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Abstract— We present a method to realize a submodular
function as a vector in the feasible region of a set of linear
constraints. We utilize this representation to formulate a linear
program to find worst-case functions for the greedy strategy
in distributed submodular maximization. This construction
provides insight into the structure of worst-case functions, and
enables us to better understand how the team’s performance is
affected by changing the network structure.

I. INTRODUCTION

A submodular function is a set function that exhibits
diminishing returns. That is, the contribution of an element
to the total value of a set decreases as the set gets bigger.
In submodular maximization, we seek to find a set that
maximizes a submodular function subject to some constraints
(for example, on the number of elements in the set). Interest
in submodular maximization has grown rapidly due to the
fact that it models a variety of important problems. Some
real world domains where submodular maximization has
application is in controls [1], [2], [3], [4], path planning [5],
[6], [7], sensor placement and sensor scheduling [8], [9],
[10], [11], [12], [13], [14]. While submodular maximization
is NP-hard [15], in almost all of these problems, a simple
greedy strategy provides strong approximation guarantees.

A large portion of the theoretical research in the domain
of submodular maximization is concerned with providing
approximation guarantees. It is common that the greedy
strategies for maximization perform better in practice than
the theoretical guarantees. With this in mind, we are inter-
ested in answering the following question: Is it possible to
find a submodular function f such that the solution produced
by the greedy strategy exhibits its worst-case approximation
ratio? It is typically challenging to find such examples,
and one is interested to investigate if they can be found
programmatically.

In this work, we establish a connection between submod-
ular functions and feasible regions of linear constraints. We
use linear programming to find these worst-case function
examples. The idea of utilizing linear programming has some
parallels to a proof technique used in the foundational paper
of Nemhauser et. al [16], where for a given function, the
authors upper bound the optimal value of the problem and
then pose a linear program for lower bounding the value
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of the greedy solution. In our work, we are interested in
generalizing these methods as well as finding the particular
functions that exhibit the worst-case values. Such worst-case
scenarios play a major role in previous work related on the
role of information in distributed submodular optimization,
including the ones presented in [17], [18], [19], [20]. To
elaborate further on the distributed settings we have in
mind, consider a setting where a team of agents want to
collaboratively maximize a submodular objective function.
Each agent must select an action from their own set of
available actions. The agents make choices based on a subset
of actions selected by other agents. Since the agents cannot
observe all of the other agents actions they are forced to make
decisions under partial information. The agents make their
choices by greedily maximizing their own marginal objective
value given the information available to them.

Statement of Contributions: We provide a representation
of a submodular function as a solution of a linear program,
where given a base set of N elements, we represent f as
a 2N dimensional vector, and we enforce submodularity by
imposing linear constraints on the vector. We then consider a
distributed submodular maximization problem, where agents
have partial information about the decisions of other agents,
over both the partition matroid. Given a team of agents
and a graph describing the agents’ available information, we
formulate a linear program that provides a worst-case sub-
modular function, in terms of approximation performance.
This allows us to characterize the size of the domain of the
worst-case functions.

II. PRELIMINARIES

We begin with some basic preliminaries. Let X be a base
set of elements, and 2X be the power set of X . A set function
f : 2X → R is submodular if for all sets S, T ⊆ X , the
following holds:

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ). (1)

We denote the marginal gain of adding x ∈ X to a set
S ⊆ X by

f(x|S) := f({x} ∪ S)− f(S).

In addition to submodularity, throughout this paper, we
assume the following additional properties

1) Monotonicity: For all S ⊆ X , f(x|S) ≥ 0,
2) Normalization: f(∅) = 0.

Definition II.1 (Matroid). Let X be a finite set and I a
non-empty collection of subsets of X called the independent
sets. The system M = (X, I) is called a matroid if:



1) If S ⊆ T ⊆ X and T ∈ I then S ∈ I.
2) If for all S, T ∈ I and |S| < |T | then there exists x ∈

T\S such that S ∪ {x} ∈ I.

