
Scheduling Operator Assistance for Shared Autonomy in Multi-Robot Teams

Yifan Cai, Abhinav Dahiya, Nils Wilde, Stephen L. Smith

Abstract— In this paper, we consider the problem of allo-
cating human operator assistance in a system with multiple
autonomous robots. Each robot is required to complete inde-
pendent missions, each defined as a sequence of tasks. While
executing a task, a robot can either operate autonomously or
be teleoperated by the human operator to complete the task at
a faster rate. We formulate our problem as a Mixed Integer
Linear Program, which can be used to optimally solve small to
moderate sized problem instances. We also develop an anytime
algorithm that makes use of the problem structure to provide
a fast and high-quality solution of the operator scheduling
problem, even for larger problem instances. Our key insight
is to identify blocking tasks in greedily-created schedules and
iteratively remove those blocks to improve the quality of the
solution. Through numerical simulations, we demonstrate the
benefits of the proposed algorithm as an efficient and scalable
approach that outperforms other greedy methods.

I. INTRODUCTION

Autonomous mobile robot teams have been widely used
in manufacturing and related sectors resulting in improved
productivity and reduced risk to human workers. Such robot
teams are able to function autonomously on their own,
while also bearing the capability of making use of human
assistance to further improve their performance [1]–[3]. As
it is challenging for human operators to supervise and assist
a large number of robots on their own [4], [5], a number
of studies in the literature propose effective decision support
systems (DSS) to aid the human operator(s) in providing
assistance [1], [6], [7].

In this paper, we present such a DSS for a multi-robot
system comprising a fleet of autonomous robots with a hu-
man operator available to teleoperate the robots to speed up
their missions, given their availability. Figure 1 presents an
overview of the problem setup, showing K robots navigating
in a city-block-like environment and going through a series
of tasks. A task in this example may refer to navigating
through the robot route, crossing a road, going through
a crowded area, and etc. Each task is characterized by
different completion times, depending on whether the task
is executed autonomously or under teleoperation. There is a
human operator available, who can assist/teleoperate at most
one robot at a time. All robots are capable of completing

This research is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and in part by the Innovation
for Defence Excellence and Security (IDEaS) Program of the Canadian
Department of National Defence through grant CFPMN2-037.

Y. Cai, A. Dahiya, and S. L. Smith are with the Department of
Electrical and Computer Engineering, University of Waterloo, Water-
loo, ON N2L 3G1, Canada {yifan.cai, abhinav.dahiya,
stephen.smith}@uwaterloo.ca. N. Wilde is with the Cog-
nitive Robotics Department, Delft University of Technology, Netherlands
(N.Wilde@tudelft.nl).

Fig. 1: Information flow in the multi-robot teleoperation scheduling
system with K robots. A robot k are assigned with an independent
series of tasks. Given mission information, solver computes the
schedule, which is then converted to information about task timing
for both operator and robots. The operator assists on tasks assigned
by the schedule.

their respective tasks on their own, but can be assisted by
a human operator to speed up the task completion. The
DSS provides the operator with a teleoperation schedule
that specifies which task of a robot should be executed via
teleoperation, and in what order. If a robot task is scheduled
for teleoperation, then the robot and operator must wait for
each other to be available before starting this task. Thus, a
schedule specifies the teleoperation actions for the operator
and the wait actions for all robots and the operator.

The problem objective is to find a teleoperation schedule
for both the human operator and robots that minimizes the
time taken until all robot missions are complete.

Our work makes the following contributions:
1) We formulate a Mixed Integer Linear Program (MILP)

that can be used to generate optimal schedules for the given
problem. We also present an extension to a multiple-operator
version of the problem.

2) We develop an anytime algorithm that iteratively gen-
erates teleoperation schedules for the given problem. The
algorithm is capable of solving much larger instances of the
given problem than the MILP formulation.

3) We evaluate our proposed algorithm in numerical
simulations. The results show that our method provides an
efficient and scalable solution compared to other approaches.

A. Background and Related Works

Human-multi-robot teams have found their application in
search-and-rescue [8], smart factory operation [9], home care

for seniors [10], and package delivery [6]. However, such a
team composition also brings the risk of increasing operator
workload and decreasing in their situational awareness [11],
[12]. In [13], the authors show that scheduling the operator’s
attention can improve the efficiency of control over multi-
robot system. Therefore, such systems can benefit from
having a DSS that decides how to distribute human assistance
among different robots or autonomous systems [1], [14].

