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Abstract— Planning a safe trajectory for an ego vehicle
through an environment with occluded regions is a challenging
task. Existing methods use some combination of metrics to
evaluate a trajectory, either taking a worst case view or allow-
ing for some probabilistic estimate, to eliminate or minimize
the risk of collision respectively. Typically, these approaches
assume occluded regions of the environment are unsafe and
must be avoided, resulting in overly conservative trajectories—
particularly when there are no hidden risks present.

We propose a local trajectory planning algorithm which
generates safe trajectories that maximize observations on un-
certain regions. In particular, we seek to gain information on
occluded areas that are most likely to pose a risk to the ego
vehicle on its future path. Calculating the information gain is
a computationally complex problem; our method approximates
the maximum information gain and results in vehicle motion
that remains safe but is less conservative than state-of-the-
art approaches. We evaluate the performance of the proposed
method within the CARLA simulator in different scenarios.

I. INTRODUCTION

The safety of an ego vehicle depends on its understanding
of the risk in the world around it. A key challenge is the
presence of dynamic and static objects, which may result in
occlusions in the sensor information received by the ego ve-
hicle. These occlusions hide regions of the environment and
prevent the detection of obstacles in the vehicle’s intended
trajectory. The safe action when presented with an occlusion
is to anticipate some amount of risk due to the potential of
hidden actors or other hazards [1]. This anticipation of risk
may result in overly conservative responses, which slow the
ego vehicle excessively or even bring it to a complete halt
in anticipation of a perceived threat.

A trajectory with no occlusions has fewer unknowns and
therefore less uncertainty in the environment. Less uncer-
tainty results in a safer trajectory, or allows the vehicle to
proceed at a faster rate while maintaining the same safety
constraints. One method of reducing occlusions is to generate
trajectories that are allowed to deviate from the reference
center line of the lane [2]. With slight deviations, more
regions of the environment may be revealed.

Road networks are complicated because the paths of
multiple actors cross and possibly conflict. Occlusions in this
environment are complex, with multiple obstructions, both
static and dynamic, introducing uncertainty [3]–[6]. Because
of this complexity, it may not be possible to eliminate
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Fig. 1: Ego vehicle (green) approaching an intersection with ob-
structed vision. Current visibility is outlined in yellow.

occlusions by adjusting the path of the trajectory; doing so
may merely re-position the occlusions to conceal a different
region. The key then is to determine which occlusions are
a greater source of planning uncertainty and preferentially
minimize those first.

In this paper, we address the problem of evaluating tra-
jectories for the ego vehicle that minimize environmental
uncertainty by maximizing observations on the most critical
occluded regions. Maximizing critical observations, referred
to as maximizing a trajectory’s information gain, identifies
those trajectories that make observations of regions of the
environment that pose a higher risk to the vehicle in its
future time steps. For example, consider Figure 1 where an
ego vehicle is approaching an intersection while its view
is obstructed. Instead of slowing down in anticipation of a
collision risk with an actor “hiding” in the occluded region,
our proposed informative motion planner deviates from the
center line to gather information on the state of the occluded
region earlier in its trajectory. Instead of fixing such a
behaviour, we allow it to emerge naturally as a result of
our information planning framework. Efficient calculation
of the true information gain is extremely difficult due to
the complex interaction of trajectories, other actors and
occlusions in the environment. We present here an approxi-
mation method that allows for fast computation. Improving
the understanding of the occluded regions allows the ego
vehicle to plan less conservative motions while preserving
or improving overall safety.

A. Contributions

Our main contributions are threefold. First, we formulate
the problem of risk aware motion planning for an ego vehicle,



introducing information gain as a metric (Section II). Second,
we establish a connection between the information gain on
the risk of collision and the information gain on a subset of
the environment, and propose a method to approximate the
information gain for a given trajectory (Section II). Finally,
we evaluate the performance of the proposed algorithm
within the CARLA Simulator (Section IV).

