
A Pursuit Evasion Approach for Avoiding an Inattentive Human in the
Presence of a Static Obstacle

Yi Feng Wang Christopher Nielsen Stephen L. Smith

Abstract— We consider a mobile robot, modelled as a Dubins’
car, following a path. In the vicinity of the path is a human,
modelled as an agile point mass, and a static obstacle. The
robot’s objective is to follow the path unless it is absolutely
necessary to deviate so as to avoid collision with the static
obstacle or human. We seek to guarantee robot’s safety, even
if the human is distracted or inattentive, and thus we consider
worst-case motions for the human. The resulting problem takes
the form of a reversed homicidal chauffeur game, but with the
addition of a static obstacle. The static obstacle can interfere
with the escape route of the robot, and thus fundamentally
changes the form of the game. We propose a navigation
algorithm for the robot that provably guarantees safety and
that attempts to delay its reaction for as long as possible. We
validate the proposed approach in simulation and provide a
comparison to existing collision avoidance methods.

I. INTRODUCTION

Robots and self-driving vehicles have become prominent
players in modern day logistics. A key challenge is to safely
deploy a mobile robot in a dynamic environment with both
moving agents, e.g. humans, and static obstacles. In this
paper, we consider a Dubins’ car-like robot following a path
with a human, modelled as a point mass, and a static obstacle
in the vicinity. The robot tries to stay on its path unless
absolutely necessary in order to avoid a collision with the
human or static obstacle. We seek to guarantee safety, even
if the human is distracted or inattentive, and thus we consider
worst-case motions of the human.

A popular approach to tackle collision avoidance prob-
lems is model predictive control (MPC) [1]. MPC-based
approaches often model obstacles as state constraints [2].
MPC methods show promising performance but often lack
formal safety guarantees in the face of adversarial agents.

An alternative method is to pose collision avoidance as a
pursuit-evasion game [3]–[5], which is an adversarial game
between two groups of opposing players. The solution of the
game provides two distinct sets of states known as the “kill
zone” and “escape zone.” In order to guarantee the robot’s
safety, the robot control must prevent the game’s state from
entering the kill zone where the adversarial agent always has
a successful strategy to collide with the robot. This approach
is useful because it provides a formal way to guarantee safety.

In recent work [6]–[9], the authors have posed the collision
avoidance problem as a differential game and have computed
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the backward reachable set (BRS) by solving Hamilton-
Jacobi-Isaacs (HJI) partial differential equation [10] numer-
ically. If the game’s state enters the BRS and the agent is
adversarial, then collision cannot be prevented regardless of
the robot’s action. The BRS is computed offline and the
backward reachability solutions are then utilized by the robot
when running online. As the dimension of the game’s state-
space increases, the memory and the computational time for
the BRS increase exponentially [10].

Similar to the work above, we take a pursuit-evasion
approach to our problem in order to obtain safety guaran-
tees. The most closely related work to our problem is the
reversed homicidal chauffeur game (also called the suicidal
pedestrian) [11]. In this game, the robot (evader) is a Dubins’
vehicle and the human (pursuer) is an agile point object.
In [11], the authors completely characterized the solution
to this game. Our paper differs from this work in that
the environment contains a static obstacle which allows the
human to use the obstacle to limit the robot’s evasive options.
A similar challenge was faced when introducing a circular
static obstacle to the lion and man game [12] and static
obstacles to the pursuit evasion game [13]. However, both
players in [12] and [13] are modelled as point masses.

The main contribution of this paper is to provide an event-
triggered controller that guarantees the robot to be collision-
free. Our evasion strategy also tries to delay the robot’s first
evasive reaction for as long as possible. Compared to meth-
ods based on numerically computing the BRS and the use
of the MPC, our strategy requires much less computational
power and memory. Additionally, the methods of numerically
computing the BRS do not consider the existence of a
obstacle in the surrounding. In simulations, we show the
benefit of the proposed approach.