The problem of scheduling human assistance among
multiple robots has similarities with disciplines of multi-
robot supervision, queuing theory, and task scheduling and
sequencing. All these studies propose some forms of DSS,
where an advising agent guides the human operator(s) on
a robot (or task) which they should assist, with specified
time. This advice can take form of an online allocation, like
in [6], or a pre-determined offline schedule, like in [15]. In
human-supervised multi-robot systems, frameworks such as
sliding autonomy that considers factors like coordination and
situational awareness are shown to improve understanding
of such systems [16], [17]. Research on effective interaction
interfaces also aims to facilitate human supervision of robot
teams [18], [19]. Our work is concerned with providing
instructions to human operator on how to allocate their
attention among different robots. In the queuing discipline,
efficient techniques have been developed to enable a human
to service a queue of tasks [20]. However, the model that
we study is different from a queuing model as it is possible
for the robots to complete their tasks without the help of
operators, and there is no pre-defined order in which tasks
(of different robots) are required to be processed.

Related studies in scheduling literature present methods
to schedule processing of different tasks to minimize per-
formance metrics like makespan, idle time etc. A common
way of solving the scheduling problem is through the MILP
formulation, which can be used to obtain optimal solutions
for scheduling problems. In the literature, we also find
scalable methods to approximately solve a MILP for large
instances which may take MILP hours to find the minima.
For example, the study presented in [21] makes use of a
heuristic procedure for a single machine job scheduling.
However, in our system not all tasks are required to be
scheduled and tasks from different robots are not required to
be in any particular order. Methods like rolling-horizon splits
problems into smaller pieces based on time and pursue the
local optimal [22]. In contrast to the problem considered in
[22], our problem is highly-coupled over time, and thus there
aren’t natural breakpoints in time to decompose the problem.

The most related works to our problem are presented in
[23] and [15]. These studies propose solutions to scheduling
of operators, and robot planning for multi-robot system
having critical configurations where operator attention/input
is required to proceed. While sharing a similar goal with
these studies (minimizing mission time), our system lacks
the presence of any such critical configurations or states, and
every task can be completed both autonomously and under
teleoperation.

II. MULTI-ROBOT TELEOPERATION SCHEDULING

We consider a system consisting of a human operator
supervising a fleet of K autonomous robots. Each robot
k ∈ K := {1, . . . ,K} is assigned a mission pk ∈ P :=
{p1, . . . , pK}, which is a pre-defined sequence of tasks. To
complete its mission pk the robot k is required to complete
Nk tasks. The jth task of robot k is denoted as ekj . For
each task, a robot can either operate autonomously or be
teleoperated by the human operator. Executing a task ekj
takes time αk

j if the robot operates autonomously and time
βk
j (≤ αk

j) if it is teleoperated1.
There is a DSS that provides a teleoperation schedule for

the operator. A complete teleoperation schedule contains the
information of when to start each task of every robot and
which of the tasks are teleoperated. This information also
tell us if a robot or an operator needs to wait before starting
a task. However, since the completion times for each task
are known, this teleoperation schedule can be presented in a
more compact form as only a sequence of teleoperated tasks.
The timing information can be computed in polynomial time
from this sequence using the time αk

j and βk
j .

For our problem, we consider a schedule S as a sequence
of tasks ⟨s1, . . . , sn⟩ where each si corresponds to some task
ekj for k ∈ {1, . . . ,K}, j ∈ {1, . . . , Nk} that is required to
be teleoperated. Once the mission starts, the human operator
teleoperates the specific tasks in the order provided by the
schedule S, i.e., task s1 followed by s2 and so on. If at the
end of some task si = ekj , the robot k is not yet ready for
the required task (executing its previous tasks), the operator
waits for the robot to arrive at the start of ekj . Likewise, if
the robot is ready for the task si, but the operator is still
working on a previous task si′ where i′ < i, then the robot
waits for the operator.

The mission ends when all robots complete their respective
sequence of tasks. A common metric of measuring perfor-
mance of such systems is the time elapsed until all robot
missions are complete, called the makespan [24], denoted as
µ(S) ∈ R>0.