We are interested in a particular matriod called the parti-
tion matriod where X is split into X1 . . . , Xn disjoint sets,
and I = {S ⊆ X | |S ∩Xi| ≤ 1 for all i ∈ {1, . . . , n}}

III. LINEAR PROGRAMMING REPRESENTATION

We start this section by introducing a method to realize
submodular functions as vectors in the feasible region of
a set of linear constraints. This bears resemblance with the
techniques used in the original formulation of the submodular
maximization problem in the classical work of [16]. As
we show in Section IV-C this representation will enable us
to pose an optimization problem that generates worst-case
functions for greedy optimization strategies.

To this end, let X be a base set of elements. We represent
a set function defined on X as a 2N dimensional real-valued
vector, where N = |X|. Let v ∈ R2N be a vector (or
lookup table) where each component of v gives the function
value for a corresponding subset S ⊆ X; we denote this
component by vS . We assume that there is a fixed ordering
of subsets, in that the indexing of subsets is fixed i.e., for any
two vectors v, v̂ ∈ R2N , the values of vS and v̂S are located
at the same index for the two vectors. Given v ∈ R2N , we
define a set function f : 2X → R by

f(S) = vS .

We can enforce properties on the function f by imposing
constraints on v.
Example III.1. Consider the base set X = {x1, x2, x3}. The
vector representation of a function f : 2X → R is a vector
v ∈ R8 with the following structure:

v =



f(∅)
f(x1)
f(x2)
f(x3)

f(x1, x2)
f(x1, x3)
f(x2, x3)

f(x1, x2, x3)


Note that a vector v ∈ R2N , uniquely defines a set function

fv : 2X → R.
We now define a matrix Msubmodular, with the property that

if Msubmodularv ≥ 0 then, the function f defined by v is
submodular. We now rewrite (1), in terms of the components
of v as

vS + vT − vS∩T − vS∪T ≥ 0. (2)

Let Msubmodular ∈ R2N (2N−1)×2N , where each row corre-
sponds to the constraint in (2) for a pair of subsets S and
T . We now define another matrix to ensure the function
represented by v is also monotone.

Example III.2. An example row of Msubmodular for function
in Example III.1 with S = {x1, x2} and T = {x3} is[

−1 0 0 1 1 0 0 −1
]
v ≥ 0.

We now define another matrix to ensure the function
represented by v is also monotone. For f to be monotone
we need to ensure that

f(x|S) ≥ 0,

for all x ∈ X and S ⊆ X . we can enforce monotonicity
on v by adding N more constraints. In particular, if f is
submodular then f(x|S) ≥ f(x|X\{x}) for S ⊆ X\{x}.
Hence, enforcing f(x|X\{x}) ≥ 0 implies f(x|S) ≥ 0.
Written in terms of the components v, we impose the
condition

vX − vX\{x} ≥ 0. (3)

Let Mmonotone ∈ RN×2N , where each row encodes the
monotonicity constraint imposed by x in (3) for all x ∈ X .
If Msubmodularv ≥ 0 and Mmonotonev ≥ 0 hold, the function
represented by v will be both monotone and submodular.
Finally to ensure that f is normalized we simply impose an
equality constraint v∅ = 0.

A key fact about these constraints is that they are all linear
inequalities in terms of the components of v. We formulate a
linear program in order to search for monotone, normalized
and submodular functions while imposing other desirable
linear constraints:

max
v∈R2N

cT v,

s.t.
[
Msubmodular
Mmonotone

]
v ≥ 0,

v∅ = 0, and Mv ≥ b,

where c ∈ R2N is a general cost vector, M ∈ Rl×2n and
b ∈ Rl. Here, M and b are general constraints that can
be used to enforce additional properties on the submodular
function produced by the optimal solution v. As an example
in Section V, we specify c,M and b to construct a linear pro-
gram that produces performance guarantees for the adapted
greedy strategy for distributed submodular maximization.