II. THE PROBLEM SETUP

The robot (evader) is modelled as a Dubins’ vehicle with
fixed translation speed ve > 0 and minimum turning radius
R > 0. The robot’s control input u is proportional to the
angular velocity of its heading angle and is constrained by
its maximum turning radius, |u(·)| ≤ 1. Following [3], we
attach an orthonormal moving frame to the evader whose
origin is the robot’s position in the plane with respect to
a fixed inertial coordinate system. The ordinate axis points
in the robot’s heading direction; the abscissa results in a
positively oriented body frame. The body frame is referred
to as the reduced space [3].

The human (pursuer) is the more agile agent and is
modelled as a point mass with fixed speed vp > 0. The



coordinates of the pursuer in the reduced space are denoted
by p(t) = (xp(t), yp(t)) ∈ R2. The equations of motion of
the pursuer in the reduced space are

ẋp(t) = −ve
R
yp(t)u(t)− vp sin (ϕ(t))

ẏp(t) =
ve
R
xp(t)u(t)− ve − vp cos (ϕ(t))

(1)

where ϕ ∈ (π, π] represents the pursuer’s relative heading.
We assume that ve ≥ vp so that it is possible for the robot
to evade an adversarial human.

There is a static obstacle in the workspace modelled as
point in the plane and whose coordinates in the reduced space
are written o(t) = (xo(t), yo(t)) ∈ R2. While the obstacle
is static, its position changes in the reduced space due to the
motion of the robot and its equations of motion are

ẋo(t) = −ve
R
yo(t)u(t)

ẏo(t) =
ve
R
xo(t)u(t)− ve.

(2)

In this paper, we propose an evasion policy in the case of
a straight line nominal path with associated nominal control
signal u0 = 0.

To characterize a collision and to account for the geometry
of the obstacle, the robot and the human, we fix a real
constant c > 0 called the collision radius and we say that the
robot has been captured or has collided if either ∥p∥2 < c
or ∥o∥2 < c. The collision radius c and the robot’s minium
turning are assumed to satisfy R > c. The setup in the
reduced space is illustrated in Figure 1.

Fig. 1. Problem setup in the reduced space.

An evasive action at time t is a piecewise continuous
control signal with the property that1 u(t+) ̸= u0(t

+), i.e.,
it results in the evader leaving its nominal path. The class
of allowable evasive actions are Dubins paths [14] denoted
CSC where C ∈ {R,L} is a hard turn with minimum
turning radius either to the right (R) or to the left (L) and
S is the straight maneuver. The duration of C and S can be
zero so that, for example, a hard right followed by a hard
left is an allowable evasive action.

To ensure well-posedness, we assume that the initial
conditions of the robot, human and the obstacle are such
that there exists a robot strategy for which a collision can
be avoided. Under these conditions, in this article we seek

1The notation u(t+) denotes the limit of u(τ) as τ → t from the right.

a real-time evasion policy for the robot that guarantees that
the robot is never captured and which is minimally invasive
in the sense that the robot only deviates from its nominal
control signal when it is absolutely necessary in order to
avoid a collision.

Problem. Find an evasion policy for the robot that:
(i) guarantees that the evader is not captured and,

(ii) maximizes the following quantity

inf {t ≥ 0 : u(t) ̸= u0(t)} .

Remark 1. We assume that human and the obstacle start
on opposite sides of the robot, i.e., xo(0)xp(0) ≤ 0 because
otherwise the problem considered herein reduces to that
of the reversed homicidal chauffeur [11]. For simplicity of
exposition and in light of the reflective symmetry about the
ordinate axis in the reduced space, we also assume without
loss of generality that xo(0) ≤ 0 and xp(0) ≥ 0.

III. TECHNICAL PRELIMINARIES

We first introduce some concepts based on the classical
homicidal chauffeur problem [3] and the closely related
suicidal pedestrian differential game [11]. We use these ideas
to define the notions of a default escape and configurations
where the robot can guarantee its safety.