A. Problem Statement

We impose the following assumptions on the problem:

(A1) The operator teleoperates at most one robot at a time.
(A2) A task’s mode of operation cannot change once the

task is started, i.e., an operator must teleoperate a robot
throughout a task, and they cannot join a task which
already started autonomously.

(A3) All robots may start with the first task in their respec-
tive missions at or after the time t = 0.

The objective is to solve the following optimization.

1In this paper we consider βk
j ≤ αk

j , i.e., teleoperation is at least as
fast as autonomous operation. However, even for cases when this condition
does not hold, the analysis and algorithms presented in this paper apply
without any changes, as the tasks where autonomous operation is faster
than teleoperation are not considered for scheduling.

Problem 1. Given the set K of robots, the missions
{p1, . . . , pK} for each robot, and the autonomous and tele-
operation completion times αk

j and βk
j for each task, find a

schedule S that minimizes the makespan µ(S).

B. Hardness of Problem 1

An NP-complete variant of Satisfiability called 2p1n-3SAT
[25] can be reduced to the decision version of Problem 1.
Thus, the decision problem is in NP-Complete2. Then, the
problem of finding the optimal teleoperation schedule in
Problem 1 is NP-Hard.

III. MILP FORMULATION

Since all constraints in our problem are linear time con-
straints, we formulate our problem as a mixed integer linear
program (MILP). In the MILP formulation, our objective is
to find a schedule S that minimizes team makespan µ(S),
subject to conditions on system dynamics and task ordering.
We begin by introducing three variables for each task: (1)
xk
j , a binary teleoperation variable for task ekj , (2) τkj , the

scheduled start time for ekj , and (3) εkj , the finish time for
ekj , which can be expressed as a sum of the τkj and the task
completion time under the schedule, i.e.,

εkj = τkj + (1− xk
j)α

k
j + xk

j β
k
j .

A MILP can then be formulated as follows:

Minimize: µ̄

Subject to: µ̄ ≥ εkNk ∀ k ∈ K, (1)

τk1 ≥ 0, ∀ k ∈ K, (2)

τkj ≥ εkj−1, ∀ k ∈ K, j ∈ {2, . . . , Nk}, (3)

xk
j + xl

i = 2 =⇒ τkj ≥ εli or τ li ≥ εkj ,

∀ k, l ∈ K; k ̸= l,

∀ j ∈ {1, . . . , Nk},
∀ i ∈ {1, . . . , N l}, (4)

xk
j ∈ {0, 1},∀ k ∈ K, j ∈ {1, . . . , Nk}. (5)

Constraint (1) restricts the time needed for every robot
to complete its mission to be not more than the objective
µ̄. Constraint (2) sets the earliest start time for the robots.
Constraint (3) ensures that the jth task of a robot mission can
only starts after the j−1th task is completed. Constraint (5)
restricts the variables xk

j to be a binary variable. Con-
straint (4) specifies no two tasks can be teleoperated with an
overlapping time interval. The exclusive disjunction (XOR)
of two conditions is required due to the undetermined order
of teleoperation of the two tasks. Note that constraint (4)
above is presented as an implication and is not written as
a linear constraint. However, it can be converted to a set of
linear constraints (for example, by using the Big-M method),
which are supported directly by many mixed integer linear
program solvers [26].

2Details of this proof can be found in this arXiv preprint of the paper:
https://arxiv.org/abs/2209.03458

Note: To implement constraint (4), we can limit the ranges
to k ∈ {1, . . . ,K−1}, l ∈ {k, . . . ,K}, which eliminates the
repetitions in constraint checking, thus more efficient.