IV. DISTRIBUTED SUBMODULAR MAXIMIZATION

A. Problem Definition

We now introduce the distributed submodular maximiza-
tion problem [17] and how we can apply our linear pro-
gramming approach. Suppose we are given n agents V =
{1, . . . , n}. We consider the scenario where the agents select
their actions sequentially. To state this formally, suppose
that each agent i has access to an action set Xi and must
choose one action xi ∈ Xi. The agents follow a greedy
strategy and we want study the impact of information on
their performance. Each agent i ∈ V has access to a subset
of decisions chosen by agents {1, . . . , i− 1}, encoded by a
directed acyclic graph (DAG) G = (V,E), where, there is an
edge (i, j) ∈ E if agent j has access to the action of agent i.
We refer to this graph as the agents’ communication graph.



The in-neighbor set of agent i in G is defined as

N (i,G) = {j ∈ V | (j, i) ∈ E}.

The information available to this agent is given by

Xin(i,G) = {xj | j ∈ N (i,G)}.

We assume the agents select their actions by greedily max-
imizing their own marginal return given the information
available to them, i.e.,

xi ∈ argmax
x∈Xi

f(x|Xin(i,G)). (4)

We denote a greedy solution by SG = {x1, . . . , xn} where
each xi satisfies (4), and the set of all greedy solutions by
SG .

We study the problem described in [17], [18], [20], defined
as follows:

max
S⊆X,|S|≤n

f(S) (5)

s.t. |S ∩Xi| ≤ 1 for i ∈ {1, . . . , n},

where X = ∪i∈nXi and each Xi is disjoint. This is an
instance of maximizing a submodular function over the
partition matroid.

Suppose we have a normalized, monotone and submodular
function f , a group of agents, a DAG G, and the greedy
strategy given by (4). We want to study the worst-case sub-
optimality of the greedy strategy (4) for the problem defined
in (5). Note that this will depend on the information structure
G, and thus we want to study how the performance depends
on G.

B. Performance Guarantees

Following [18], we define the competitive ratio for a
normalized monotone submodular function f and a DAG
G = (V,E) as

γ(f,X,G) = min
SG∈SG

f(SG)

f(OPT )
,

where OPT ⊆ X is the solution to Problem (5).
Let us denote the worst-case competitive ratio for a given

graph G by
γ(G) = inf

f,X
γ(f,X,G). (6)

Both [17] and [18] provide performance bounds in terms
of properties of the graph G. The tightest known bound
for this problem is provided in [18] and is in terms of the
fractional independence number of the graph G = (V,E).

C. Linear Programming Approach

We will now present how to incorporate the adapted
greedy strategy in (4) into our linear programming model.
Suppose we are given a DAG G with n nodes and a set B =
{x1, . . . , xn} that satisfies the partition matroid constraint.
We next show that we can add constraints to the linear
program such that the feasible set contains all the submodular
functions for which B is a greedy solution from (4) i.e,
B ∈ SG :

To encode the greedy condition, suppose the agents choose
B = {x1, . . . , xn}. Then, the information available to agent
i is

Xin(i,G) = {xj | j ∈ N (i,G)}.

We next search for a f : 2X → R that satisfies

f(xi|Xin(i,G)) ≥ f(x|Xin(i,G)) for all x ∈ Xi,

for each xi ∈ B. The latter can be rewritten in terms of the
components of a corresponding vector v by

v{xi}∪Xin(i,G) − v{x}∪Xin(i,G) ≥ 0 for all x ∈ Xi. (7)

Let us define a Mgreedy,G ∈ R(|X1|+···+|Xn|)×2N , which
encodes each of the greedy constraints for all xi ∈ B. If
Mgreedy,Gv ≥ 0 then the feasible region of v describes all the
set functions where B is a greedy solution.
Example IV.1. Consider the function in Example III.1, two
agents with X1 = {x1} and X2 = {x2, x3}, and the
information graph G where agent 2 has access to the choice
of agent 1. Then, to enforce that x2 is the greedy choice for
agent 2, we have the following row in Mgreedy,G :[

0 0 0 0 1 −1 0 0
]
v ≥ 0.