A. Collision zones

In two player pursuit evasion games, the notion of a
barrier surface can be used to define a simple closed curve
that divides the plane into two open sets. The first open set is
bounded and has the property that if the game is initialized
there, then the pursuer will inevitably capture the evader
under optimal play. The second open set is unbounded and
has the property that if the game is initialized there, then the
evader can always avoid capture. If the game is initialized
on the barrier surface itself, then the game’s state remains
in this set for some time under optimal play, i.e., the barrier
surface is a (locally) positively invariant set under optimal
play.

In [11], it is shown that the robot-human barrier surface
can be expressed in terms of the parameterized curve

x(τ) = R cos
(ve
R
τ
)
−R+ (c+ vpτ) sin

(
s̄− ve

R
τ
)

y(τ) = R sin
(ve
R
τ
)
+ (c+ vpτ) cos

(
s̄− ve

R
τ
) (3)

where τ ∈ [0, τ ] and τ is the solution to

(c+ vpτ) sin
(
s̄− ve

R
τ
)
= R−R cos

(ve
R
τ
)
.

The barrier surface for the robot-human pair is the set

B :=

{[
x(τ)
y(τ)

]}
∪
{[

−x(τ)
y(τ)

]}
, τ ∈ [0, τ ], (4)

defined using (3). We combine (4) with the boundary of
the collision disk to define the robot-human collision zone,
denoted CZ , as the interior of the simple closed curve

B ∪
{
c

[
sin (s)
cos (s)

]
: arccos (−vp/ve) ≤ |s| ≤ π

}
. (5)



This collision zone is depicted as the light blue region in
Figure 2a. If p lies in the collision zone, then the robot has
either already been captured or capture is inevitable. The
optimal strategy for the robot when there is no obstacle is
to take a hard turn (in the appropriate direction) whenever
the human p lands on the barrier curve (4) and keep turning
until p slides off of B. From hereon, we call this the reversed
homicidal chauffeur strategy.

An analogous concept of a collision zone can be de-
fined for the robot-obstacle pair. Introduce the parameterized
curves

x(τo) = −R+ (c+R) cos
(ve
R
τo

)
y(τo) = (c+R) sin

(ve
R
τo

) (6)

where τo ∈ [0, τo] and

τo :=
R

ve
arccos

(
R

c+R

)
.

The barrier surface for the robot-obstacle pair is the set

Bo :=

{[
x(τo)
y(τo)

]}
∪
{[

−x(τo)
y(τo)

]}
, τ ∈ [0, τo], (7)

defined using (6). Combining (6) with the boundary of the
collision disk we define the robot-obstacle collision zone,
denoted CZo, as the interior of the simple closed curve

Bo ∪
{
c

[
sin (s)
cos (s)

]
: π/2 ≤ |s| ≤ π

}
(8)

which is depicted as the blue region in Figure 2b. If o lies in
the collision zone, then the robot has either already collided
with the obstacle or a collision is unavoidable. The optimal
strategy for the robot when there is no human is to take a
hard turn (in the appropriate direction) whenever the obstacle
lands on the barrier curve (7) up until o slides off of Bo.

Remark 2. Since the obstacle is static, the robot-obstacle
collision zone CZo is a proper subset of the robot-human
collision zone CZ .

B. Default escape route

As discussed above, if there is no obstacle and the robot
applies the reversed homicidal chauffeur strategy, then under
optimal pursuit the human slides along the barrier surface
until leaving it. The duration of this maneuver depends on
where p lands on B and is denoted τ(p) ∈ R≥0. We call
the area traced out by the closure of the static collision zone
CZo the default escape route shown in Figures 2c and 2d.
To avoid a collision between the robot and the obstacle while
executing reversed homicidal chauffeur strategy, the obstacle
must not be in the interior of the default escape route. The
largest default escape route occurs when the the duration of
the robot’s hard turn is the longest, i.e., the human is on the
ordinate axis lands on the tip of the barrier curve.

CZ

EZ

B

(a) Zones with respect to the pursuer.

CZo

EZo

Bo

(b) Zones with respect to the obstacle

(c) Initial robot position before taking
the default escape route.

(d) Resulting robot position after tak-
ing the default escape route.

Fig. 2. The default escape route of the robot, collision, and evasion zones
with respect to both the pursuer and the obstacle.