A. Extension to Multiple Operators

It is worth noting that we can directly extend the MILP
to handle the multi-operator-multi-robot setting. In this case
we have a set of M operators M := {1, . . . ,M}, and use
binary variable xk

jm to indicate whether ekj is teleoperated by
operator m ∈ M. Whether a task is teleoperated or not is
now indicated by

∑
m∈M xk

jm, instead of xk
j . Consequently,

changes are made in expressions for εkj and Constraint (4).
Constraint (5) is repeated for all xk

jm.
In addition, we need a constraint to bound

∑
m∈M xk

jm,
since each task can be assigned to at most one operator:∑

m∈M
xk
jm ≤ 1, ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , Nk}. (6)

B. Solving the MILP

A globally optimal solution to a MILP can be found
using solvers like Gurobi or CPLEX. However, as mentioned
earlier, while such solvers are effective for small problem
instance (i.e. 2 robots with 8 tasks each, such an instance
takes about 8.3 sec for MILP), they do not scale to large
instances (i.e. 3 robots with 15 tasks each, such an instance
takes about 296 sec for MILP), each with ten or more tasks
in its mission. In the next section, we present an efficient
algorithm that makes use of the problem structure to provide
a fast and high-quality solution of Problem. 1.

IV. ITERATIVE GREEDY

In this section, we present a greedy algorithm called
Iterative Greedy. The algorithm begins by greedily cre-
ating a schedule to improve the team’s makespan, until
no further improvements can be made by adding tasks of
a makespan robot to the schedule. Our key insight here
is to then identify blocking tasks in such greedily-created
schedules and iteratively remove those blockages to improve
the solution. The algorithm cycles between two routines:
Greedy Insertion and Block Removal.

A. Greedy Insertion

This routine creates a teleoperation schedule by greedily
selecting tasks from the mission of a robot whose total time
currently equals the makespan (called a makespan robot).

Definition 1 (Greedy Insertion). For a given schedule S, let
robot k be a robot achieving the makespan (i.e., last task’s
finish time εkNk = µ(S)). We call the addition of a task eki to
schedule S a Greedy Insertion if the addition of eki directly
reduces εkNk , without increasing the team makespan.

Pseudo-code for the Greedy Insertion algorithm is pre-
sented in Algorithm 1. In the algorithm, given a schedule S,
we first identify the set of all makespan robots, denoted as
K. We then determine the best task ek, defined as the task
that reduces εkNk , the mission time of any robot k ∈ K by

Algorithm 1 Greedy Insertion

Input: P , S
Output: S ′

1: Initialize ∆ε∗ = 0, S ′ = S
2: Calculate mission time εkNk for k ∈ {1, . . . ,K} given
P , S

3: K ← argmaxk{ε1N1 , . . . , εKNK}
4: for k ∈ K do
5: Find the Best task ek, with time reduction ∆εkNk and

corresponding schedule Sk given P , S
6: if ∆εk > ∆ε∗ then
7: ∆ε∗ ← ∆εkNk ; S ′ ← Sk
8: return S ′

the most, while not increasing the makespan µ(S). This task
is then inserted in the schedule.

Note: The best task in the Greedy Insertion algorithm
is defined as the one which results in the most reduction in
mission time of any makespan robot.

An example is shown in Fig. 2 to illustrate its operation.
Robot 3 is the makespan robot, and has two tasks currently
not in the schedule. Select the one with more time reduction,
and this addition to the schedule will reduce µ(S).

Fig. 2: Example of Greedy Insertion. Robot 3 is the makespan robot,
and by teleoperating its last task, we reduce its total mission time.

B. Block Removal

A schedule created using Greedy Insertion gives a
feasible (locally optimal) solution but such a schedule often
results in considerable and frequent idle times for the oper-
ator. However, even when the system’s makespan cannot be
improved further by adding more tasks of makespan robots
to the schedule, it may be possible to improve the makespan
by adding tasks from other robots. This is the idea behind
the Block Removal technique, which works by finding and
eliminating blocking tasks and reduces the team makespan by
reducing waiting times in the schedule. We begin to introduce
the details of this technique with the following definitions.

Definition 2 (Idle Time). For any two adjacent tasks sj and
sj+1 in schedule S = ⟨s1, . . . , sn⟩, the idle time is defined
as the time between task sj finish time and sj+1 start time.
For s1, if its start time > 0, idle time is simply the start time
of itself.

Definition 3 (Blocking Task and Blocking Robot). A task
sj+1 in schedule S is called a blocking task if the idle time
between sj and sj+1 is greater than zero3. The robot to which
task sj+1 belongs to is called a blocking robot.

A blocking task is called so because it prevents a task in
the makespan robot’s plan from getting teleoperated or being
teleoperated at an earlier time. Reducing the starting time of
the blocking task indirectly results in a smaller makespan
or allows for further makespan decrease in future iterations.
With above, the Block Removal operation can be defined.