V. WORST-CASE FUNCTIONS USING LINEAR PROGRAMS

A. Linear Program Formulation

We begin this section, with a formulation of a linear
program whose solution is a function with minimum compet-
itive ratio, out of all the submodular functions where SG is
selected by agents following (4). Given sets A,B ⊆ X that
satisfy the partition matroid constraint, i.e., |A∩Xi| = 1 and
|B ∩Xi| = 1 for all i ∈ {1, . . . , n}, the following program
produces a submodular function where A is an optimal
solution to (5), and B is a greedy solution produced by
algorithm (4) with minimum competitive ratio. In particular,
we define the following program:

max
v∈R2N

vA,

s.t.

Msubmodular
Mmonotone
Mgreedy,G

 v ≥ 0, (8)

v∅ = 0 and vB = µ.

where the constant µ fixes the value of f(B) for the resulting
function. Let v be in the feasible region of the program and
fv be the corresponding function. The program finds the
maximum value that the set A can take on given f(B) = µ
with B ∈ SG . Since f(B) is fixed, maximizing f(A)
will produce the largest value for f(A), and therefore will
produce the function with minimum competitive ratio. We
will formally prove this result in the next subsection.

Before presenting our main result, we make a remark
about on the complexity of solving (8). Using an off-the-
shelf black box optimizer, linear program (8) can be solved
numerically to produce the worst-case function examples.
However, the drawback is that the constraints in the linear



programs scale exponentially with the size of X . The encod-
ing of the general linear program requires O(2|X|(2|X|−1))
space using sparse matrix representations. For small enough
sets X , black-box optimizers are able to solve the linear
programs in a tolerable amount of time.

B. Main Result

Consider the distributed submodular maximization prob-
lem with n agents over an information graph G. Let A and B
be disjoint sets each of size n. Let X ′ = A ∪B, and define
a partition of X ′ such that |X ′

i ∩ A| = 1 and |X ′
i ∩ B| = 1

for each i ∈ {1, . . . , n}. With this information we present
our main result.
Theorem V.1. Consider A,B, and X ′ as described above,
an information graph G, and let v∗ ∈ R22n be a solution to
linear program (8) defined using A,B and G with µ = 1. The
function f∗

v : 2X
′ → R corresponding to v∗ is a worst-case

function for information graph G, i.e.,

γ(G) = fv∗(B)

fv∗(A)
.

Our proof hinges on the following key lemma.
Lemma V.2. Let X1, . . . , Xn be nonempty disjoint sets with
X = ∪n

i=1Xi, and let f : 2X → R be a normalized,
monotone and submodular function with greedy solution SG
under a communication graph G and optimal solution OPT .
Let G = {g1, . . . , gn}, O = {o1, . . . , on}, X ′ = G∪O, and
X ′

i = {gi, oi} for all i ∈ {1, . . . , n}. Then there exist a
corresponding function f ′ : 2X

′ → R with the following
properties:

(i) f ′ is normalized, monotone and submodular;
(ii) O is an optimal solution for f ′;

(iii) G is a worst-case greedy solution to for f ′;
(iv) f ′(G) = f(SG);
(v) f ′(O) = f(OPT ).

The lemma essentially states for every submodular func-
tion f defined over an arbitrary action sets X1, . . . , Xn

and information given an information graph G, there is
a corresponding function defined over disjoint action sets
X ′

1, . . . , X
′
n of size two that has the identical competitive

ratio, with optimal and greedy solutions being disjoint.

Proof of Lemma V.2. Given f we construct f ′ as follows:
Let SG = {x1, . . . , xn} where xi ∈ Xi, be a worst-
case greedy solution of f i.e. SG ∈ argminS∈SG f(S),
let OPT = {x∗

1, . . . , x
∗
n} where x∗

i ∈ Xi for each i ∈
{1, . . . , n}. Since f is arbitrary, SG and OPT are not
necessarily disjoint.

