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Abstract— Growth in e-commerce means that warehouses
need to fulfil more orders in less time. Order fulfilment domi-
nates operational cost (55% to 70%), hence improvements can
have substantial economic impacts. Warehouses can increase
order picking throughput by using methods that account for
the stochastic nature of real-time online order arrival. This
paper introduces an improvement over traditional zone picking
strategies by partitioning the warehouse into zones of equal
work that account for spatio-temporal demand arrival. We then
prescribe a service policy for the team of robots or human
workers with fixed item-storage capacity to service the demands
of a given zone. The policy and partitioning are designed to
optimize steady state performance. Our method is not specific
to a particular warehouse configuration and scales to large
warehouses with many robots. We validate our algorithms’
performance on simulated warehouse environments and show
favourable performance compared to existing equitable par-
titioning methods and naive order to picker allocation. We
show through simulation that a team of 5 robots with a 5-
item capacity collects 10-30% more items per day than the
compared methods.

I. INTRODUCTION

Globally integrated logistics are fundamental to a modern
society. Recent world events have had negative impacts on
the global supply chain, demonstrating the importance of
automating logistics and its essential role in our daily lives.
Maintaining these systems is a key component in building a
more resilient future as our society grows.

A central operation in warehouse logistics is order picking,
where items are collected from their warehouse storage
locations and then packaged to fulfil customer orders. Order
picking is an on-demand process that can benefit greatly from
optimisation.

Improving order picking efficiency is also important in
terms of cost savings. Because manual order picking ac-
counts for 55% to 70% of warehouse operation costs [1],
a modest improvement in efficiency can yield considerable
economic benefits. Manual picker-to-part order picking sys-
tems are the most common in practice (up to 80% adoption)
[2], but automation technologies, including multi-robot sys-
tems, are also available and used.

In this paper, we consider the problem of designing
efficient planning algorithms to optimise order picking in
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warehouses. Our intention is to design algorithms that are
applicable to both robotic and manual operations. The rate
at which orders arrive is not necessarily regular, so planning
algorithms must account for this dynamic aspect. Warehouse
operations often require a team of people or robots (agents),
so planning algorithms must also be capable of utilising the
cooperation of multiple robots to achieve high throughput.
Finding optimal algorithmic solutions, unfortunately, is in-
feasible for all but the smallest of scenarios because compo-
nent subproblems such as routing, batching, and allocation
are NP-hard [3].

We propose a method to address dynamic warehouse
picking that works by partitioning the environment into areas
of equal work. According to an estimation of expected work,
these partitions are equitable, which accounts for an irregular
rate of order arrival. These partitions facilitate the allocation
of work to each robot/agent: When an order of several
items arrives, items are considered individually, and work
is allocated to the partition that contains the corresponding
item. These item demands are then serviced by robots/agents
which follow a given policy. This approach of picking orders
at the level of constituent items requires a collating process
at the depot where items are dropped off, but this is a
worthwhile tradeoff since picking is the dominant process
in terms of time, complexity, and cost. Our formulation
scales well with the number of robots/agents because it
avoids the joint optimisation problems involved in batching
and allocation, and due to efficiencies gained through the
distributed design of the partitioning algorithm.

More formally, we create an initial set of Voronoi parti-
tions [4] using kmeans++ [5] seeding and then use Lloyds
algorithm [6] to compute an initial spatially balanced/equally
weighted power diagram [7]. Subsequently, we iteratively
update the weights in the power diagram using a local
optimisation algorithm that balances regions according to a
heuristic measure of work required to service a partition.
The measure of work is the expected time it will take to
visit a set of items to pick up and then return to the depot to
drop off. This metric is computed by sampling orders from
a spatio-temporal model of order arrival. Once the partitions
have been created, a robot/agent is allocated to each and
it follows a policy to service a queue of demands that are
allocated to its partition. A benefit of the partitioning method
is that our algorithm has the anytime property; each iteration
produces a feasible candidate partitioning. Additionally, its
fast computation speed means that it can be used as a
design tool to evaluate the performance of various system
characterisations.