Definition 4 (Block Removal). Given a schedule S, let robot
k be a robot achieving the makespan (i.e., εkNk = µ). We call
the addition of a task ek

′

i from a non-makespan robot k′ to the
schedule S a Block Removal if the addition of ek

′

i reduces or
allow futher reduction on εkNk , without increasing the team
makespan. Such addition results in removal of blockage (idle
time removed or reduced) by the robot k′ in the schedule.

Pseudo-code for the Block Removal algorithm is pre-
sented in Algorithm 2. In the algorithm, we start by finding
the blocking task in the schedule with the largest start time.
This is because for most of time, there is no idle time
between blocking task with the latest start time and the
makespan robot’s last teleoperated edge, and blocking can
be resolved efficiently. We then try to add a task from the
blocking robot’s mission to the schedule such that it reduces
the start time of the blocking task. If such an addition is
possible, we return the updated schedule, else we discard
this task and move to the blocking task with next largest
starting time, until we reach the beginning of the schedule.

Algorithm 2 Block Removal

Input: P , S
Output: S ′

1: Initialize: S ′ = S
2: s← blocking task with largest starting time
3: Find task e′ that reduces the start time of s
4: if e′ exists then
5: return Updated schedule S ′
6: else
7: Go to line 2 and repeat for blocking task with next

largest start time until no more blocking tasks are
present

8: return S ′

An example is shown in Fig. 3 to illustrate this operation.
Given the schedule generated in Fig. 2, further Greedy
Insertion is not possible. Adding task of e31 to the schedule
does not reduce makespan because the task final task of
Robot3, e32, will have to wait until the operator finishes the

3Depending on the application, it may be useful to set a threshold ϵ ∈
R>0 on the idle time between sj and sj+1 to consider sj+1 as a blocking
task. For example, we can set ϵ = min{βk

j }. In this case, if there is an
idle time less than the minimum teleoperation time, inserting any task here
only delay’s the execution of later tasks in the schedule. Thus, such an idle
time cannot help improve the makespan and we should skip it

task e12 (the blocking task). Instead, if we add e11 to S,
it reduces the makespan by reducing the start time of the
blocking task e12.

Fig. 3: Example for Block Removal. Makespan Robot 3’s mission
time is reduced indirectly by teleoperating e11.

C. Iterative Greedy

Starting with an empty teleoperation schedule, the Iterative
Greedy algorithm first generates an intermediate schedule
using Alg. 1. Using this schedule, we try the Block Removal
routine using Alg. 2. The schedule is iteratively improved
by applying Alg. 1 and Alg. 2 one after the other, until both
of these algorithms stop to make improvements in a given
schedule S, which is then selected as the final output.

Algorithm 3 Iterative Greedy

Input: P
Output: S

Initialization : S = [], done = 0.
1: while not done do
2: S ′ ← Greedy Insertion(P , S)
3: if S ′ = S then
4: S ′ ← Block Removal(P , S)
5: if S ′ = S then
6: done = 1
7: S ← S ′
8: return S

Runtime of Iterative Greedy: Letting N̄ :=
∑K

k=1 N
k,

each iteration of Greedy Insertion can be implemented
to run in O(N̄) time. Similarly, each iteration of
Block Removal runs in O(N̄) time. Since at most N̄
tasks can be added to the schedule, the overall runtime of
Iterative Greedy is bounded by O(N̄2).

V. EVALUATION

In this section, we present performance results for a sim-
ulated multi-robot scheduling problem under the following
methods (described in Section V-A): 1) Optimal schedule
(solution of the MILP formulation), 2) Iterative Greedy,
3) Greedy Insertion, 4) Comparison Greedy, and 5) Naïve
Greedy. The problem and the solution frameworks for all
algorithms were implemented using Python. The Gurobi
Python API is used for the MILP solution.

To generate an instance, for each task of each robot, two
numbers are sampled from a uniform random distribution
and are rounded to 2 decimal places. One is used as the task
working time under teleoperation βk

j , and the sum of two is
used as the autonomous time αk

j :

βk
j ∼ U [10, 20], ∆τkj ∼ U [0, 10],

αj
j ← βk

j +∆τkj . (7)

A. Baseline Algorithms

We consider the following baseline solution methods to
assess the performance of the Iterative Greedy algorithm.