B. Related Work

The problem of trajectory planning in environments with
occlusions is extensively studied. Worst case planners that
provide safety guarantees remove potential collision regions
from the ego vehicle’s workspace [7]–[11]. Many of those
potential collision regions are created by occlusions: ob-
scured areas in the environment from which actors could
possible emerge [7]. However, worst case planning tends
toward an over-estimation of risk. In [4], polygons are
computed that approximate the possible regions where actors
may be obscured by the environmental occlusions. Authors
in [12] present a rigorous set-based analysis of safety, adding
phantom vehicles and pedestrians wherever occlusions occur.
Different sets of constraints on the dynamics of the actors
in the environment are proposed and an over-approximation
of the reachability set for each potential actor is proposed to
guarantee a safe trajectory. In [13], the authors use occlusion
boundary tracking to tighten the bounds on predictions of
the speed and location of hidden actors, reducing but not
eliminating the overestimation of risk. Another alternative
is to use a combination of forward reachability of the ego
vehicle combined with sampling the backward reachability
of any concealed actor’s possible motions to estimate the
areas where hidden actors may appear, then excluding those
regions from the ego vehicle’s workspace [14].

Other methods use a discrete probabilistic representation
of the environment (e.g. dynamic grid map) [3], [15]–[18]
where each cell provides the probability that the corre-
sponding location is occupied by an actor. The environment
around the ego vehicle may be modeled as a dynamic
occupancy grid [3], marking cells as being occupied with
a certain probability based on observations. The occupancy
grid then forms the basis for evaluating potential center line
trajectories for safety. Alternatively, the road network may
be discretized as a probabilistic grid [17], [19], preserving
the structure and allowing application of probabilistic motion
predictions conditioned on the expected behaviours of the
actors. Conservative motion planning is still required as
obscured sections of connected roads, which could be hiding
other actors, may lead to situations where the ego vehicle
must act slow in anticipation of a possible collision.

In all the aforementioned studies, the ego vehicle takes a
passive approach towards minimizing the risk of collision
with potential actors in the occluded region. Trajectories
are selected by either maintaining the nominal center line
trajectory and managing velocity [7], [17] or by selecting a
trajectory within the bounds of the reduced workspace [7]. In
this paper, we actively minimize the future uncertainty of the
risk of collision by selecting safe trajectories which minimize
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Fig. 2: The discretization of the environment: a) Road-network Gv

capturing the vehicles in the environment, b) Grid Gp capturing the
presence of other actors in the environment.

dangerous occluded regions. Our risk evaluation component
is based on simple motion prediction; however any method
could be used to evaluate trajectory risk, such as in [20]
where, given a probabilistic risk measure, the trajectories are
tested for potential safety violations.

Two closely related problems to maximizing information
gain are minimizing occlusions and maximizing the ego
vehicle’s visibility to other agents. In [21], the robot uses a
receding horizon planner to find a trajectory that minimizes
the region hidden when approaching a blind corner in a
hallway. Similarly, the authors in [22] propose a geometric
method to maximize the visibility in overtaking scenarios.
In contrast to these two, we propose a method that captures
scenarios with multiple sources of sensor obstructions includ-
ing dynamic actors. We maximize the information gain over
multiple occlusions and prioritize observations on regions
with high uncertainty. The parallel problem to maximizing
visibility is to plan trajectories that minimize travel time in
the occlusions of other vehicles [23]. Similar to this work,
occlusion-aware planning is used, but for the purpose of
proactively ensuring the ego vehicle is both predictable in
its behaviour and obscured for as little time as possible.

II. PROBLEM FORMULATION

Consider an ego vehicle driving in a road network.
Alongside the ego vehicle, there are actors operating in the
environment such as pedestrians, vehicles, or cyclists. Let qt

be the state of the ego vehicle in the continuous space at
time t and let ∆t > 0 be a small time step. A trajectory
T is a sequence of the states of the ego vehicle at times
0,∆t, 2∆t, . . . , k∆t, denoted T = 〈q0, q1, . . . , qk〉. We let
T s:e denote the subset of the trajectory on the time interval
[s∆t, e∆t], i.e., T s:e = 〈qs, qs+1, . . . , qe〉. A trajectory is
feasible if it satisfies the motion constraints of the ego
vehicle. For simplicity, in the rest of paper we refer to a
time k∆t simply as time k, and thus with this terminology,
all times are integers