Typically, warehouse operations seek to maximise the util-
isation of robots/agents. Therefore, we evaluate our method
operating in a near heavy-load regime (i.e., the order arrival
rate is approximately equal to the service rate). The policy
and design of our algorithm behave accordingly and exhibit
the best performance under these conditions.

This paper offers several contributions. First, we propose
an equitable partitioning and batch servicing policy-based
approach to solve the dynamic warehouse order-picking
problem. Second, we define a cost metric that accounts for
the obstacles and depot returns in warehouse order picking,
along with approximations to compute it in polynomial time
for an arbitrary distribution that describes orders. Finally,
we provide extensive simulated results showing improved
performance compared to typical order picking and a more
generic equitable partitioning method.

II. RELATED WORK

This section outlines the available relevant literature on
the multi-agent dynamic warehouse picking problem. It has
been shown that order-picking performance can be improved
by batching orders into tours. Batches for fully known
static problems can be found with Ant colony optimisa-
tion (ACO) [8], linear programming with column genera-
tion [9] or learning-based methods [10]. Similarly, dynamic
order batching can be handled by and updating existing plans
with new orders [11]. However, this does not scale well
because of its computational complexity.

The warehouse-order-picking problem is similar to the
vehicle routing problem (VRP) [12]. Traditionally, VRP
problems consist of calculating an optimal set of routes for
a team of vehicles that service all demands. Unfortunately,
finding an optimal VRP solution to a problem is NP-
Hard [13]. However, many heuristics are available, and it
is still field applicable. Order-picking has been modelled
as a VRP with time windows by [14], and [15] while also
considering delivery vehicle costs. However, their solutions
are computationally complex and do not handle dynamic
demands.

Static VRP solutions assume that all information is avail-
able and does not change. Many problems have jobs that
arrive throughout the day; costs can be stochastic. These
problems are known as dynamic VRPs [16]. Usually, de-
mands are distributed by a spatio-temporal process, and the
solution is to find a policy that minimises the average time a
demand waits to be serviced or maximising the throughput
of the system. Research into this class of problems includes
spatially-distributed surveillance policies for UAVs [17], and
information-gathering problems [18]. DVRPs have been ap-
plied in warehouse operational research by splicing orders
into existing allocations [19] and handling the dynamic
aspects by introducing dummy orders based on the forecasted
dynamic demand [20]. However, these methods’ performance
degrades in highly dynamic scenarios.

Solving DVRPs and formulating a high-quality policy
becomes more difficult as the size of the team grows. How-
ever, some methods partition the workspace space into less

Fig. 1. Example illustration of a warehouse with robots performing order
picking. The black circles are the item locations that robots must visit to
pick up an item. The depot shown as a black square is where robots must
return to drop off their collected items.

complicated standalone sub-problems. An example of this
technique is finding approximately equitable partitions for
convex regions using a distributed partitioning policy [21].
Subsequently, they solve the dynamic vehicle routing prob-
lem by applying their partitioning policy and adaptive queue-
ing [22]. Similar work on performing decentralised Voronoi
coverage in non-convex environments is also shown [23].
Finally, the multi-agent spatial load balancing problem in
non-convex environments is introduced in [23, 24]

However, the non-warehouse-focused research does not
consider the effects of routing around shelves, returning
to the depot to drop off items and warehouse environ-
ment spatial distributions of items in warehouses. Routing
around shelves can break obstacle-free space assumptions
and require non-euclidean distance metrics. In addition,
depot returns introduce a variable cost based on the parti-
tion location relative to the depot and the agent’s position.
Finally, some methods rely on statistical properties about
the spatial distributions of demands that may not be valid
in a warehouse environment, which can have very skewed
order composition distributions. Therefore, there is a lack of
practical and scalable methods to solve the warehouse-order-
picking problem with highly dynamic orders and high agent
utilisation.