To begin, we construct the action sets X ′
i = {oi, gi}. For

each i ∈ {1, . . . , n}, we let gi = xi. We let oi = x∗
i if

xi ̸= x∗
i or oi = x̂i where x̂i is a copy of x∗

i , otherwise.
By construction, each action set contains two elements, and
thus the sets G = {g1, . . . , gn} and O = {o1, . . . , on} are
disjoint.

Next we construct the function f ′ over 2X
′
. Let p : X ′ →

X where for any x ∈ X ′, p(x) returns the corresponding
element in X , i.e., p(gi) = xi and p(oi) = x∗

i . We then

define a function h : 2X
′ → 2X that for any set S′ ⊆ X ′

returns the corresponding set of elements in X as

h(S) = {x ∈ X|p(x′) = x for some x′ ∈ S′}.

With this, we define the function f ′ : 2X
′ → R as

f ′(S′) = f(h(S′)).

Proof of (i): We now show that f ′ is normalized, monotone
and submodular. This proof closely follows the argument
in [17, Section IIID]. Note that h(X ′

i) = Xi, and by the
definition of h, and for any S′, T ′ ⊆ X ′,

h(S′)∪h(T ′) = h(S′∪T ′), and h(S′)∩h(T ′) = h(S′∩T ′).

To show that f ′ is submodular, for any S′, T ′ ⊆ X ′, we
have

f ′(S′) + f ′(T ′) = f
(
h(S′)

)
+ f

(
h(T ′)

)
≥ f

(
h(S′) ∪ h(T ′)

)
+ f

(
h(S′) ∩ h(T ′)

)
= f

(
h(S′ ∪ T ′)

)
+ f

(
h(S′ ∩ T ′)

)
= f ′(S′ ∪ T ′) + f ′(S′ ∩ T ′)

Therefore, f ′ is submodular. To see that f ′ is monotone, for
any S′ ⊆ T ′ ⊆ X ′, we have

f ′(T ′) = f(h(T ′))

= f
(
h(T ′ ∩ S′) ∪ h(T ′\S′)

)
= f

(
h(T ′ ∩ S′)

)
+ f

(
h(T ′\S′)|h(T ′ ∩ S′)

)
≥ f

(
h(T ′ ∩ S′)

)
(9)

= f ′(S′)

where (9) holds because f is monotone. Therefore f ′ is
monotone. Finally, f ′(∅) = f

(
h(∅)

)
= f(∅) = 0, and thus

f ′ is normalized.
Proof of (ii): We now show that the optimal value of f ′

is the same as the optimal value of f , and the solution that
achieves the optimal value is O. First note that h(O) = OPT
since for each oi ∈ O, we have h(oi) = x∗

i . Now, let S′ ⊆
X ′ such that |X ′

i ∩ S′| ≤ 1 for all i ∈ {1, . . . , n}. Then,

f ′(S′) = f(h(S′)) ≤ f(OPT ) (10)
= f(h(O))

= f ′(O). (11)

where (10) holds since |h(S′) ∩Xi| ≤ 1 for i ∈ {1, . . . , n}
by construction and since OPT is the optimal solution
satisfying the partition matroid constraint. Since f ′(O) is
greater than or equal to the value of any subset S′ ⊆ X ′ that
satisfies the partition matroid constraint, O is the optimal
solution for f ′, proving the claim.

Proof of (iii): We next show that G is a worst-case greedy
solution of f ′. By construction, we have that h(G) = SG .
Let the information available to agent i when executing the
greedy strategy on f ′ be denoted by X ′

in(i,G) = {gj |j ∈
N (i,G)}. By construction,

h(X ′
in(i,G)) = Xin(i,G),

for all i ∈ {1, . . . , n}, where Xin(i,G) = {xj |j ∈ N (i,G)}
is the information available to agent i when executing



the greedy strategy on f . Now since f ′(S′) = f(h(S′))
for all S′ ⊆ X ′, we also have that f ′(gi|X ′

in(i,G)) =
f(xi|Xin(i,G)) for all i ∈ {1, . . . , n}.

