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Abstract— Legible motion is intent-expressive, which when
employed during social robot navigation, allows others to
quickly infer the intended avoidance strategy. Predictable
motion matches an observer’s expectation which, during nav-
igation, allows others to confidently carryout the interaction.
In this work, we present a navigation framework capable
of reasoning on its legibility and predictability with respect
to dynamic interactions, e.g., a passing side. Our approach
generalizes the previously formalized notions of legibility and
predictability by allowing dynamic goal regions in order to nav-
igate in dynamic environments. This generalization also allows
us to quantitatively evaluate the legibility and the predictability
of trajectories with respect to navigation interactions. Our
approach is shown to promote legible behavior in ambiguous
scenarios and predictable behavior in unambiguous scenarios.
In a multi-agent environment, this yields an increase in safety
while remaining competitive in terms of goal-efficiency when
compared to other robot navigation planners in multi-agent
environments. The code of this work is made publicly available1.

I. INTRODUCTION

Without having to explicitly communicate their intentions,
humans are able to seemingly effortlessly navigate amongst
one another in a collision-free manner. A key constituent in
human navigation is their ability to infer others’ interaction
intentions, e.g., to which side are they trying to pass, as
shown in Fig. 1. In crowded environments, this inference
allows them to cooperate in the interaction, enabling efficient
navigation. Early robot navigation frameworks often over-
looked or did not attempt to model these aspects, resulting in
undesirable behaviors such as oscillations [1] or the freezing
robot problem [2].

During locomotion, humans make use of numerous motion
cues such as gaze [3] and head movement [4] to avoid
collisions. Since mobile robots are not equipped with these
motion cues, humans have much more difficulty in inferring
their intentions. Studies have shown that humans are more
conservative when avoiding moving inanimate objects [5] or
objects with fixed limbs [6] than they are with humans.

Legible motion allows an observer to quickly and confi-
dently infer an agent’s intention [7]. Although largely studied
for human robot interactions (HRI), legibility has become an
important property to consider in the design of social robot
navigation planners. Many navigation frameworks seeking
to produce legible motion do so by considering the robot’s
legibility with respect to its global goal pose [8]–[10].
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Fig. 1: Agent (gray) inferring a robot’s (purple) avoidance strategy.

However, in dynamic environments, agents are unaware of
others’ global goals and adjust their trajectories based on the
inferred avoidance strategy (e.g., the passing side).

Another important property of motion is that of pre-
dictability, which measures the degree to which motion
matches an observer’s expectation [7]. Predictability, as
proposed in [7], is not well suited for motion planning
applications since it is a function of entire trajectories.

Contributions: The contributions of this work are fourfold.
First, we present an approach to explicitly model navigation
interactions as dynamic goal regions. Second, we generalize
legibility and predictability for static goal points as formal-
ized in [7] to dynamic goal regions. Third, we propose an
approximation of the predictability score for partial trajecto-
ries discussed in [11], which we use in our real-time planner.
Lastly, we propose a navigation planner that is capable of
optimizing over the legibility and the predictability of its
motion with respect to navigation interactions.

Related Work: Recent research has sought to model social
robot navigation as a cooperative collision avoidance task.
In [12], the authors use topological braids to encode agents’
joint behaviors. They show that their algorithm more rapidly
decreases the uncertainty of the emerging avoidance strat-
egy in the workspace. Deep reinforcement learning (DRL)
approaches have demonstrated promising results [13], [14].
These approaches train policies that implicitly encode the
agents’ models and interaction intentions. However, complex
learning-based approaches make it difficult to extract the
social strategies being employed during navigation.

Early works claiming to generate legible motion often did
so indirectly by targeting related properties [15]. In [16], the
authors directly use legibility as an optimization criterion to
generate legible motion, but only consider stationary goal
points. Inspired by these ideas, researchers have begun to
seek navigation strategies that allow an agent to quickly infer
another agent’s avoidance strategy. In [9], a cost function
is formulated that takes into account social and context
dependent costs. The authors show that their planner is
able to generate legible motion with respect to the robot’s
underlying goal in the workspace. In [17], legible motion was
shown to reduce the planning effort in a locomotion setting.
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In a multi-agent environment, Social Momentum makes use
of topological braid theory to generate legible motion [18].
Our work is more closely related to this approach, since
it explicitly reasons about the emerging collision avoidance
strategy, rather than the global goal within the workspace.