C. Guaranteed evasion configurations

To simplify the forthcoming discussion, it is convenient
to formally characterize configurations in which one of the
adversarial players (human or obstacle) is eliminated from
the game and safety is easy to ensure by using the reversed
homicidal chauffeur strategy. We call such configurations
guaranteed evasion configurations.

The robot-human evasion zone is denoted EZ and is
the green area in Figure 2a. It is formed by that portion of
the cone passing through the points (±x(0), y(0)) obtained
from (3) that is disjoint from the collision disk. We now
make the following reasonable assumption.

Assumption 1. If the human enters the robot-human evasion
zone, then the human ceases their pursuit of the robot.

The robot-obstacle evasion zone is denoted EZo and is
the green area in Figure 2b. It is formed by that portion of
the lower half plane that is disjoint from the largest default
escape route.

Definition 3. Consider a configuration of the pursuer, ob-
stacle, and evader, defined by the relative positions o and p
in the reduced space. We say this is a guaranteed evasion
configuration if either

(i) o ∈ EZo and p /∈ CZ , or (ii) o ̸∈ CZo and p ∈ EZ .

In guaranteed evasion configuration (i), the game reduces
to the reversed homicidal chauffeur. In guaranteed evasion
configuration (ii), the evader applies maximum steering away
from the obstacle when the obstacle arrives on its barrier
surface.

IV. EVENT-TRIGGERED EVASION

In this section we present an event-triggered evasion
strategy for the robot whose high level principle is to only
use the reversed homicidal chauffeur strategy when necessary
in order to delay the evasive maneuver as much as possible.



(a) Robot goes under the obstacle that
is off the path by taking a hard left.

(b) Robot goes over the obstacle that
is off the path using an LSL maneu-
ver.

(c) Robot goes under the obstacle that
is on the path by taking a hard left.

(d) Robot goes over the obstacle that
is on the path using an RSL maneu-
ver.

Fig. 3. Robot’s evasive maneuvers under the event-triggered controller.

A. Overview of the strategy

Initially, the robot follows its nominal path. If the obstacle
is not in the interior of the default escape route, then the robot
can evade the human using the reversed homicidal chauffeur
strategy. If the obstacle arrives at the boundary of the default
escape route and the human is not on its barrier surface, then
the robot must decide whether or not to allow the obstacle
to enter the default escape route and (temporarily) interfere
with the reversed homicidal chauffeur strategy.

In this scenario, the proposed strategy first determines if
the human can reach its barrier curve while the obstacle is
in the default escape route. If so, then the robot must decide
whether to go “under” the static obstacle by immediately
taking the default escape route (Figure 3a and Figure 3c)
or to delay the evasive maneuver by “threading the needle”
and going between the obstacle and the human in the
future (Figure 3b and Figure 3d); the latter maneuver is
sometimes referred to as going “above” the static obstacle.
The complexity of the problem arises from this decision.

To describe the proposed strategy in more detail, we first
define the notion of a feasible evasive action.

Definition 4. Consider a configuration of the evader, pur-
suer, and obstacle at time t defined by the relative positions
p(t), o(t) in the reduced game space. An evasive action at
time t is feasible if there exists a time T > 0 such that both
of the following conditions hold:

1) for every τ ∈ [t, t + T ], o(τ) /∈ CZo and p(τ) /∈ CZ
and,

2) (o(t+ T ),p(t+ T )) is a guaranteed evasion configu-
ration.

An evasive maneuver is triggered by the events listed
in Table I. The obstacle avoidance algorithm continuously
monitors these events and if an event occurs, then the evader

TABLE I
EVENTS THAT TRIGGER AN EVASIVE ACTION.

Event Event Description Robot’s Response

1 Human is on its barrier surface. Turn hard away from human.

2 Obstacle is on the boundary of the
default escape route and there is no
feasible LS/LSL/RL/RSL.

Turn hard away from human.

3 Obstacle in the interior of default
escape route and off the path and
the last moment in time at which a
feasible LS/LSL exists is reached.

Execute feasible LS/LSL.