We now need to verify that

gi ∈ argmax
x′∈X′

i

f ′(x|X ′
in(i,G)). (12)

Suppose, by way of contradiction that gi is not a maxi-
mizer of (12), i.e., there exist x′

i ∈ X ′
i such that

f ′(x′
i|X ′

in(i,G)) > f ′(gi|X ′
in(i,G)).

This would imply that f(h(x′
i)|Xin(i,G)) > f(xi|Xin(i,G))

and since h(x′
i) ∈ Xi, we conclude that xi is not a valid

choice of the greedy algorithm on f , which is a contradiction.
Therefore, G is a greedy solution for f ′. Moreover, all greedy
solutions for f ′ have the same objective value, and thus G is
a worst-case solution. To see this, take any greedy solution
G′ = {g′1, . . . , g′n} for f ′. Notice that g′i = gi if p(gi) ̸=
p(oi) and g′i ∈ {gi, oi} if p(gi) = p(oi). Thus, we see that
h(G′) = SG and thus f ′(G′) = f ′(G).

Proof of (iv) and (v): Finally, we have that f ′(O) =
f(OPT ) and f ′(G) = f(SG), concluding the proof. ■

Using this lemma we prove our main result.

Proof of Theorem V.1. Consider an arbitrary normalized
monotone and submodular function f : 2X → R with
action sets X1, . . . , Xn and X = ∪n

i=1Xi and let G be the
information graph. Let SG be a worst-case greedy solution
i.e., SG ∈ argminS⊆SG f(S) and let OPT be an optimal
solution.

Let X ′
i = {gi, oi} for each i ∈ {1, . . . , n} and X ′ =

∪n
i=1X

′
i . Moreover, let O = {o1, . . . , on} and G =

{g1, . . . , gn}. We now show that there exists a vector v in the
feasible region of linear program (8) with A = O,B = G,
µ = 1, and information graph G, such that the corresponding
function fv has the same competitive ratio as f .

Given f we apply Lemma V.2, to produce a function f ′ :
2X

′ → R, with with worst-case greedy solution G given G
and optimal solution O where G ∩ O = ∅. We also know
that f(SG) = f ′(G) and f(OPT ) = f ′(O).

Note that µ = 1 in the linear program, and so all feasible
vectors v have corresponding functions fv with fv(G) =
1. Since f ′(G) is not necessarily 1, we define the scaled
version of f ′ by dividing all function values by f ′(G), i.e.,
f ′
scaled(S

′) = 1
f ′(G)f

′(S′) for all S′ ⊆ X ′.

Let v ∈ R22n with vS′ = f ′
scaled(S

′) for all S′ ⊆ X ′,
then v is a vector in the feasible region of the linear
program because, the corresponding function fv = 1

f ′(G)f
′ is

normalized, monotone and submodular with greedily selected
solution B and fv(B) = 1.

Using this fact we next show that the optimal solution of
the linear program produces a function with the worst-case
competitive ratio: Let v∗ ∈ R22n be the optimal solution to
the linear program given A,B,G and µ = 1 and let fv∗ be
its corresponding function. We know that

γ(fv∗ , X ′,G) = fv∗(B)

fv∗(A)
.

We also have that,

f(SG)

f(OPT )
=

f ′(G)

f ′(O)
=

f ′
scaled(G)

f ′
scaled(O)

=
1

fv(A)
(13)

≥ 1

fv∗(A)
(14)

= γ(fv∗ , X ′,G), (15)

where (13) and (14) holds since v is in the feasible region
of the program, and v∗ is the solution to the linear program,
which means vA ≤ v∗A and fv(A) ≤ fv∗(A). Equation (15),
since fv∗(B) = 1, 1

fv∗ (A) = γ(fv∗ , X ′,G). As a result, we

conclude that f(SG)
f(OPT ) ≥ γ(fv∗ , X ′,G) Since the inequality

holds for all normalized monotone, and submodular func-
tions defined over an arbitrary X , the result follows. ■

This result enables the use of linear programming to
produce worst-case functions for distributed submodular
maximization problems. For problems with a small number
of agents we can directly solve the LP to produce worst-case
functions. Additionally, we believe the LP formulation is of
independent interest as it provides a complete characteriza-
tion of worst-case functions. The following section highlights
an instance of each of these applications.