There are solutions to DVRP problem variants, such
as DVRP with capacity, multi-trip DVRP, DVRP in non-
convex environments, and DVRP with empirically derived
distributions. However, no solution covers all these variations
jointly, which is essential to practically solving the ware-
house picking problem. This work addresses the specifics of
the multi-agent dynamic warehouse order picking problem
in a practical scalable way.

III. PROBLEM DEFINITION

Suppose that we have a two-dimensional warehouse W ∈
R2 with a known layout of the shelves and obstacles O ⊂ W
as depicted in Fig. 1. The warehouse stores a known set of
items I = {I0, I1, . . .} and their pickup locations XI =



{x0,x1, · · · } are known in advance. We assume that the
stored quantity for each item is practically infinite, and there
exists only one location to pick up an item I ∈ I (i.e.,
item Ik can only be picked up at xk). All items in I have
the same weight and size. The items are then dropped off at
depot D ∈ W\O to be serviced.

We define an order as a set of item-quantity pairs to be
serviced. The order received at time t is denoted as ot =
(Itk, N

t
k) ∈ O, where Ik ∈ I represents the item and the

corresponding location, Nk ∈ Z+ is the quantity of the item
in the order and O denotes a set of all possible orders (i.e.,
item-quantity pairs). The timed discrete sequence of orders
received is denoted as O = ot0ot1 · · · . We assume that the
interarrival time of orders and the item-quantity pair within
orders are both independent and identically distributed. As
commonly practiced [25, 26], arrival times of orders are
modelled as a continuous-time Poisson process {P(t)}t∈R+ .
The contents of those orders (i.e., item-quantity pairs) are
drawn according to item selection distribution φ and quantity
distribution ψ. Note that the item and quantity distributions
can be arbitrary and are often derived based on a historic
dataset of orders. An order is considered serviced when all
requested items are delivered to the depot D.

Items in orders are added to a first-in-first-out (FIFO)
queue Q defined as a discrete sequence of items, denoted
as Q(t) = (Ik ∈ I)k∈Z≥0

, where k indicates the indexes of
items (i.e., the very first item added to the queue is denoted
as I0). The queue describes the set of items yet serviced
at time t. Therefore, the number of items serviced, denoted
as N(t), is k− 1 where k is the superscript of the next item
to be serviced in the queue.

To service the orders received, we deploy m homogeneous
robots/agents R = {r0, · · · , rm} (henceforth called robots
for clarity) where the number does not change. Robot ri ∈ R
is capable of carrying Rc items at a time and moves at a
constant speed Rt. The time it takes to pick up and drop
off items are Rp and Rd, respectively. A robot ri ∈ R
is assigned a multiset of items from the queue Q called
a batch Bi where the number is less than or equal to Rc.
Note that a batch may contain duplicate items. Once robot ri
delivers all items in the batch to the depot D, it receives a
new batch. Given a batch Bi for robot ri ∈ R, a policy σi :
Bi → (W\O) is used to complete the batch, where σi
dictates a sequence of positions in environment W; the set
of policies for all robots R is denoted as Σ = (σ1, . . . , σm).
The sub-route between two adjacent positions is assumed
to be the collision-free shortest path, which can be easily
found using path planning algorithms such as probabilistic
roadmap (PRM) [27].

We define the warehouse picking problem as the question
of how to allocate arriving orders O and the corresponding
items to robots in order to maximise the number of items
serviced.

We formally define the warehouse picking problem as
follows:

Problem 1 (Dynamic warehouse order picking problem).

Given a set of items I and their locations X in a ware-
house W with obstacles and shelves O, and the spatio-
temporal process P that describes the order and the time
of arrival, find a set of optimal policies Σ∗ = {σ∗0 , · · · , σ∗m}
for service robots R with capacity Rc that maximises the
expected throughput of servicing items over a long time
horizon, such that

Σ∗ = arg max
Σ

lim
t→∞

E
[
N(t)

t

]
, (1)

where robots R receives new batches of items from the
queue Q.