4 Obstacle in the interior of default
escape route and on the path and
the last moment in time at which a
feasible RL/RSL exists is reached.

Execute feasible RL/RSL.

responds with the corresponding evasive action.

Theorem 5. Under the conditions described in Section II
and Assumption 1, the execution of the algorithm in Table I
guarantees that the robot is not captured.

Proof. Let T ≥ 0 denote the time at which the first event in
Table I occurs.

Case 1: (Event 1 triggers first) By the definition of Event
1, the human is outside the collision zone at T . If the obstacle
is outside the default escape route or on its boundary,
then the response to Event 1 results in the game entering
guaranteed evasion configuration. (ii) (see Definition 3). We
now show that the obstacle cannot be inside the default
escape route at time T . Suppose, by way of contradiction,
that the obstacle is strictly inside the default escape route at
T . Let t, 0 ≤ t < T be the moment when the obstacle first
arrives on the boundary of the default escape route. Since
Event 2 did not trigger at t, there must have existed a feasible
LS/LSL/RL/RSL at t. Since the pursuer is on the barrier
surface at time T , the only feasible evasion maneuver is a
hard left maneuver; there is no feasible LS/LSL/RL/RSL at
time T . Therefore, there is a time in the interval (t, T ) which
was the last moment of which a LS/LSL/RL/RSL maneuver
was feasible. Since Event 3 and 4 did not trigger, no such
moment existed and therefore the obstacle cannot be in the
interior of the default escape route at time T .

Case 2: (Event 2 triggers first) By the definition of Event
2, the obstacle is on the boundary of default escape route.
Since Event 1 has not triggered, the human is not in its
collision zone. Therefore, by turning hard left, the game
enters guaranteed evasion configuration (i) (see Definition 3).

Case 3: (Event 3 triggers first) This case follows directly
from the triggering condition. The evader has a feasible
LS/LSL evasive action because the triggering condition is
that T is the last moment for which a feasible LS/LSL exists.
Since the LS/LSL is feasible, the human and the obstacle do
not enter their respective collision zones while the evader
executes this evasive action. After the evader avoids the
obstacle by going “above” it, the game enters guaranteed
evasion configuration (i).

Case 4: (Event 4 is triggered first at T ) The proof is similar



to Case 3.
Case 5: (No events trigger) Let t be an arbitrary time, and

suppose no event has occurred in the interval [0, t]. Since
Event 1 did not trigger in [0, t], the human cannot be inside
the collision zone at t. If the obstacle is completely outside
or on the boundary of the default escape route, then the
configuration at t is safe because the robot can turn hard
left to guarantee evasion. Suppose the obstacle is strictly
inside the default escape route at t and let t, 0 ≤ t < t,
be the moment when the obstacle is first on the boundary
of the default escape route. Since Event 2 did not trigger at
t, there existed a feasible LS/LSL/RL/RSL at t. Suppose by
way of contradiction that no feasible LS/LSL/RL/RSL exists
at t. Then there must be a last moment in time in the interval
(t̄, t) for which a feasible LS/LSL/RL/RSL exists, and Event
3 or 4 will be triggered at this time. This contradicts that the
assumption that no event is triggered for [0, t]. Therefore, if
the obstacle is strictly inside the default escape route at t,
there must still exist a feasible LS/LSL/RL/RSL at t and the
robot is in a safe configuration. Since t is arbitrary, we see
that the evader is safe for all times t before the first event
occurs.

V. SUPPORTING RESULTS

To implement our algorithm, various subroutines are
needed. First, we must be able to determine whether or not
the human can arrive on its barrier surface before the obstacle
leaves the default escape route. Second, to monitor Events 2,
3, and 4, we search the space of feasible evasion maneuvers
seeking the last moment at which a feasible maneuver exists.
This section describes how we resolve these issues.