VI. WORST-CASE STUDIES

In this section we apply the results from Section V to pro-
vide two insights into the performance of greedy algorithms
in distributed submodular maximization.

A. Size of Worst-Case Functions

An immediate consequence of Theorem V.1 on the size of
the domain of worst-case functions is stated next.
Corollary VI.1. Given n agents and an information graph
G, the worst-case competitive ratio γ(G) for Problem (5) is
achieved with a submodular function f defined over a base
set X of just 2n elements, where each agent’s action set has
size two.

The definition of the competitive ratio in (6) (originally
proposed in [18]) uses an inf for the reason that the base
set could potentially become very large. However, our result
establishes that this is not the case and a worst-case function
for n agents can be produced on a base set of only 2n
elements, and where each agent has just two options in its
action set. As a result, the competitive ratio for the partition
matroid case can be defined with a min instead of an inf .

B. Benefits of Information in Distributed Submodular Max-
imization

For a fixed submodular function, it is easy to construct
examples where the performance of the distributed greedy
algorithm degrades when an edge is added to the information
graph. For instance, consider a coverage problem where each
agent has a choice of discs, and the objective is to maximize
the area of the union of the selected discs, as shown in
Figure 1. The coverage function is normalized, monotone
and submodular. In this example, agent 1 and 3 have just one
element in their action set. If agent 2 knows the selection of
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Fig. 1. Submodular function where adding an edge to information graph
degrades performance. The information graph is shown at the bottom.

Fig. 2. Example graphs G1 and G2, where G1 has better competitive ratio
with one less edge than G2.

agent 1, it will select the grey disc on the right. If it does
not, it will select the grey disc on the left. The resulting
area covered is smaller when agent 2 does has access to the
choice of agent 1.

In what follows we present a stronger result. We show
that adding an edge to the information graph can, in some
cases, degrade the worst-case performance of the distributed
greedy algorithm. One might find these results surprising as,
unlike the “information never hurts” principle in probability
and estimation [21], we find that information can hurt in
distributed submodular maximization.

Consider the graphs G1 and G2 defined over four agents
where as shown in Figure 2. Note that G2 is obtained by re-
moving a single edge from G1. Using our linear programming
formulation, we have constructed worst-case functions for
each graph1. The competitive ratios of G1 and G2 respectively
are γ(G1) = 0.250 and γ(G2) = 0.333 (quoted to three
decimal places), and thus γ(G2) > γ(G1). Said differently,
on graph G1 there is a function where the distributed greedy
produces a solution achieves 0.250 of optimal, while on G2

there does not exist a function where the distributed greedy
performs worse than 0.333 of optimal.

VII. CONCLUSIONS

We establish a framework for casting worst-case problems
in submodular maximization as linear programs. We directly
apply this observation to distributed submodular maximiza-
tion problem, proving that for an information graph, finding
the worst-case performance of the distributed strategy is
equivalent to solving a linear program. We provide results
capturing the structure of worst-case submodular functions
that demonstrate how adding and removing edges can af-
fected the worst-case performance.

1For each function, we provide the full list of all 256 function
values at https://ece.uwaterloo.ca/˜sl2smith/functions_
values.txt.

REFERENCES

[1] Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran,
“Submodular optimization for voltage control,” IEEE Transactions on
Power Systems, vol. 33, no. 1, pp. 502–513, 2018.

[2] J. Qin, I. Yang, and R. Rajagopal, “Submodularity of storage place-
ment optimization in power networks,” IEEE Transactions on Auto-
matic Control, vol. 64, no. 8, pp. 3268–3283, 2019.

[3] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie,
“Minimal actuator placement with bounds on control effort,” IEEE
Transactions on Control of Network Systems, vol. 3, no. 1, pp. 67–78,
2016.