MILP Solution: The MILP formulation in Section III is
implemented and solved with Python Gurobi API. Solving
the formulation directly gives us xk

j and τkj for each task.
Naïve Greedy: Under this algorithm, the operator is

simply scheduled to teleoperate the next available task of
the makespan robot. If the makespan robot is still executing
a task, the operator waits for the robot.

Comparison Greedy: We have also developed the Com-
parison Greedy algorithm, which compares between alterna-
tives given an intermediate schedule. We compute the finish
time of the last task in the current schedule, and determine
the task ekj that the makespan robot will be executing at
that time. We then pick the better of the two alternatives:
1) Adding ekj to the schedule, and have the makespan robot
wait for the operator at start of ekj , or 2) Adding ekj+1 to the
schedule and have the operator wait for the makespan robot
to complete ekj .

Greedy Insertion: To assess the improvement brought by
the Block Removal step, we compare the schedule generated
by only Greedy Insertion defined in Algorithm 1.

B. Scalability Test

We begin the evaluations by looking at the computation
time of MILP and Iterative Greedy on different problem sizes
(number of robots and tasks in their missions), as specified
in Table I. The computation times shown in the table are
the average of 100 instances for each case. Along both
dimensions of the problem size, the number of robots and
number of tasks, the computation time of MILP increases
at a very high rate. Computation time of Iterative Greedy
algorithm remains below 0.01 seconds for all test cases in
Table I. Even for larger instances, where MILP solution
is unavailable, the computation time of Iterative Greedy
algorithm grows at a much slower rate. For example, for
a problem instance with 4 robots and 40 tasks each, its
average computation time is 5.22 seconds. For reference, the
simulations were run on a laptop computer with 4 core, 2.1
GHz processor and 16 GB RAM.

C. Comparison with the Optimal Schedule

The Iterative Greedy algorithm is compared against the
optimal schedule to validate its applicability for our problem.
The optimal schedule using MILP formulation cannot be
computed for larger problem instances, due to its poor
scalability, therefore this test is limited to small-sized prob-
lems. The relative performance (ratio of the makespan under

TABLE I: CPU Time of MILP and Iterative Greedy (in seconds)

K = 2
Nk = 11

K = 3
Nk = 5

K = 3
Nk = 8

K = 3
Nk = 11

K = 4
Nk = 11

MILP 0.30 0.4 0.80 10.16 109.22
Iterative
Greedy < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Fig. 4: Relative performance of the Iterative Greedy methods com-
pared to the optimal solution for number of robots K ∈ {2, 3, 4},
and number of tasks Nk ∈ {5, 8, 11} for all robots. Each plot shows
the distribution of 100 instances based on their relative performance
(ratio of makespan under Iterative Greedy method to the optimal
makespan).

Iterative Greedy algorithm to the optimal schedule) is shown
in Fig. 4. For each size, 100 instances were generated using
the random instance generation mentioned earlier.

We observe that the performance of the Iterative Greedy
algorithm is comparable to that of optimal schedule. As the
number of robots increases, the distribution of relative perfor-
mance slowly shifts away from 1. However, the makespan
under the Iterative Greedy algorithm is still within 5% of
the optimal schedule for over 90% of the instances under
all test cases. For reference, the team makespan without
teleoperation is, on average, 20.73% more than the optimal
for these test cases.

D. Comparison with other Greedy Algorithms

Next, we compare the performance of the Iterative Greedy
algorithm with the Greedy Insertion, Comparison Greedy
and Naïve Greedy algorithms on larger problem instances.
Note that it is also possible to combine the Iterative Greedy
algorithm with any of these greedy algorithms. We include
performance results from such combinations to demonstrate
its effects on greedily-generated schedules. For the compar-
ison, under each test condition (given number of robots and
tasks in their missions), 100 problem instances are created
in a similar way as before. Fig. 5 shows performance com-
parison of the different algorithms. Iterative Greedy has the
best performance among all algorithms, and we observe 6 to
10% improvement over the baseline Naïve Greedy algorithm
for small to moderate problem size. We observe that, as
the number of robots increases, the difference between the
performance of all algorithms start to diminish. This supports

Fig. 5: Performance comparison of baseline greedy solution tech-
niques relative to the proposed Iterative Greedy algorithm. The plots
show relative performance of different techniques for up to 4 robots
and 70 tasks each.

the intuition that as number of robots increases, the human
operator is required to distribute their time to more and more
robots, thus decreasing their effectiveness. From the plots,
we also observe the effectiveness of the Iterative Greedy in
improving relative performance when applied in combination
with Naïve Greedy and Comparison Greedy. This indicates
that the Iterative Greedy technique can be used to further
improve any greedily-generated schedule.