The ego vehicle is equipped with sensors and makes ob-
servations of the environment. Similar to [19], we let O−t be
the set of observations up to time t. The observation at time
t, denoted by Ot is a random variable that assigns occupied,
free or occluded to each location in the workspace. We define
the binary random variable R(T s:e), where R(T s:e) = 1 if
the ego vehicle collides with an obstacle on the time interval
[s, e] while traversing the trajectory T , and R(T s:e) = 0
otherwise. Given observations O−s, the expected value of



R(T s:e|O−s) represents the probability of collision and it is
denoted by E(R(T s:e)|O−s).

Let T be the replan interval, representing the number of
time steps before the trajectory is replanned. Then we define
the set of collision free states as follows:

Definition 1 (Safe Region). The safe region SR(t) at time
t is the set of all configurations qt of the ego vehicle such
that there exists a trajectory Tsafe starting at qt such that the
probability of collision is zero.

Typically, Tsafe is an emergency braking trajectory that the
ego vehicle has available. Let Ω be the set of all trajectories
T where qt ∈ SR(t + 1) for any t ∈ [0, T ]. The set Ω
represents the set of all trajectories that after one step of
executing a trajectory in Ω, there is always a safe trajectory
avoiding collisions in the worst-case scenario.

Different measures are proposed in the literature for the
quality of trajectory, such as the time it takes to execute the
trajectory or the deviation from the nominal trajectory [24].
Let Tnom be the nominal trajectory of the ego vehicle, which
consists of the states on the center lines of the roads, and
let NT be the planning horizon for some natural number
N . Then we let J(T 0:NT , T 0:NT

nom ) be the user-defined cost
function evaluating the quality of the trajectory over the
planning horizon.

Finally, the problem of safe trajectory planning for the ego
vehicle is given as follows:

min
T

(
J(T 0:NT , T 0:NT

nom )

+

N∑
n=0

ρnE
(
E(R(T nT :(n+1)T )|O−nT )

))
such that T ∈ Ω, and T is feasible (1)

where ρn defines relative importance of risk at different
planning steps. This optimization is performed at time step
t = 0, and the observations at future time steps are ran-
dom variables, therefore by the law of total expectation
E
(
E(R(T nT :(n+1)T )|O−nT )) represents the risk of trajec-

tory in time horizon [nT, (n + 1)T ]. The solution to the
problem is a feasible trajectory that minimizes the cost and
the risk of collision. In Lemma 1, we show that the solution
to the problem is a safe trajectory with no collision in the
worst case scenario. The planning is performed in a receding
horizon manner where after each replan interval T , a new
trajectory is computed considering a future horizon of TN
steps.

Representation of Environment: The environment is repre-
sented by a grid Gp and a directed graph Gv . The pedestrian
grid Gp is a simple discretization of the environment and
represents the regions occupied by the pedestrians (see
Figure 2b). The graph Gv consists of a set of vertices along
the center lines of the lanes (see Figure 2a). The center lines
are the edges of the graph. Observe that Gv and Gp are
different discretizations of the environment. For convenience,
we will refer to the vertices on the graph Gv as cells and

we let C be the set of all cells in Gv and Gp.
Let Xt

i be a binary random variable representing the state
of cell ci in Gv or Gp, i.e., occupied or free. The probability
that a cell ci is occupied is denoted by P(Xt

i ). We make
the simplifying assumption that the random variables are
independent. Let X be the set of all random variables for
the cells.

Transition Probabilities: Suppose that the environment
contains m actors, where m is unknown to the ego vehicle.
Let Prvi,j(t) be the probability that a vehicle actor, located
at ci ∈ Gv , transitions to cj ∈ Gv in t time steps. We
let Prpi,j(t) represent the t-step transition probabilities of
other types of actors residing on Gp. The probability Prvi,j(t)
and Prpi,j(t) are proportional to the nominal velocity of the
corresponding actor types, the distance between ci and cj ,
and the number of time steps t. Therefore, the set of all cells
cj such that Prvi,j(t) > 0 is the reachable set of ci ∈ Gv

with t time steps, denoted by RS(ci, t). Since the movement
of the vehicles is governed by the road network, we estimate
the future state of the vehicles in the environment with the
locations they can occupy on the road network. Note that
the movement of the pedestrians has no implicit structure
and therefore the reachable set of a cell ci ∈ Gp at time s is
the set of all cells within a distance from ci that a pedestrian
can traverse in t time steps, i.e., Prpi,j(t) > 0.