[4] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Robust and adaptive
sequential submodular optimization,” IEEE Transactions on Automatic
Control, pp. 1–1, 2020.

[5] M. Roberts, S. Shah, D. Dey, A. Truong, S. Sinha, A. Kapoor,
P. Hanrahan, and N. Joshi, “Submodular trajectory optimization for
aerial 3d scanning,” in IEEE Int. Conf. on Computer Vision (ICCV),
2017, pp. 5334–5343.

[6] J.-J. Wu and K.-S. Tseng, “Adaptive submodular inverse reinforcement
learning for spatial search and map exploration,” Autonomous Robots,
vol. 46, no. 2, pp. 321–347, 2022.

[7] S. T. Jawaid and S. L. Smith, “Informative path planning as a
maximum traveling salesman problem with submodular rewards,”
Discrete Applied Mathematics, vol. 186, pp. 112–127, 2015.

[8] ——, “Submodularity and greedy algorithms in sensor scheduling for
linear dynamical systems,” Automatica, vol. 61, pp. 282–288, 2015.

[9] L. F. O. Chamon, G. J. Pappas, and A. Ribeiro, “The mean square error
in Kalman filtering sensor selection is approximately supermodular,”
in IEEE Conference on Decision and Control (CDC), 2017, pp. 343–
350.

[10] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos,
“Efficient sensor placement optimization for securing large water
distribution networks,” Journal of Water Resources Planning and
Management, vol. 134, no. 6, pp. 516–526, 2008.

[11] X. Sun, C. G. Cassandras, and X. Meng, “A submodularity-based
approach for multi-agent optimal coverage problems,” in IEEE Con-
ference on Decision and Control (CDC), 2017, pp. 4082–4087.

[12] L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar, “Resilient active
target tracking with multiple robots,” IEEE Robotics and Automation
Letters, vol. 4, no. 1, pp. 129–136, 2019.

[13] A. Hashemi, M. Ghasemi, H. Vikalo, and U. Topcu, “Random-
ized greedy sensor selection: Leveraging weak submodularity,” IEEE
Transactions on Automatic Control, vol. 66, no. 1, pp. 199–212, 2021.

[14] A. Downie, B. Gharesifard, and S. L. Smith, “Submodular maximiza-
tion with limited function access,” 2022, arXiv:2201.00724.

[15] L. Lovász, “Submodular functions and convexity,” in Mathematical
programming the state of the art. Springer, 1983, pp. 235–257.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[17] B. Gharesifard and S. L. Smith, “Distributed submodular maximization
with limited information,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 4, pp. 1635–1645, 2018.

[18] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden, “The
impact of information in distributed submodular maximization,” IEEE
Transactions on Control of Network Systems, vol. 6, no. 4, pp. 1334–
1343, 2019.

[19] D. Grimsman, M. R. Kirchner, J. P. Hespanha, and J. R. Marden, “The
impact of message passing in agent-based submodular maximization,”
in IEEE Conference on Decision and Control (CDC), 2020, pp. 530–
535.

[20] M. Corah and N. Michael, “Distributed submodular maximization on
partition matroids for planning on large sensor networks,” in IEEE
Conference on Decision and Control (CDC), 2018, pp. 6792–6799.

[21] T. M. Cover, J. A. Thomas et al., “Entropy, relative entropy and mutual
information,” Elements of information theory, vol. 2, no. 1, pp. 12–13,
1991.

https://ece.uwaterloo.ca/~sl2smith/functions_values.txt
https://ece.uwaterloo.ca/~sl2smith/functions_values.txt

	Introduction
	Preliminaries
	Linear Programming Representation
	Distributed Submodular Maximization
	Problem Definition
	Performance Guarantees
	Linear Programming Approach

	Worst-case functions using linear programs
	Linear Program Formulation
	Main Result

	Worst-Case Studies
	Size of Worst-Case Functions
	Benefits of Information in Distributed Submodular Maximization

	Conclusions
	References