II. PROBLEM FORMULATION
We consider a robot R moving in a planar workspace

W ⊆ R2 towards a stationary goal gR ∈ W and sharing the
workspace with another dynamic agent A. An adaptation to
the multi-agent case is provided in Section V. To only make
use of what is readily observable in a social environment, it is
assumed that the robot’s goal is unknown to A and the robot
has no means of explicitly communicating its intended goal.
Through its onboard sensors, we assume that the robot has
access to the position pi(t) ∈ W and velocity vi(t) ∈ R2,
i ∈ {R,A}, for ∥pR(t) − pA(t)∥ ≤ dsense, where dsense is
the sensor range. The heading of the robot and agent at time
t are, respectively, the angle that vR(t) and vA(t) make with
respect to a fixed axis in the inertial frame.

The control space of the robot is a finite set of motion
primitives P and each motion primitive ρi ∈ P has the same
time duration δt > 0. A navigation plan for the robot is a
sequence of primitive selections. The robot R is considered
to be in a collision with the other agent A at time t if
∥pR(t)− pA(t)∥ ≤ rC where rC > 0 is a positive constant
depending on the footprint of the robot and agent.

We seek to design a navigation strategy so the robot
reaches its goal while simultaneously using the shape and
speed of its trajectory to disambiguate its intentions to the
other agent. To accomplish this, we take inspiration from the
notions of legibility and predictability, in the sense of [7] and
as reviewed in the next section, which have been validated
in the HRI field [19]. The way in which legibility and
predictability are to be optimized poses an important design
decision. In this work, we design a navigation framework
based on the following high-level principles:

1) A robot should disambiguate its intended navigation
strategy by being legible.

2) Once legible, the robot should proceed predictably.
3) Motion should adhere to social norms (i.e., left or right

passing conventions).
Notation: Let ξ : [ts, tf ] ⊂ R → W , ts < tf , denote a

trajectory of the robot. The set of all trajectories is denoted
by T and, for notational simplicity, we denote by ξa→b the
trajectory along ξ from pR(ta) to pR(tb), where ts ≤ ta <
tb ≤ tf , and a = pR(ta) and b = pR(tb).

III. LEGIBILITY AND PREDICTABILITY
We now review the notions of legibility and predictability.
Legible Motion: Let G ⊂ W be a finite set and let g⋆ ∈ G

denote the robot’s goal. A partial trajectory ξs→t from the
starting position to the current position is said to be legible
when an observer can quickly and confidently infer g⋆ [7].
This is modeled by the legibility inference function fL : T →
G, mapping trajectories to goals, and ξs→t is legible if

fL(ξs→t) = g⋆. (1)

Fig. 2: Interaction line segmented into its collision segment IC

(magenta) and two rays, IL and IR (blue) representing passing on
the left and right respectively.

The earliest t for which this is true is a measure of how
legible the trajectory ξs→t is.

Predictable Motion: Given the goal g⋆, the motion result-
ing from the entire trajectory ξs→g⋆ from s to g⋆ is said to
be predictable when it matches the observer’s inference [7].
This is modeled by the predictability inference function
fP : G → T , mapping goals to trajectories, and ξs→g⋆ is
predictable if

fP (g
⋆) = ξs→g⋆ . (2)

The closeness of ξs→g⋆ to the observer’s inferred trajectory
fP (g

⋆), given by a distance metric d : T × T → R≥0, is a
measure of how predictable the trajectory ξs→t is.

IV. APPROACH

We present an approach that extends the notions of legi-
bility and predictability from [7] to dynamic goal regions.

A. Defining an Interaction Using Dynamic Goal Regions

As the robot navigates towards its global goal gR, it will
attain intermediate navigation goals, which we refer to as in-
teraction goals. We consider three possible interaction goals:
passing on the left, passing on the right and colliding.2 The
interaction goals are dynamic and infinite sets, distinguishing
them from the static goal points in previous works [20]–[22].