Given observations on a cell, we update the probability
of the cell using Bayes rule. Let I(ci, q

t) be an indicator
function where I(ci, q

t) = 1 if the rigid body of the ego
vehicle at qt intersects with cell ci, and I(ci, q

t) = 0
otherwise. Then the risk of trajectory T s:e is defined as
R(T s:e) = max{Xt

i ∈ X |I(ci, q
t) = 1, t ∈ [s, e]}.

The probability of collision for a trajectory T s:e in the
time horizon from [s, e] given the observations O is

E(R(T s:e)|O) = 1−
∏
ci∈C

e∏
t=s

P(Xt
i = 0|O)I(ci, q

t), (2)

where the equality is due to the independence assumption on
the random variables for cell occupancy.

III. APPROACH

In this section we propose an informative trajectory plan-
ning method for the ego vehicle to explore the environment.

A. Informative Trajectory Planning Framework

Calculating Equation (1) requires considering the different
outcomes of observations at each step of the planning horizon
N , i.e., O−nT for all n ∈ {1, . . . , N}. Therefore, the
calculation of risk for a candidate trajectory is computa-
tionally expensive. A conventional way of approximating
the risk at time 0 in Equation (1) along the planning
horizon is by approximating E

(
E(R(T nT :(n+1)T )|O−nT )

)
with E(R(T nT :(n+1)T )|O−0) using the observations until
the current time step 0, i.e., O−0 [19]. Observe that to plan a
safe trajectory based on O−0 one must assume all occluded
regions are occupied [7]. This results in overestimating the
risk of a trajectory in the future time steps and consequently
conservative trajectories.



While planning trajectories, the ego vehicle can opt for
the trajectory that gathers information on the state of cells
in occluded regions. These observations improve the ego
vehicle’s understanding of the risks of collision in the future.

The Shannon entropy, denoted by H, [25] is a measure
of the uncertainty of a random variable given observations
O. The change in Shannon entropy with observations until
time s represents the information gain on the risk random
variable, i.e.,

∆H(R(T nT :(n+1)T )|O−s) = H(R(T nT :(n+1)T )|O−0)

−H(R(T nT :(n+1)T )|O−s).

Note that observations on the cells that collide with
T nT :(n+1)T at a time closer to nT provides a better under-
standing of the state of the cells in time horizon [nT, (n +
1)T ]. However, early observations allow the ego vehicle
to adjust its trajectory and minimize the risk of collision.
Therefore, we evaluate the total change in the uncertainty of
R(T nT :(n+1)T ) with a linear combination of the information
gain at different time steps, i.e.,

∆H(R(T nT :(n+1)T )) =

nT∑
s=0

ws∆H(R(T nT :(n+1)T )|O−s),

(3)
where ws are user-defined weights representing the impor-
tance of making observations at different time steps.
Informative Trajectory Planner: Now we propose our
informative trajectory planner, which minimizes the cost and
the expected risk, and maximizes the information gain of the
trajectory of ego vehicle. Given a set of feasible candidate
trajectories in Ω, we evaluate the following objective:

min
T

(
J(T 0:NT , T 0:NT

nom ) +

N∑
n=0

ρnE(R(T nT :(n+1)T )|O−0)

−
N∑

n=0

βn∆H(R(T nT :(n+1)T ))

)
, (4)

where βn ≥ 0 are user-defined parameters representing
the importance of information gain at different time hori-
zons. The proposed method plans trajectories in a reced-
ing horizon manner. In other words, at the current time
step t = 0, the ego car plans a trajectory for the next
{0, . . . , N} planning horizon, and updates its plan at t = T
for the planning horizon {1, . . . , N + 1}. Maximizing the
information gain in Equation (4) improves the estimate of
the risk for the planning interval starting at time t = T ,
i.e.,