E. Example Problem Instance

Fig. 6 shows an example instance of the scheduling prob-
lem with three robots. First, the Greedy Insertion algorithm
generates a schedule that reduces makespan but contains long
idle time in operator’s schedule. Then the Block Removal
algorithm removes these gaps and results in a schedule with
very little idle time. The MILP solution shows that a better
performing schedule is possible even with a greater idle time.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we present a problem of scheduling a
human operator to a team of multiple robots, such that the
team makespan is minimized. We show that this problem
is NP-Hard and develop the Iterative Greedy algorithm that
cycles through two sub-routines: Greedy Insertion and Block

Fig. 6: Scheduling of Iterative Greedy, Greedy Insertion and MILP
Solution on a Multi-robot Mission Instance.

Removal. This algorithm generates a greedy schedule in
each iteration, and improves it by removing blockages when
needed. The algorithm scales well with problem size and
produce smaller makespan than other greedy solution tech-
niques. It is also shown that the Iterative Greedy algorithm
can be applied to any greedily-generated schedule to further
improve the performance. For future research, our goal is to
further develop the model by allowing imperfect information
and possibility of mission re-planning for the robots. The
solution technique will also benefit from the ability to adapt
the current schedule online based on new observations.

REFERENCES

[1] A. Rosenfeld, N. Agmon, O. Maksimov, and S. Kraus, “Intelligent
agent supporting human–multi-robot team collaboration,” Artificial
Intelligence, vol. 252, pp. 211–231, 2017.

[2] A. Khasawneh, H. Rogers, J. Bertrand, K. C. Madathil, and
A. Gramopadhye, “Human adaptation to latency in teleoperated multi-
robot human-agent search and rescue teams,” Automation in Construc-
tion, vol. 99, pp. 265–277, 2019.

[3] K. Zheng, D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita, “Super-
visory control of multiple social robots for navigation,” in ACM/IEEE
Int. Conf. on Human-Robot Interaction, 2013, pp. 17–24.

[4] J. Y. Chen and M. J. Barnes, “Supervisory control of multiple robots:
Effects of imperfect automation and individual differences,” Human
Factors, vol. 54, no. 2, pp. 157–174, 2012.

[5] S. Y. Chien, M. Lewis, S. Mehrotra, and K. Sycara, “Imperfect
automation in scheduling operator attention on control of multi-

robots,” in Human Factors and Ergonomics Society Annual Meeting,
vol. 57, no. 1, 2013, pp. 1169–1173.

[6] A. Dahiya, N. Akbarzadeh, A. Mahajan, and S. L. Smith, “Scalable
operator allocation for multi-robot assistance: A restless bandit ap-
proach,” IEEE Transactions on Control of Network Systems, 2022, To
Appear.

[7] G. Swamy, S. Reddy, S. Levine, and A. D. Dragan, “Scaled autonomy:
Enabling human operators to control robot fleets,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2020, pp. 5942–5948.

[8] Q. Ren, K. L. Man, E. G. Lim, J. Lee, and K. K. Kim, “Cooperation
of multi robots for disaster rescue,” in IEEE International SoC Design
Conference (ISOCC), 2017, pp. 133–134.

[9] Y. Huang, Y. Zhang, and H. Xiao, “Multi-robot system task allocation
mechanism for smart factory,” in IEEE International Information
Technology and Artificial Intelligence Conference, 2019, pp. 587–591.

[10] P. Benavidez, M. Kumar, S. Agaian, and M. Jamshidi, “Design of a
home multi-robot system for the elderly and disabled,” in System of
Systems Engineering Conference, 2015, pp. 392–397.