Let I(t), hereinafter referred to as the interaction line,
represent the line passing through the other agent’s position
pA(t) oriented to be orthogonal to the vector pointing from
the robot’s position pR(t) to its goal gR(t) (see Fig. 2).
Formally, at time t and with pR(t) ̸= gR, define the unit
vector

e(t) :=

[
0 −1
1 0

](
gR − pR(t)

∥gR − pR(t)∥

)
(3)

and the real one-dimensional subspace V(t) := span {e(t)},
then the interaction line is the time-varying one-dimensional
affine subspace

I(t) := {v + pA(t) : v ∈ V(t)} . (4)

The time-to-interaction (TTI) at time t is defined to be
the infimum (possibly infinite) time it would take the robot
R to reach the interaction line assuming the robot and other
agent continue at their current velocities and I(t) translates
with A. Robot R is said to be interacting with agent A if
∥pR(t) − pA(t)∥ ≤ dsense, the interaction line separates R

2The terminology for interactions is from the robot’s point-of-view.



from its goal gR and the TTI is less than or equal to a pre-
defined maximum interaction time tmax

I > 0.
In order to define the interaction goals, the interaction line

is segmented into passing and collision regions (see Fig. 2).
The collision line segment, IC , is defined as the intersection
between the interaction line and the closed disc centered at
pA of radius rC

IC(t) := I(t) ∩
{
p ∈ W : ∥p− pA(t)∥ ≤ rC

}
. (5)

Each passing interaction, IR and IL, is described by an open
ray starting at the collision segment’s endpoints, extending
in the direction opposite to the other agent. The left passing
side is defined as

IL(t) :=
{
pA(t) + αe(t) : α > rC

}
(6)

and the right passing side is defined as

IR(t) :=
{
pA(t)− αe(t) : α > rC

}
. (7)

These three interaction goals G =
{
IL, IC , IR

}
represent

dynamic goal regions fixed to the other dynamic agent. The
passing interaction goals are denoted by GP :=

{
IL, IR

}
.

Orienting the interaction line to be orthogonal to gR−pR(t)
allows the robot to reason about a passing side irrespective
of the other agent’s heading. Note that the robot’s global goal
point, gR ∈ W , is not an interaction goal, i.e. gR ̸∈ G.

B. Robot and Observer Motion Models

We assume the observer expects the robot to be a rational
agent seeking to move efficiently in the environment. As
such, the observer’s model of the robot’s motion minimizes
the cost functional

c[ξ] = (tf − ts)
2, (8)

where c : T → R≥0 maps robot trajectories ξ ∈ T to the
square of its duration.

Since the interaction goals defined in (5) to (7) are
dynamic, evaluating (8) will require a trajectory prediction
model. Given a prediction model chosen by the designer, the
robot predicts the interaction goal from I(t) at the current
time to the end of the interaction at time tf with

Ît→tf = prediction(ξAs→t, I(t)), (9)

where Ît→tf ∈ G is the predicted interaction in the closed
interval [t, tf ] and ξAs→t is an observed segment of the other
agent’s trajectory.

C. Legibility and Predictability of Navigation Interactions

Given a robot trajectory ξs→t up to time t, we model the
observer’s legibility inference function (1) as returning the
most likely interaction goal I(t) from the finite collection of
possible goals G(t):

fL(ξs→t) = argmax
I(t)∈G(t)

P (I(t) | ξs→t). (10)

We compute the above posterior probability following the
derivations in [7]. This involves using Bayes’ theorem to

obtain the likelihood of I, which we model using a Boltz-
mann policy whose partition function is approximated using
Laplace’s method as derived in [23]. Assuming a quadratic
cost functional c, the posterior of interaction I ∈ G can be
approximated by

P (I | ξs→t) ≈
exp

(
β
(
c[ξ⋆

s→Î
]− cÎ [ξs→t]

))∑
Ī∈G P

(
ξs→t | Ī

)
P
(
Ī
) P (I), (11)

where the denominator is a normalizer over goals I ∈ G,
ξ⋆
t→Î

= argminξt→Î∈T c[ξt→Î ] is the optimal cost to reach
the predicted interaction goal (9), cÎ is the cost to reach Î
through ξs→t and the optimal trajectory ξ⋆

t→Î
, P (I) ∈ [0, 1]

represents the prior on interaction I(t) with
∑

I∈G P (I) = 1
and β≥0 acts as a rationality parameter [24]. To adhere
to social norms, a larger prior could be assigned to the
customary passing side.