∑N+1
n=1 ρnE(R(T nT :(n+1)T )|O−T ) which may result in

less conservative trajectories in future planning horizons. In
Equation (4), we consider a set of candidate trajectories
with different lateral deviation from the nominal trajectory
and different speed profiles. By deviating from the nominal
trajectory, the ego vehicle is able to make observation on
the future risks. A method to generate the set of candidate
trajectories is the Frenet Planner [26].

Now we make the following observation on the safety of
the trajectory generated by the proposed algorithm:

Lemma 1. Consider an ego vehicle starting at a collision
free state. The output of the informative trajectory planner
is a collision free trajectory at any time step.

The proof of the lemma comes from the definition of Ω.
The trajectory given by the informative planner is in the set
Ω, therefore, there is a safe trajectory starting at qt for any
time step t ∈ [0, T ]. In the next planning step at time t = T ,
the ego vehicle will either take the safe trajectory to avoid
collision or plans a trajectory in Ω which ensures safety for
[T, 2T ]. Then the ego vehicle starting at a collision free state
will not collide while following the trajectories provided by
the informative planner.

Note that calculating Equation (3) requires considering
different outcomes of observations in future steps and it is
computationally expensive. Therefore, in the next sections
we provide a method to approximate the information gain.

B. Region to Observe

The probability that cj in Gv is not occupied at time t
given observations O−s is

P(Xt
j = 0|O−s) = Πci∈Gv

[
1− Prvi,j(t− s)P(Xs

i = 1|O−s)
]
.

The occupation probabilities for Gp are developed in the
same manner and are omitted for brevity.

Let `s,ti,j = Πck∈Gv,k 6=i[1 − Prvk,j(t − s)P(Xs
k = 1|O−s)]

be the probability that cell cj is not occupied at time t given
that no other cell ck, excluding ci, moves to cj by time t ≥ s.

Now we establish the following result on the information
gain for the cell ci given an observation on cj at time s.

Lemma 2. The information gain on a cell ci at time t
given an observation on cell cj at time s is a monotonically
increasing function of transition probability Prvj,i(t− s).

Proof. The information gain on cell ci at time t is as follows:

H(Xt
j)−H(Xt

j |Xs
i ) =−

∑
z∈{0,1}

P(Xt
j = z) log(P(Xt

j = z))

+
∑

k∈{0,1}

P(Xs
i = k)

[ ∑
z∈{0,1}

P(Xt
j = z|Xs

i = k)

log(P(Xt
j = z|Xs

i = k))

]
. (5)

Observe that P(Xt
j = 0|O−s) = `s,ti,j(1 − Prvi,j(t −

s)P(Xs
i = 1|O−s)), and consequently P(Xt

j = 0|Xs
i = 1) =

`s,ti,j(1−Prvi,j(t−s)) given that we observe an agent at Xi at
time s. Taking the derivative and simplifying the equations,
the derivative of the information becomes

− `s,ti,jP(Xs
i = 1) log

1− `s,ti,j − `
s,t
i,jPrvi,j(t− s)P(Xs

i = 1)

`s,ti,j − `
s,t
i,jPrvi,j(t− s)P(Xs

i = 1)

+ `s,ti,jP(Xs
i = 1) log

1− `s,ti,j − `
s,t
i,jPrvi,j(t− s)

`s,ti,j − `
s,t
i,jPrvi,j(t− s)

.

To prove the result, it suffices to show that the derivative is
positive for any Prvi,j(t− s) ∈ [0, 1]. After some simplifica-
tions to the inequality above, we arrive at following condition



Fig. 3: Three regions of interest at time s for the future trajectory
of the ego vehicle: the immediate surroundings (blue), oncoming
traffic in the lane to be crossed (red), and traffic in the destination
lane (green).