IV. DISTRIBUTED EQUITABLE PARTITIONING

Partitioning of the environment is a well-known approach
for solving DVRP problems with infinite capacity [22], and
limited capacity [16]; we extend it to work in warehouse
order-picking environments. To solve the dynamic warehouse
order picking problem, we consider a class of policies
that partition the environment W into a set of m regions
P1, . . . , Pm ∈M, where the pickup locations of items within
each partition are assigned to a robot. The key idea is that
the maximum expected throughput of servicing items can be
achieved by minimising the expected wait time of the orders.
This minimisation can be done by servicing batches of orders
in each partition at around the amount of time it takes for a
new batch to arrive. This arrival rate is dictated by the spatio-
temporal process P . The service rate is controlled by the
partitions and the policy that robots follow. A robot ri ∈ R
assigned to a partition P that is characterised by a subset
of items Ii ⊂ I in the warehouse and the corresponding
policy σi(Bi) that dictates the order of pick ups.

The distributed warehouse partitioning problem is decom-
posed into three sub-problems. We first formally define a
service policy and associated cost metric for each robot
that evaluates the expected service time for a batch. We
then present a sampling-based evaluation of the cost metric
given an arbitrary spatio-temporal process. We argue that our
framework can work with any type of spatial distribution
that describes which items are within an order. Finally, we
use the sampling-based cost metric to iteratively find a set
of equitable partitions that give good performance for the
defined service policies for robots.

Finding the expected service time for a batch requires
defining the robots’ policy to do the servicing. The choice
of policy can affect the partitions that need to be created.

Our first step is to compute the expected cost of servicing
demands using this policy and then subsequently find the
partitions that give the best performance.

A. Cost Metric for Partitions

Our servicing policy is to allocate a robot to each par-
tition. Subsequently, each robot is responsible for servicing
demands that arrive to vertices inside their partition. If there
are no demands to service in partition i, then the robot i
should wait at the point that minimises the travel distance
to each pick location in its partition. This can be found by



computing the centroid of the set Pi. If there are demands
to service in the queue of the robot, the robot waits until a
batch of size Rc of demands have arrived. These batches are
then added to a queue and served according to a first-in-first
out (FIFO) discipline. To service a batch, the robot computes
a shortest tour consisting of the demands in the batch and
the depot and then follows the tour to service the demands.
Using standard Kendall notation [28], this system is classified
as a G/G/1 queue due to a general arrival time distribution, a
general service time distribution, and each queue is serviced
by a single robot.

We denote the arrival rate in the set Pi as λi, where
λi =

∑
xu∈Pi

λu. Recall that the Poisson process is de-
fined by the Poisson distribution. The Erlang distribution is
complementary to the Poisson distribution, and it counts the
amount of time until the occurrence of a fixed number of
events. Hence, observe that the inter-arrival times for batches
of size Rc are randomly distributed according to an Erlang
distribution with mean Rc/λi and variance Rc/λ2

i . Let E[Li]
be the expected tour length to service a batch of size Rc
in partition i and RcRp be the total time in each tour for
scanning and picking-up the items. Then the expected time
to service a demand arriving in partition i is

Ti =
1

2
Rc/λi +

1

2
(E[Li] +RcRp) +Qi, (2)

where Qi is the expected wait time in the queue of robot i.
The queue of each robot is a G/G/1 queue with arrival rate
λi/Rc. In the heavy load regime where the batches arrive
frequently, the time to form a batch in each robot’s queue
is negligible compared to the expected time to service the
demands in the queue, i.e. servicing time dominates waiting
time. Now, let c2a denote the variance of arrival times to a
queue of a robot and c2s denote the variance of service times.
Then an approximation for the expected wait time of a batch
in a G/G/1 queue is provided by Kingman’s formula [29],
i.e.,

Qi ≈
λi(E[Li] +RcRp)

Rc − λi(E[Li] +RcRp)

(
Rc/λ

2
i + c2s
2

)
(E[Li] +RcRp).