Let us now assume the robot’s interaction goal region
at time t, I⋆(t) is known to the observer. We model the
observer’s predictability inference function (2) as the most
likely trajectory ξt→I⋆ from the set of possible trajectories
T in the following sense:

fP (I⋆(t)) = argmax
ξt→I⋆(t)∈T

P (ξt→I⋆(t) | I⋆(t)). (12)

At the start, i.e. ξ(ts) = s, the observer’s predictability
inference (12) is the same as was proposed in [7]. Modeling
fP with (12) allows us to consider the inference of partial
trajectories. As a result, the notion of predictability becomes
well-suited for motion planning in dynamic environments. It
should be noted that this is more closely related to the notion
of t-predictability from [11]. However, rather than inferring
a sequence of actions, we consider a trajectory.

To compute the trajectory inference (12), we model
P (ξt→I⋆) as a Boltzmann policy and again approximate its
partition function using Laplace’s method to obtain:

P (ξt→I⋆ | I⋆) ≈ exp
(
β
(
c[ξ⋆

t→Î⋆ ]− c[ξt→I⋆ ]
))

. (13)

An illustrative example showing the evolution of the
goal (11) and trajectory (13) conditionals during a swap
scenario is given in Fig. 3.

D. Deriving the Optimal Costs for the CVM

We approximate the costs of the optimal trajectories
appearing in (11) and (13) as the minimum time to reach
each of the three interaction regions assuming the other
agent follows the CVM. These are calculated by building on
the idea of constant bearing control from [25] for a single
integrator robot and by translating the interaction line at time
t along with the predicted trajectory. To find the optimal
costs to each interaction region, one need only compute the
minimal times to reach the endpoints of the collision line
segment, IC , and the interaction line (see Fig. 4).

We denote the positions of the passing on the right and
left interaction rays’ endpoints, respectively, by

pIR(t) := pA(t)− rCe(t), pIL(t) := pA(t) + rCe(t).



(a) Trajectories for an interaction between a robot (purple) and agent (gray).

(b) Goal and trajectory inferences for passing on the right and on the left.

Fig. 3: Observer’s inferences tracked along an interaction where the
circles in (a) darken with time and correspond to the markers in (b).

Fixing the robot’s speed to its maximum vmax
R , the cost of

the optimal trajectory to each endpoint is given by:

t⋆pI
(t, I) = ∥pR(t)− pI(t)∥

vmax
R

√
1−

(
vI⊥ (t)

vmax
R

)2

+ vI∥(t)

, I ∈ GP (t),

(14)
where vI⊥ and vI∥ are respectively the perpendicular and
parallel components of the robot’s velocity relative to the
vector pointing from pR to pA. Computing the minimal time
to reach the interaction line is given at each time t by:

t⋆I(t) =
∥(pR(t)− pA(t))

⊺
q̂(t)∥

vmax
R + v⊺

A(t)q̂(t)
, (15)

where q̂ = (gR − pR)/∥gR − pR∥. The three minimal
times computed in (14) and (15) are assigned to the three
interaction regions as follows:

(t⋆IR , t
⋆
IC , t

⋆
IL) =


(t⋆I , t

⋆
pIR

, t⋆pIL
) if t⋆pIR

< t⋆I < t⋆pIL

(t⋆pIR
, t⋆pIL

, t⋆I) if t⋆pIL
< t⋆I < t⋆pIR

(t⋆pIR
, t⋆I , t

⋆
pIL

) otherwise.
(16)

V. MOTION PLANNER

In this section, we describe how the robot reasons on its
legibility and predictability with respect to interactions and
we provide an adaptation for the multi-agent case.

A. Goal and Trajectory Conditionals of Motion Primitives

To trade-off between legibility and predictability, the robot
queries the scores from its set of motion primitives P . At
each planning cycle, the trajectory (11) and interaction (13)
conditionals are computed for each primitive with respect to
each goal. To adapt more quickly in dynamic environments,
we redefine ts in (11) as max(ts, t − tp), so that the robot
reasons about its more recent trajectory segments rather than

Fig. 4: Optimal trajectories for single integrator dynamics, ξ⋆
t→ÎR ,

ξ⋆
t→ÎC and ξ⋆

t→ÎL , from the robot’s current position to the pre-
dicted passing on the right, collision and passing on the left
interaction regions respectively. This configuration corresponds to
the first case in (16).

its entire trajectory since the start of the interaction. The
trajectory conditional for primitive ρi and interaction goal
I ∈ G(t) becomes

P (I | ξs→ρi
) ≈

exp
(
− β

(
c[ξ⋆

s→Î
]− cÎ [ξs→ρi

]
))∑

Ī∈G P
(
ξs→ρi

| Ī
)
P
(
Ī
) P (I),

(17)
where ξs→ρi = ξs→t + ξt→ρi and ρi is the robot’s position
after completing primitive ρi.