A. Determining if obstacle might interfere with evasion

If the obstacle arrives at the boundary of the default escape
route, then it is routine to compute how long it takes for it
to leave the default escape route if the robot keeps following
the path. To determine if the obstacle might interfere with
evasion of the human during this period, we use constant
bearing control [15] to find the minimum time for the human
to reach its barrier surface (4). Given p(t) = (xp(t), yp(t))
and q(τ) := (x(τ), y(τ)) from (3), if

yp(t)− y(τ) ≥ 1

vp

(
xp(t)− x(τ)

)√
v2e − v2p, (9)

then the minimum time for the human to arrive at the point
q(τ) ∈ B equals

T (p, τ) =

√
v2p∥p− q∥22 − v2e (xp − x)

2

(v2e − v2p)
− ve (y − yp)

(v2e − v2p)
.

(10)
Otherwise, the human cannot get to the barrier curve. So for
a given time T and a given q(τ) ∈ B, we use (9) and (10) to
characterize the set of human positions that can reach q(τ)
in T seconds or less; this is the “ice cream cone” shaped
set illustrated in Figure 4a. Next, by varying the point q(τ)
on the barrier curve, we characterize the set of all human
positions that can reach B in T seconds or less (Figure 4b).

B

(a) Configurations (red set) that reach
a particular point.

B

(b) Configurations (red set) that reach
any point.

Fig. 4. Human configurations that can reach its barrier surface in T or
less seconds using constant bearing control.

(a) LSL maneuvers varied by the first
L duration.

(b) RSL maneuvers varied by the first
R duration.

Fig. 5. Family of LSL/RSL maneuvers that graze the boundary of the
obstacle’s disk.

Finally, letting the role of T be played by the time it would
take for the obstacle to leave the default escape route, we
can use the associated set in Figure 4b to determine whether
the human can arrive on B prior to the obstacle leaving the
default escape route. Additional details are given in [16].

B. Existence of feasible evasive actions

We discuss the subroutines used to check Events 3 and 4.
1) Obstacle off the nominal path: In Table I, the robot’s

evasive maneuver corresponding to Event 3 is to first move
to a position where o ∈ EZo, illustrated in Figure 3b. In
Figure 5a, this evasive action consists of the robot’s first
and second LS maneuver. The robot’s minimum turning
circle at the end of the second S segment encompasses the
obstacle and forms a common tangent between both circles.
At the end of the LS maneuver, the obstacle’s threat can
be eliminated and the robot can turn hard left to evade the
human if necessary by using the last L maneuver of a LSL.

Let tL denote the duration of the robot’s first L maneuver.
Since the obstacle is inside the default escape route, the
robot can only turn till its heading is aligned with the
common tangent line between the minimum turning circle
of the first L maneuver and the collision disc fixed at the
obstacle. Therefore, tL is bounded by, say, tmax

L . The S
segment depends on the duration of the first L maneuver.
Figure 5a illustrates the feasibility check for Event 3, which
evaluates whether or not there exists a LSL maneuver with
tL ∈ [0, tmax

L ] such that the human cannot get inside CZ
during the execution of the LS maneuver.



By the results in [11], the human can only enter its capture
zone on the S portion of an LSL maneuver. Thus we only
need to check whether or not the human can get inside
CZ during the S segment of each LSL with tL ∈ [0, tmax

L ]
to determine feasibility. Based on the human’s point mass
dynamics, the area it can reach is bounded by an expanding
circle centered at its initial position.

2) Obstacle on the nominal path: In this case, as Illus-
trated in Figure 3d, the robot must first turn right to avoid
the obstacle. The check to determine a feasible RSL closely
resembles the feasibility check of an LSL. The RS maneuver
corresponding to Event 4 in Table I also tries to get the circle
of the last L to encompass the obstacle (see Figure 5b).
Unlike the LSL maneuver, the R portion of the RSL can be
used to fully evade the obstacle by forcing the obstacle out of
the default escape route and hence the last L maneuver can
then be used to evade the human if necessary. The duration
of the R maneuver is bounded and its max duration is to turn
hard right until reaching the moment either the obstacle is
out of the default escape route or the human can arrive on
the barrier surface2.

Since the duration of the R portion is bounded by, say
tmax
R , and since the duration of the S portion depends on

that time, we search for RSL maneuvers whose R portion
lasts between 0 and tmax

R . The robot searches through the
family of RSL maneuvers and checks whether or not there
exists a RS maneuver for which the human cannot enter CZ .
If the evaluation is false, then Event 4 is triggered.