(3)

Note that fulfilling an order may consist of picking from
different sets in the partition. Therefore, for any given
partition P1, . . . , Pm of the environment, the number of items
picked by robot i with the highest waiting time Qi is a
bottleneck on the total number of orders fulfilled in the
warehouse. Therefore, the goal is to find a partition of the
environment which minimizes the maximum expected wait
time of the demands across all partitions, i.e.,

min
P1,...,Pm

max
i∈[m]

Ti ≈ min
P1,...,Pm

max
i∈[m]

1

2
(E[Li] +RcRp) +Qi.

(4)
Observe that for a given partition of the warehouse

P1, . . . , Pm, in the heavy load regime, the expected wait
time for a demand is a monotonically increasing function

of λi(E[Li] +RcRp). Therefore, the problem of minimising
the maximum expected wait time is equivalent to

min
P1,...,Pm

max
i∈[m]

λi(E[Li] +RcRp). (5)

From (4) it can be seen that as the size of the set
Pi increases, the time to form a batch decreases and the
expected tour lengths increase. This combined with the desire
to operate with as few robots as possible motivates finding
partitions that work near heavy load, i.e., 0.5 ≤ λRp +
2λr̄
mRc

≤ 1 where r̄ is the expected distance of items to
depot [16]. It is shown that under heavy loading regimes
the unbiased Travelling Salesman Problem (TSP) policy
is optimal for servicing demands [22, 30]. This motivates
computing partitions that are designed to balance the length
of the tour and are equitable to optimise (4).

B. Equitable Workload Partitioning

Our approach for computing regions of equal workload
consists of initialising a set of partitions and then using an
iterative local optimisation method to adjust these partitions
until they are equitable according to our cost metric.

Recall that the warehouse stores a known set of items I =
{I0, · · · } and their pickup locations XI = {x0, · · · } and we
want to partition the warehouse and the corresponding pickup
locations into P partitions Ii ⊂ I

We create partitions by partitioning the warehouse using
a generalised Voronoi diagram called a power diagram. A
power diagram consists of power cells that are defined by a
generator location and a weight parameter. The cell contains
all points that have the lowest power distance (weighted
distance) between the point and a generator. The power cells
are used to compute the partitioning by allocating each point
to the power cell that has the lowest power. Subsequently,
this allows the controlling partition generation based on a
tunable weight parameter and can also capture the travel
distance between points while considering traversing around
obstacles.

More formally, let each partition contain a power cell
defined as Ci = (gi, wi) where gi is the generator, and
wi is the weight for partition i. Let ωi be the centroid of
the partition Ci that minimises the distance to each pickup
location. To allocate a pickup location x to the power cell Ci
that describes the partition i, we use a modified version of
the power of a point equation [7],

P(x, Ci) = p2
x − w2

i . (6)

We define p2
x as the collision-free shortest path cost in the

warehouse W for traversing from the centroid ωi of power
cell Ci to pickup location x.

Calculating the cost of time to service a batch for an
arbitrary distribution of items in orders can be analytically
difficult or overly specific. Therefore, we use sampling to
compute an approximation of the time it takes to service a
batch. For a given finite length horizon H , let S be the set of
items that are contained in a set of sample orders drawn from
a simulation of the spatio-temporal Poisson process P . Using



the modified power of a point equation (6) the sampled item
demands can be allocated to the partitions by the following

P si = {s ∈ S|P(s, Ci) < P(s, Cj),∀Cj ∈ C − {Ci}}. (7)

Using these partitions and allocated samples, we can
compute an approximation of the batch service time. The
cost of servicing a batch consists of the expected tour length
E[Li] to service a batch of size Rc, the time it takes to return
to the depot, and how long it takes for a batch to form.