In previous works [7], the robot’s goal remains unchanged.
In contrast, to adapt to the other agent’s behavior, we make
no such assumption and allow the robot to dynamically
switch its intended passing side. During an interaction, the
robot continuously updates I⋆ to be the goal region which
is most likely, i.e., we set I⋆ = argmaxI∈G P (I | ξs→t).
The goal conditional for trajectory ξt→ρi

becomes:

P (ξt→ρi
| I⋆) ≈ exp

(
β
(
c[ξ⋆t→I⋆ ]− cI⋆ [ξt→ρi

]
))

. (18)

B. Optimizing Legibility and Predictability

In planning motion, the robot must balance between
the objectives of legibility and predictability. To do this,
we propose to scalarize the objectives and take a convex
combination of these inferences

ρ⋆ = argmax
ρi∈P,I∈GP

(1− λ(t))P (I | ξs→ρi
) + λ(t)P (ξt→I | I),

(19)
where λ : [ts, tf ] → [0, 1] is a function to be designed.
When the robot is not interacting with another agent, as
per Section IV-A, the robot simply optimize with respect
to its global goal gR ∈ W . Certain scenarios are more
ambiguous than others; the authors in [16] state that scenarios
where the legibility of the predictable trajectory is lower are
more ambiguous. In order to promote legible motion when
the robot’s intentions are ambiguous and predictable motion
otherwise, we set

λ(I, ξs→t) = max

(
0,min

(
1,

α(I, ξs→t)− aL
aP − aL

))
(20)

where α(I, ξs→t) = |P (IL | ξs→t) − P (IR | ξs→t)| and
aL and aP are scalar parameters that determine the values
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Fig. 5: Overlay of time lapsed trajectories resulting from basic scenarios for LPSNav (purple), SM (blue), SA-CADRL (yellow) and
GA3C-CADRL (orange) policies with an inattentive agent (gray). The circle sizesmatch the agents’ radii and darken as the simulation
progresses. The policies being evaluated have initial and final configurations of (−3, 0)m and (3, 0)m respectively.

of α at which the robot should strictly optimize legibility
or predictability. Predictability is often required to convey
intent [16]. In fact, strictly optimizing the legibility func-
tional can lead to arbitrarily unpredictable motions [26]. We
recommend setting aL < 0 < aP to safeguard the robot from
becoming too unpredictable. Therefore, when a passing side
is much more likely than the other, λ approaches 1 (weighing
primitives that match expectation more heavily), whereas
if they are approximately equal, λ approaches 0 (weighing
primitives that convey a passing side more heavily).

C. Multi-Agent Adaptation
We assign to each agent A in the set of interacting agents

A, its own interaction regions IA(t) ∈ GA(t) and lambda
parameter λA(t). To penalize robot motions that are illegible,
we optimize over A by maximizing the minimum score:

ρ⋆ = argmax
ρi∈P

{
min
A∈A

{
max

IA∈GA

(1− λA)P (IA | ξsA→ρi)

+ λAP (ξt→IA
| IA)

}}
. (21)

We also make rC from (5) adapt to the density of the crowd.

VI. RESULTS
In this section, we evaluate the extent to which our

approach (LPSNav) promotes legible behavior in ambiguous
scenarios and predictable behavior in unambiguous sce-
narios. We also evaluate the multi-agent performance in
randomly generated scenarios. We compare our framework
to the following approaches:

• ORCA [27]: a collision-free navigation framework (as-
suming homogeneous agents) that minimizes the effort
spent by minimally adjusting each agent’s velocity,

• SFM [28]: a model that captures social interactions as
a sum of forces resulting from the environment,

• Social Momentum (SM) [18]: a planning framework
aimed at generating motion that clearly communicates
an agent’s intended collision avoidance strategy,

• SA-CADRL [29]: state-of-the-art socially aware DRL
collision avoidance navigation framework,

• GA3C-CADRL [30]: adaptation of [29] to deal with an
arbitrary number of agents.

