariance in (10) to 0.1. We illustrate an example demonstration of each
user in Figure 2a. Finally, the experiment comprises one training environment,
shown in Figure 2 and two test environments.

4.1 Training Error

For each of the three driving style, we obtain three demonstrations for different
start-goal pairs. We show that we can effectively learn user preferences despite
this small number of demonstrations. We estimate w0 for each user by computing
the expectation in equation (12) using N = 10 samples and assuming a covari-
ance of 0.05, i.e., we overestimate how accurately the user demonstration match
their optimal trajectories. Finally, we run the experiment for minimal k-spanning
connection sets of size 25, 50 and 100 over 40 trials each. Figure 2 shows one of
the training demonstrations starting at the bottom at high speed and going to
the top left corner. We compare the optimal paths for the three different users,
together with the paths that were planned using the learned control set (€, ).



Learning Control Sets for Lattice Planners from User Preferences 13

2.0+

[N
v =)
N

L5 15 .
.
T B ] -
I3 B Enaive Bhaive £ B Enaive Bhaive
(a) Training Error (b) Test error

Fig. 3: The t-error for all connections B and the MKSCS connections £ compared to a
naive approach with Bhaive and Enaive, respectively.

While the shape of the paths is slightly different from the demonstrations, key
characteristics of the user preferences are replicated. The aggressive user only
breaks for sharp turns and immediately accelerates again. The moderate user
avoids breaking too abruptly and thus cannot take the shortcut. Finally, the cau-
tious user minimizes lateral and longitudinal acceleration and thus drives with
minimal speed whenever possible. Figure 3a shows the t-error over all users and
k values for the control set (é , ) together with the error of the control set using
all connections (B, ) in the lattice. We include a naive approach as a reference,
where wyaive is sampled randomly and independent to the demonstrations. This
serves as a baseline to illustrate the advantage of estimating driver behavior, i.e.,
the sensitivity of the cost function to user preferences w. For the naive approach
we show the error of a MKSCS (Epaive; Wnaive) and of (Bpaive, Wnaive). We ob-
serve that (B, ) achieves an average error of 1.16, with a median of 1.02. The
MKSCS solution has a mean and median error of 1.34 and 1.13, respectively.
Thus, the limited size of the control set leads to a mean cost that is 34% higher
than the optimum, but for half of all cases the cost is at most 13% higher. In
comparison, we observe that the naive approach yields a mean error of 1.81 with
a median of 1.52 when using all connections, and a slightly higher error for a
MKSCS.

In Figure 4 we compare how different values for k influence the t-error and the
planning time speedup when using a MKSCS. Generally, the t-error decreases as
k increases, though we observe large differences between user types. For the cau-
tious user the error does not exceed 1.1 on average, independent of k. While the
aggressive user type achieves comparable values for k£ = 100, the error increases
drastically for smaller k, reaching an average of ~ 2.2 for k = 25 with a large
deviation from the mean. The moderate user shows a more balanced result with
the average not surpassing 1.5 for small k. Yet, the planning time speedup is less
affected by the user type. For k = 25 we observe the highest speedup of ~ 35 on
the median for all three user types. For higher values of k the speedup decreases,
but even using a connection set with |£] = 100, the median path planning is
at least 10 times faster than when using all connections B. We conclude that
using a MKSCS drastically decreases planning time though the cost increases
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Fig. 4: Training data: The t¢-error and planning time speedup for different sizes of the
MKSCS and the different user types.
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Fig. 5: Test data: The t-error and planning time speedup for different sizes of the
MKSCS and the different user types.

34% compared to the optimum (twice the error of the best estimate). However,
in half of all training examples the increase in cost is less than 10%. Between
users, the performance benefit is similar, while the path quality differs.

4.2 Test Error

The test error is evaluated on three different start—goal pairs for which no demon-
strations were obtained in two different environments. In Figure 3b we show a
similar analysis as we did for the training error. The error of the learned control
set (f:' ,) is slightly higher than in the training with a mean of 1.38 and a me-
dian of 1.17 while the deviation is smaller. The naive approach performs slightly
better than in the training, with mean and median values for (Bpaive, Wnaive) Of
1.72 and 1.31, respectively. This indicates that the user behaviour might be less
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sensitive in the test scenarios. Figure 5 shows a comparable relationship between
k and the t-error (left) and planning time speedup (right). The overall ¢t-error
is comparable in mean to the training, but increases with smaller k for the cau-
tious user type. The aggressive user shows the highest error, with a mean of 1.8
for £ = 50. The planning speedup shows a similar trend as the training data.
However, the deviations differ more between user types. All three users yield
median speedup factors of ~ 30 for k£ = 25, but are still above 10 for k& = 100.

We conclude that the learned control set (é ,) achieves good t-errors in
both training and test environments while allowing for a substantial planning
time speedup. Increasing k, the t-error tends to decrease, approaching the error
of the estimation. Even though the performance also decreases with growing k,
we still obtain an improvement of more than a factor of 10 for £ = 100 compared
to paths planned using the complete connection set 5.

5 Discussion

We studied a novel approach for computing a control set that captures user pref-
erences. First an estimate W of the user weights, given data, and a set of trajecto-
ries using those weights are computed for all pairs (s, j) € B. These trajectories
are calculated to minimize a user cost function that is a linear combination of
weights w and trajectory features. Next, a set of connections & C B and its as-
sociated trajectories is determined. This control set minimizes the relative error
of trajectories generated. We illustrate how both @ and £ are computed, and
validate our findings using a clothoid trajectory planner. The results illustrate
that the control set ((‘f , ) is able to capture a user’s preferences while greatly
reducing online computation time relative to using the full connection set.

In future, this approach should be tested with real-world data, e.g., recorded
driving behaviour. The use of other trajectory planners such as polynomial
splines or Bezier curves could be used to investigate generalizability. Finally,
these results should be extended to account for situational user weights.
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