To compute this cost, we use approximations: the time for
batches to form is approximated as the number of batches
formed over the finite horizon H , the depot returns are
assumed to be from the centroid of the cell ωi, and the
expected tour lengths are found by computing the expected
cost of TSPs over random batches selected from the set of
samples allocated to a partition. Formally, the expected tour
length is equal to

E[Li] = E(TSP(P si , ωi, Rc) + V (ωi)). (8)

Let TSP (P si , ωi, Rc) be an approximate polynomial time
solution for the TSP that begins and ends at ωi while making
a tour over Rc samples randomly selected from P si . The
function V returns the round trip cost of returning to the
depot from the power cell’s waiting point ωi. Then using
that expected tour length and the other components, the cost
to service a region over the horizon is

Zi =
|P si |
Rc

(RcRp + E[Li]) . (9)

C. Iterative Optimisation

This cost is then used in an iterative local optimisation
method to adjust the weights of the partitions based on their
cost relative to their neighbours to produce the set of equi-
table partitions with respect to (9). Our partitioning algorithm
produces a fixed number of partitions, and we allocate one
robot per partition, so it is initialised by creating a partition
for each of the m robots. With no loss of generality, we
chose to initialise the partitions as approximately spatially
equal since, in practice, it works well. The initial partitions
are found using the Lloyds algorithm with the kmeans++
seeding algorithm to create the initial partitions P that are
approximately equal in size. A power cell is created for each
partition and is initialised with equal weight. These initial
weights are the starting point for optimisation.

The initial partitions are roughly equitably sized. However,
they are not balanced according to the expected cost of
servicing a partition (9). To balance the costs of servicing
these partitions, we iteratively optimise neighbourhoods by
adjusting their relative power cell weights. To perform the
optimisation, let W be a tuple containing the weight of each
power cell W = (w1, . . . , wm). Then, the cost of servicing
all the regions is

Hv(W ) =

m∑
i=1

Zi. (10)

The difference in workload between partitions is computed
as

RCi =
∑
j∈Ni

1

2γij

(
1

Zj
− 1

Zi

)
/Hv(W ), (11)

where γij = ||gj − gi||. Ni is the set of neighbouring
partitions for partition i. This local difference is used to
adjust the weights according to

w′i = RCi · α+ wi (12)

where α is a scalar selected to control the step size of each
iteration. The new weights are used to update the weight
tuple W that defines the new iteration of power cells:

W = (w′1, . . . , w
′
m). (13)

The set of weights is updated simultaneously then the new
partition allocations (7) are computed. This method results
in changing the weights by their portion of the total cost
and their cost relative to their neighbours. This results in
partitions that are more expensive than their neighbours and
make up more of the total cost getting a negative weight
which shrinks their partition size. Similarly, lower-cost par-
titions get a positive weight and increase their partition size.

This process of local weight updating ((10)-(13)) continues
until the allotted calculation time elapses or the system
stabilises on a local minimum.

V. DISCUSSION

The overall problem is computationally hard, mainly due
to multiple agents and order uncertainty in space and time.
In order to address the inherent challenge, we presented a
number of heuristics and approximations. For example, we
randomly sample from the process P rather than finding
an analytical solution to simulate demand. Therefore, our
sampling-based approach applies to any warehouse setting
with complex and arbitrary representations of order esti-
mates. On top of that, this approach is known to work well
in practice [24].

Solving a TSP optimally is NP-Hard, so using it as a
part of the partitioning cost seems detrimental. However,
for conventional rectangle warehouse layouts, an optimal
TSP can be computed in linear time [31]. For more generic
warehouses, there still exist good quality polynomial-time
approximations [32].

Since the partitioning algorithm produces valid partitions
each iteration, it is anytime and can be stopped for the current
best solution or left to run for iteratively improved solutions.
This is possible because the computational complexity for
computing an iteration is polynomial and can be run for a
finite number of iterations, all of which give a solution.