Prvi,j(t − s)(1 − P(Xs
i = 1)) + 2`s,ti,jPrvi,j(t − s)P(Xs

i =
1)(1− Prvi,j(t− s)) ≥ 0, which is correct for any values of
`s,ti,j ,P(Xs

i = 1), and Prvi,j(t− s) ∈ [0, 1].

Lemma 2 shows observing a cell csi at time s with higher
transition probability Prvi,j(t − s) increases the information
gain on the state of cj at time t. The monotonicity of
information gain with respect to the transition probabilities
can be further leveraged to limit the regions to observe.

Definition 2 (Region of Interest). Given a trajectory T and
a planning step n ∈ {0, . . . , N}, the region of interest
RI(s, T , n) at time s < (n + 1)T is the set of cells from
which an actor can reach a collision state with the vehicle
on trajectory T in time interval [nT, (n + 1)T ]. Formally,
this is the set RI(s, T , n) = {ci ∈ C|∃cj ∈ RS(ci, t −
s), I(cj , q

t) = 1, t ∈ [nT, (n+ 1)T ]}.

C. Information Gain on Individual Cells

Next we connect the information gain on collision risk in
future steps to individual cells.

Lemma 3. The information gain on a cell cj at time t given
an observation on ci at time s is a concave function of
P(Xs

i = 1).

Proof. Observe that the latter four terms in the right hand
side of Equation (5) are linear in P(Xs

i = 1). Therefore, it
suffices to show that the first two terms in the right hand
side are concave functions in P(Xs

i = 1). Note that

∂2H(Xt
j)/∂P(Xs

i = 1)2 = −
`s,ti,jPrvi,j(t− s)2

1− Prvi,j(t− s)P(Xs
i = 1)

−
(
`s,ti,j

)2
Prvi,j(t− s)2

1− `s,ti,j + `s,ti,jPrvi,j(t− s)P(Xs
i = 1)

.

Note that ∂2H(Xt
i )/∂P(Xs

i = 1)2 ≤ 0 for all values of
P(Xs

j = 1), therefore, the result follows immediately.

Lemma 3 shows that the information gain is a concave
function in P(Xs

i = 1). Finding P(Xs
i = 1) with the

maximum information gain requires finding the solution to
equation ∂H(Xt

j)/∂P(Xs
i = 1) = 0 and we omit it in this

paper. The range of the P(Xs
i = 1) that maximizes the

information gain for different values of `s,ti,j and Prvi,j(t−s) is
[0.41, 0.61]. Hence, observing the cells at time s with higher
entropy carries more information on the state of the cells col-
liding with the trajectory. By Lemma 3, we can approximate
H(R(T nT :(n+1)T |O−s)) with

∑
cj∈RI(s,T ,n)H(Xs

j |O−s)
which is the total information gain on individual cells in the
region of interest at time s. By substituting in Equation (3),
we approximate the information gain as follows:

∆H(R(T nT :(n+1)T )) ≈
nT∑
s=0

ws

[
H(R(T nT :(n+1)T )|O−0)

−
∑

cj∈RI(s,T ,n)

H(Xs
j |O−s)

]
.

Observe that by Lemma 2 we find the set of locations to
observe and by the result of Lemma 3 we approximate the
information gain on risk of collision over the the cells in
the region of interest. To reduce the computational cost of
calculating the information gain for time horizon [0, NT ], we
evaluate each candidate trajectory’s information gain based
the cells in the region of interest of the nominal trajectory
(see Figure 3). Given predictions of occupancy for the two
grids at time s, we unify them to a single grid by mapping
the locations in Gv to Gp. For the nominal trajectory
Tnom, we find the region of interest at each time step s,
i.e., RI(s, Tnom, n). The region of interest and the unified
occupancy grid are inputs to the module that calculates the
probability of visibility for the cells in RI(s, Tnom, n) for
different lateral deviations from the nominal trajectory. The
visibility module outputs a set of grids each representing the
visibility of trajectories of certain lateral deviations.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed informative trajectory planner in different scenarios.
The simulations are performed in the CARLA [27] environ-
ment using a AMD Ryzen7 2700 CPU and 1080 Nvidia
GPU. Feasible trajectories are generated using a Frenet
Planner with a maximum velocity of 8 m/s, a lateral step
size of 0.5m, and different speed profiles over 2-4 seconds.
We use ρn = 103 and βn = 102 for all n ∈ {1, . . . , N}.
Finally the information gain weight wi is the probability of
the ego vehicle making the observation,