[11] C. Y. Wong and G. Seet, “Workload, awareness and automation
in multiple-robot supervision,” International Journal of Advanced
Robotic Systems, vol. 14, no. 3, 2017.

[12] J. M. Riley and M. R. Endsley, “Situation awareness in HRI with
collaborating remotely piloted vehicles,” in Human Factors and Er-
gonomics Society Annual Meeting, vol. 49, no. 3, 2005, pp. 407–411.

[13] S.-Y. Chien, M. Lewis, S. Mehrotra, N. Brooks, and K. Sycara,
“Scheduling operator attention for multi-robot control,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2012, pp. 473–479.

[14] J. Y. Chen and M. J. Barnes, “Human–agent teaming for multirobot
control: A review of human factors issues,” IEEE Transactions on
Human-Machine Systems, vol. 44, no. 1, pp. 13–29, 2014.

[15] S. K. K. Hari, A. Nayak, and S. Rathinam, “An approximation
algorithm for a task allocation, sequencing and scheduling problem
involving a human-robot team,” IEEE Robotics and Automation Let-
ters, vol. 5, no. 2, pp. 2146–2153, 2020.

[16] S. Musić and S. Hirche, “Control sharing in human-robot team
interaction,” Annual Reviews in Control, vol. 44, pp. 342–354, 2017.

[17] M. B. Dias, B. Kannan, B. Browning, E. Jones, B. Argall, M. F. Dias,
M. Zinck, M. Veloso, and A. Stentz, “Sliding autonomy for peer-to-
peer human-robot teams,” in International Conference on Intelligent
Autonomous Systems, 2008, pp. 332–341.

[18] D. Szafir, B. Mutlu, and T. Fong, “Designing planning and control
interfaces to support user collaboration with flying robots,” The
International Journal of Robotics Research, vol. 36, no. 5-7, pp. 514–
542, 2017.

[19] E. A. Kirchner, S. K. Kim, M. Tabie, H. Wöhrle, M. Maurus,
and F. Kirchner, “An intelligent man-machine interface—multi-robot
control adapted for task engagement based on single-trial detectability
of p300,” Frontiers in Human Neuroscience, vol. 10, p. 291, 2016.

[20] P. Gupta and V. Srivastava, “Optimal fidelity selection for human-in-
the-loop queues using semi-markov decision processes,” in American
Control Conference, 2019, pp. 5266–5271.

[21] J. Roslöf, I. Harjunkoski, T. Westerlund, and J. Isaksson, “Solving a
large-scale industrial scheduling problem using milp combined with a
heuristic procedure,” European Journal of Operational Research, vol.
138, no. 1, pp. 29–42, 2002.

[22] A. Bischi, L. Taccari, E. Martelli, E. Amaldi, G. Manzolini, P. Silva,
S. Campanari, and E. Macchi, “A rolling-horizon optimization al-
gorithm for the long term operational scheduling of cogeneration
systems,” Energy, vol. 184, pp. 73–90, 2019.

[23] S. A. Zanlongo, P. Dirksmeier, P. Long, T. Padir, and L. Bobadilla,
“Scheduling and path-planning for operator oversight of multiple
robots,” Robotics, vol. 10, no. 2, p. 57, 2021.

[24] S. Mau and J. M. Dolan, “Scheduling to minimize downtime in human-
multirobot supervisory control,” 2006.

[25] R. Yoshinaka, “Higher-order matching in the linear lambda calculus in
the absence of constants is np-complete,” in International Conference
on Rewriting Techniques and Applications. Springer, 2005, pp. 235–
249.

[26] G. G. Brown and R. F. Dell, “Formulating integer linear programs: A
rogues’ gallery,” INFORMS Transactions on Education, vol. 7, no. 2,
pp. 153–159, 2007.

	Introduction
	Background and Related Works

	Multi-robot Teleoperation Scheduling
	Problem Statement
	Hardness of Problem 1

	MILP Formulation
	Extension to Multiple Operators
	Solving the MILP

	Iterative Greedy
	Greedy Insertion
	Block Removal
	Iterative Greedy

	Evaluation
	Baseline Algorithms
	Scalability Test
	Comparison with the Optimal Schedule
	Comparison with other Greedy Algorithms
	Example Problem Instance

	Conclusions and Discussions
	References