Our method scales with the problem size and number of
robots due to computing the optimisation over local neigh-
bourhoods; it only needs to consider a subset of neighbouring
partitions for each partition instead of all pairwise combi-
nations. In addition, we avoid the batching and allocation
problems with our policy choice. Online each robot only
needs to consider jobs inside their partition and follow the



(a) Rp = 1 (b) Rp = 3 (c) Rp = 5

(d) Rp = 1 (e) Rp = 3 (f) Rp = 5

Fig. 2. (a, b, c) Equitable partitions produced by our method for five robots with capacities Rp = {1, 2, 3}; capacity affects the partitions as capacity
increases the importance of depot returns decreases. Partition 3 (in yellow) becomes smaller at higher capacity, while Partition 0 becomes larger. (d,e,f)
Normalised costs of each partition over iterations. Tour costs for a single partition may increase to reduce the depot return costs for another partition,
resulting in lower overall totals.

(a) Rp = 1 (b) Rp = 3 (c) Rp = 5

Fig. 3. Performance comparison between our method at different iterations and Bullo [22] and order picking for five robots with varying capacity Rp =
{1, 2, 3}, where order picking is a baseline greedy method without partitions. The improvement as we increase the capacity RP is shown in (a, b, c).

policy to service them. The decomposition into a series of
single robot problems avoids needing to plan in the joint
space.

VI. RESULTS

This section outlines the setup for the simulation environ-
ment that we use to validate our algorithms’ performance
and use these empirical results to validate our algorithm.

Our simulation environment consists of 5-robots (pickers)
operating in a hundred-meter by hundred-meter picking area
within a two-block warehouse (rows are divided into two

blocks) with a two-meter spacing between rows and 1200
pickup locations. The geometry of our simulated warehouse
is based on a typical fulfilment warehouse owned by a logis-
tics company that performs manual picker-to-part operations.

For our simulations, we model the item quantity ψ as a
normal distribution with a mean of 5 and a variance of 2 and
the item spatial order density function φ, which determines
the likelihood for each item to be included in the order as
a uniform distribution φ = U(0, 1). The order arrival rate
is set to a heavy load regime (i.e., the order arrival rate is
approximately equal to the service rate).



Fig. 4. Partitions created for five robots with return depot D (red
asterisk) showing how our method (upper left corner) differs from existing
methods. The results show that considering depot return in the cost metric
in (9) induces larger partitions near the depot. Similarly, the layout of the
warehouse affects the partition since it affects the practical travel distance.

The robots in our simulation have a varying amount of
capacity Rp depending on the simulation. The robot travels
at a constant speed of 1 meter per second. We assume that
it takes a constant five seconds per item to pick up Rp and
drop off Rd. For this work, we assume that all items are
similarly sized with a capacity cost of 1. Finally, we assume
that all robots are homogeneous.

The experimental results are averages of 60 simulation
trials (approximately two months of operation) that are 10-
hours long in the same environment with different sets of
orders drawn from the Poisson process for each day. Each
algorithm is tested for each day using the same set of
demands drawn from the Poisson process to ensure that the
only factor changing is the algorithm the robot team uses to
service the dynamically arriving unknown demands.

We observe the relative impact of our approach by compar-
ing it against two methods: single-order picking and a similar
spatially equitable partitioning policy. Single-order picking
is a policy that naively allocates whole orders to a robot
in a first-come, first-serve style without considering future
orders or sharing work between robots. A robot services
an order by following a route from the depot to each item
location and back to the depot. Once all items are picked,
the robot waits for a new order at the depot. The spatially
equitable partitioning policy we compare against is from
prior work [22] (To avoid confusion, we refer to it as the
“bullo” method), which creates partitions that are equitable
with respect to the spatial density of items φ. Once these
partitions are found, they follow the same servicing policy
as our algorithm, so the main point of comparison is the
different partitions.