∏
k P(Xt

k = 0) for
cells ck in the ray cast from the ego vehicle to cell ci. The
cost function J for these experiments is a linear combination
of the lateral deviation from the nominal trajectory and its
length.

a) Evaluation of Informative Planning: In the first
experiment, we evaluate the performance of the proposed
informative trajectory planner in a parking lot scenario
illustrated in Figure 4. The visibility of the ego vehicle is
obstructed by the vehicles highlighted with purple rectangles.
We compare the results to the probabilistic occlusion-aware
trajectory planner proposed in [19]. The ego vehicle and
the region of interest are highlighted by green and red
rectangles, respectively. Moving vehicles are initiated at the



Fig. 4: A comparison of a centre-line trajectory (black) with
representative variations of the information gain trajectory (shades
of blue). Detecting an agent in the end file (red zone) can cause the
Information Gain trajectory to move towards the nominal resulting
in the different trajectories shown.
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Fig. 5: Comparison of the proposed informative algorithm vs. a
probabilistic planner [19].

region outlined with blue (see Figure 4) according to a
Poisson process with arrival rate 0.3/s. Trajectories from
the proposed informative planner are shown in shades of
blue, the probabilistic method in black. To maximize the
information gain, the vehicle swerves to right initially, but as
it approaches the corner, it switches focus and swerves to the
left to better observe the lower right corner. On average, after
40 experiments, the proposed method observed the actors
originating from the blue region 0.4 seconds earlier than the
probabilistic method. The same experiment was performed
with no additional actors resulting in the speed profile shown
in Figure 5. The probabilistic method slows to ensure safety
as it has limited visibility beyond the turn. However, the
informative approach, by adjusting its trajectory, is able to
observe locations earlier and proceed at a consistent speed.

b) Information Gain vs. Visibility: In this experiment,
compare our method to that proposed in [21] where the
planner works to minimize occlusions. Figure 6 shows the
scenario where the ego vehicle (highlighted with a green
rectangle) is making a right turn while its vision is obstructed
by the static vehicles and the walls. There is an actor (the
white rectangle) ahead of the ego vehicle performing the
same maneuver. The visibility maximization method, shown
as a blue trajectory, minimizes the total occlusion without re-
gard to the movement of the other actors. On the other hand,
the trajectory of the informative planner, shown in green,
initially deviates slightly from the nominal trajectory since
there is a probability that the white vehicle does not turn
right. However, after observing that the white vehicle will

Fig. 6: Comparison of information gain vs. maximizing visibility.
When the ego vehicle is following another vehicle that blocks future
observations, the Information Gain (green line) method returns to
nominal (black line), whereas the visibility maximization (blue line)
continues to swerve.
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Fig. 7: Comparison of the proposed informative algorithm vs.
maximizing the visibility.

block any future observations of the region of interest, the
information gain method converges to the nominal trajectory
as there is no advantage in deviating. If the white vehicle is
not present then the information gain method captures the
behaviour of algorithms that minimize occlusions. Figure 7
shows the speed profile of the proposed algorithm and the
algorithm to maximize the visibility. Observe that the two
methods have similar speed profiles; however, due to larger
deviation from the nominal trajectory and longer paths, the
method to minimize occlusions is slower to reach the goal.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced the problem of informative
trajectory planning for ego vehicles to observe the potential
collision risk originating from occluded areas. Then we pro-
vided an approximation of the information gain and proposed
an informative trajectory planning framework. Finally, we
illustrated the performance of the proposed algorithm in a set
of experiments, comparing our results with an algorithm that
is limited to velocity changes along the nominal path, and
one that alters the vehicle’s trajectory to minimize occluded
regions. For future work, we would like to investigate the
performance of the informative motion planning framework
in scenarios where multiple vehicles perform informative
maneuvers.
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