VI. NUMERICAL SIMULATIONS

We present numerical simulations and compare our event-
triggered strategy to other collision avoidance methods.

A. Simulation setup
The following simulation parameters are used throughout:

ve = 1, vp = 0.6, R = 0.8, c = 0.6. In the light
of Remark 1, the human is initially placed to the right of
the nominal path and the obstacle is to the left. The robot
follows its nominal path using a pure pursuit controller [17]
and switches to our evasive control strategy when an event
occurs. Afterwards, upon achieving a guaranteed evasion, the
robot switches back to the pure pursuit controller.

We consider three human motions: (i) diagonal cross
(human moves diagonally across the path), (ii) straight
cross (human move orthogonally towards the path), and
(iii) downward move (human moves downwards parallel to
the path). We exclude the straight cross simulations when
the obstacle is on the nominal path because there is no
significant difference in terms of robot’s behaviour compared
to the diagonal cross simulation. The nominal path is set to
6.5 unit length. To evaluate the performance of our control
scheme we present the mission duration and cumulative path
error from [18] in our quantitative analysis. For each human
behaviour, we tested up to 1000 cases where the human and
the obstacle were randomly placed.

2The set from which the human can arrive is enclosed by an expanding
circle. By checking whether or not this circle intersects with CZ , we can
find the duration of the R maneuver.
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(a) Robot goes between the human and off the path obstacle.
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(b) Robot goes between the human and on the path obstacle.

Fig. 6. Robot (blue), human (red), and obstacle (grey) positions at the
labeled time in evasive maneuver simulations with stars marking the start
and end of nominal path.

TABLE II
COMPARISON BETWEEN THE EVENT-TRIGGERED AND SIMPLE

APPROACHES

Human Motions tawait Task Duration Path Error
(% Reduction) (% Reduction)

Obstacle not on Nominal Path

Diagonal cross maneuver 0.75 9.55 51.15
Straight cross maneuver 0.73 7.22 42.99
Downward maneuver 0.20 20.00 83.27

Obstacle on Nominal Path

Diagonal cross maneuver 0.18 10.43 65.55
Downward maneuver 0.21 -1.63 -8.62
a After the obstacle arrives on the default escape route, the time that the
robot continues following the nominal path before executing an evasive
maneuver.

B. Comparison Studies

First, we compare our strategy to the simple strategy of
going “under” the obstacle with a hard left whenever the
obstacle hits the boundary of the default escape route or
the pursuer is on its barrier surface. An example of our
simulation is shown in Figure 6 for both the obstacle off the
path and the obstacle on the path. In both scenarios, the robot
tries to go in between the human and the obstacle if a feasible
LSL/RSL evasive maneuver is available. In the case where
the obstacle is not on the path, our strategy successfully
delays the evasion when possible and outperforms the simple
strategy for all human motions, see Table II. In the case
where the obstacle is on the nominal path, our event-
triggered strategy still outperforms the simple strategy when
the human performs the diagonal cross maneuver. However
the simple strategy slightly outperforms the event-triggered
strategy when the human executes the downward maneuver.
This is due to scenarios where the robot tries to evade



the obstacle by first turning hard towards the human and
then immediately turning in the opposite direction to evade
the human after evading the obstacle. Overall, our strategy
significantly outperforms the simple evasion strategy.

Second, in the comparison between the velocity obstacle
algorithm [19] and our evasion strategy, the former allows
the robot to stay relatively closer to the nominal path when
making evasive maneuvers. However, it cannot guarantee its
safety if the human tries to “squeeze” the robot with the
obstacle.

Third, we studied the evasion policies under ISO
13482 [20] and [21]. Both use the idea of safety fields and
passive safety and assume that moving agents do not collide
with a stationary robot. If the human enters a neighbourhood
of the robot, then the robot stops and waits for the human
to leave before resuming its path following. If the human is
distracted or inattentive, then the human may unintentionally
collide with the robot that has stopped. Our evasive maneuver
deals with these worst-case scenarios and guarantees the
safety of the robot.