A. Impact of Expected Tour Metric on Produced Partitions

To understand how our expected tour cost metric (8)
influences the partitions created, we examine the effect of
changing two of its main components. First, the expected

TSP tour length in the warehouse graph to service demands
and the cost to return to the depot to drop off the collected
items. The chosen distance metric strongly affects the cost
of the expected tours. We examine the effect of these
different metrics on the cost component by replacing it with
the obstacle-free Euclidean distance when computing the
expected tour lengths. Similarly, we investigate the depot
return effects by setting the depot return costs to 0. In Fig. 4,
we show the different partitions that are generated when
these two parts of the cost metric are changed. Disabling
the TSP distance metric component produces differently
shaped partitions. These partitions are shaped according to
the Euclidean distance (ignoring obstacles) from the power
generator instead of using the routes around the warehouse.
Turning off the depot returns results in partitions that are
sized evenly throughout the warehouse. When depot returns
are used, the partitions that are closer to the depot are
larger, which implies that the closer to depot partitions can
cover more item locations for the same amount of work.
These results help to explain the performance differences
between our method and the equitable partitions produced
by the “bullo” method. Their partitions are equivalent to the
disabled TSP and disabled depot return case (shown bottom
right); these are distinctly different to the partitions generated
by and used in our method (shown top left).

B. Partitioning Results

To examine the quality of our equal work partitioning,
we tested our algorithm in simulation, then observed the
costs for each partition after each iteration. The results
of 500 iterations of the algorithm for various capacities
shown in Fig. 2. The first row shows that the capacity
of the robots changes the partitions that the algorithm
produces; as capacity increases, the importance of depot
returns decreases. This effect can be seen by observing that
partition labelled 3 becomes smaller at a higher capacity, and
similarly, partition 0 becomes slightly larger. The second row
shows that initially, the amount of work needed to service
each partition is quite unbalanced, with the most expensive
partition taking nearly six times the amount of work to serve
as the least expensive according to our cost metric. After
500 rounds, our algorithm reduces the gap to within 5-10%;
these results are consistent with most of our tested scenarios.
Our algorithm produces near-balanced results that, when
used in practise, are capable of high-quality improvements
over the unbalanced initial partition configuration. This result
demonstrates that local optimisation balances the workload
between partitions and that the anytime aspect of the algo-
rithm is useful. Additionally, it can be seen that the tour
costs for a single partition can increase to reduce the depot
return costs for another partition, resulting in lower overall
totals. Changing the relative partition sizes balances the batch
service cost and depot mixture.

C. Orders Picked Results

The collated simulation results are shown as box plots in
Fig. 3. In addition, we tested our servicing policy on the



partitions generated by our local optimisation algorithm at
several iterations to demonstrate that with more iterations,
performance should improve if the metric being balanced is
applicable. Fig. 3(a) shows the results for robots with one-
capacity. In this configuration, our method performs similarly
to order-picking because the constant depot returns reduce
the opportunity for improvement by minimising the travel
distance to subsequent items inside a batch. Therefore, the
benefit of partitioning is reduced. Figure 3(b) shows the
results for robots with three-capacity. In this scenario, the
benefit of having robots distributed around the warehouse
becomes apparent, as they can reduce wasted travel by being
closer to demands when they arrive. Additionally, even less
warehouse-specific “bullo” partitioning starts to outperform
order-picking. Lastly, Fig. 3(c) shows that these results
continue to hold as you increase capacity. Subsequently, our
method can service 10-30% more orders over a simulated
workday in cases with higher capacity.

VII. CONCLUSION

In this work, we presented an anytime framework for the
dynamic warehouse order picking problem. We defined the
problem by modelling the warehouse and the arrival of orders
to pick as a Poisson process that generates items from an ar-
bitrary distribution. We designed a computationally efficient
partitioning-based algorithm that creates regions of equal
work suitable for regimes of near heavy-load. A robot is then
allocated to each partition to service dynamically arriving
jobs using a policy. The important contribution is that we
address important aspects such as travel time to the depot and
non-Euclidean space, which is often neglected. We validated
the approach in simulations over a two-month operation
under varying capacity constraints; the proposed framework
has been proven to outperform typical single-order picking
and a comparable equitable partitioning-based method under
heavy loading conditions.
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