VII. CONCLUSION AND FUTURE WORK

We studied a collision avoidance problem for a robot to
avoid a static obstacle and an adversarial human-like agent.
We developed an event-triggered controller based on the
ideas in [11] to guarantee the robot’s safety while attempting
to delay the evasive maneuver as long as possible. Simula-
tions demonstrate the advantages of our strategy compared
to other evasion methods.

A future directions are to solve the problem when the
robot’s path is not a line and to formally show that the
proposed algorithm indeed maximally delays the evasive
maneuver.

REFERENCES

[1] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A study on model
fidelity for model predictive control-based obstacle avoidance in high-
speed autonomous ground vehicles,” Vehicle System Dynamics, vol. 54,
no. 11, pp. 1629–1650, 2016.

[2] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Bor-
relli, “Linear model predictive control for lane keeping and obstacle
avoidance on low curvature roads,” in IEEE conference on intelligent
transportation systems (ITSC). IEEE, 2013, pp. 378–383.

[3] R. Isaacs, Differential Games: A Mathematical Theory with Applica-
tions to Warfare and Pursuit, Control and Optimization. Wiley, 1957.

[4] A. Merz, “The game of two identical cars,” Journal of Optimization
Theory and Applications, vol. 9, no. 5, pp. 324–343, 1972.

[5] A. W. Merz, The Homicidal Chauffeur–a differential game. Stanford
University, 1971.

[6] K. Leung, E. Schmerling, M. Chen, J. Talbot, J. C. Gerdes, and
M. Pavone, “On infusing reachability-based safety assurance within
probabilistic planning frameworks for human-robot vehicle inter-
actions,” in International Symposium on Experimental Robotics.
Springer, 2018, pp. 561–574.

[7] W. L. Scott and N. E. Leonard, “Optimal evasive strategies for multiple
interacting agents with motion constraints,” Automatica, vol. 94, pp.
26–34, 2018.

[8] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An
efficient reachability-based framework for provably safe autonomous
navigation in unknown environments,” in IEEE Conference on Deci-
sion and Control (CDC), 2019, pp. 1758–1765.

[9] S. L. Herbert, S. Bansal, S. Ghosh, and C. J. Tomlin, “Reachability-
based safety guarantees using efficient initializations,” in IEEE Con-
ference on Decision and Control (CDC), 2019, pp. 4810–4816.

[10] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp.
947–957, 2005.

[11] I. Exarchos, P. Tsiotras, and M. Pachter, “On the suicidal pedestrian
differential game,” Dynamic Games and Applications, vol. 5, no. 3,
pp. 297–317, 2015.

[12] N. Karnad and V. Isler, “Lion and man game in the presence of a
circular obstacle,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009, pp. 5045–5050.

[13] D. W. Oyler, P. T. Kabamba, and A. R. Girard, “Pursuit–evasion games
in the presence of obstacles,” Automatica, vol. 65, pp. 1–11, 2016.

[14] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[15] S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha, “Dy-
namic vehicle routing for translating demands: Stability analysis and
receding-horizon policies,” IEEE Transactions on Automatic Control,
vol. 55, no. 11, pp. 2554–2569, 2010.

[16] Y. F. Wang, “A pursuit evasion game approach to obstacle avoidance,”
Master’s thesis, University of Waterloo, 2021.

[17] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[18] A. Lampe and R. Chatila, “Performance measure for the evaluation
of mobile robot autonomy,” in IEEE International Conference on
Robotics and Automation, 2006, pp. 4057–4062.

[19] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[20] T. Jacobs and G. S. Virk, “ISO 13482-the new safety standard for
personal care robots,” in VDE International Symposium on Robotics,
2014, pp. 1–6.

[21] K. Macek, D. A. V. Govea, T. Fraichard, and R. Siegwart, “Towards
safe vehicle navigation in dynamic urban scenarios,” Automatika–
Journal for Control, Measurement, Electronics, Computing and Com-
munications, 2009.