A. Implementation Details

Agents are simulated as either inattentive, where they
take the straight path to goal at their maximum speed,
or as attentive, modeled using the ORCA framework [27],
allowing cooperation in the interaction. The mobile robot
is modeled as a second-order unicycle, with u = [ua, uα]

⊺

the translational and angular acceleration inputs respectively
where |ua| ≤ 3m/s2 and |uα| ≤ 5rad/s2. The LPSNav
agents are configured with rC ∈ [0.35, 0.65]m, ts = 2s,
aL = −0.02, aP = 0.5 and β = 1.

B. Qualitative Results

Five basic scenarios with an inattentive agent (gray) are
overlaid in Fig. 5. To emulate initially ambiguous and un-
ambiguous scenarios, the first three scenarios are initialized
on a collision course whereas the last two are not.

In the ambiguous scenarios, our policy and SM indicate
their intention early. Our approach respects the passing side
convention in the swap scenario and maintains a more con-
servative behavior in the t-junction by passing from behind.
The DRL approaches exhibit a more aggressive swerve later
in the interaction to avoid a collision, which specifically in
the t-junction results in roundabout trajectories.

In the unambiguous scenarios, our policy chooses the
straight path to goal, suggesting predictable behavior. The
other policies compromise their goal-efficiency by needlessly
seeking to increase their legibility, which in the split scenario
reduces the legibility to the third agent.

C. Quantitative Results

To quantify the trade-off between legibility and goal-
efficiency, we would ideally need access to the underlying
inference being run by the observer on the robot’s avoidance
strategy. Since we cannot determine this in simulation,
we use a combination of the minimal predicted distance
(MPD) [31] and the extra distance traveled beyond the
straight path as a proxy for this trade-off. The MPD is a
continuous function of time, where at instant t, MPD(t) rep-
resents the minimum distance attained between the humans if
they were to continue at their current velocities. In [31], they
found that humans adapt their motion only if it is required,
that is, when the MPD falls below a threshold of 1m.
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Fig. 6: Performance metrics averaged over 100 random scenarios for 5, 7 and 9 agents.
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Fig. 7: The minimal predicted distance (MPD) aggregated over 100
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TABLE I: The average extra distance and minimum distance to the
other agent over 100 random swap and pass scenarios.

Policy Extra Distance (m) Minimum Distance (m)

Swap Pass Swap Pass

ORCA 0.09 0.08 0.06 0.66
SFM 0.35 0.10 0.44 0.80
SM 0.20 0.14 0.26 0.96
CADRL 0.27 0.12 0.21 0.85
GA3C-CADRL 0.28 0.09 0.28 0.67
LPSNav 0.25 0.09 0.36 0.70

We track the MPD (Fig. 7) and measure the average extra
distance and minimum distance to the other agent (Table I)
across 100 random configurations with an attentive agent
centered around the basic scenarios from (Fig. 5) and report
the findings for the swap and pass scenarios.

In the ambiguous swap scenario, LPSNav and SM have the
largest initial deviation to express their intent, as indicated by
the rapid increase in MPD. The other policies exhibit subtle
initial deviations and are forced to do a last minute avoidance
maneuver, as indicated by the late peak in MPD. Although
ORCA also has a subtle initial deviation, it does not swerve
late and passes very close to the other agent. These findings
are similarly observed in the other ambiguous scenarios.

In the unambiguous pass scenario, the MPD is initially
acceptable according to [31]. LPSNav, ORCA and GA3C-

CADRL are the most predictable as suggested by a smaller
extra distance and relatively constant MPD value. However,
GA3C-CADRL counterintuitively decreases its MPD, sug-
gesting a decrease in legibility with respect to its passing
side. SA-CADRL and SM unnecessarily increase the MPD.
In the split scenario, SA-CADRL and GA3C-CADRL in-
crease the MPD to one agent while decreasing it to the other,
thus confirming the findings from the qualitative results.

We also compute the legibility and the predictability of the
randomly generated basic scenarios using a discretized ver-
sion of (11) and take an average over the 100 configurations.
We performed the Mann-Whitney U test with a 95% confi-
dence interval between LPSNav and each baseline. Across
the ambiguous swap and obtuse scenarios, LPSNav shows
a statistically significant improvement over each baseline in
terms of legibility. Furthermore, LPSNav, along with ORCA
are the most predictable across the unambiguous scenarios.

To evaluate the multi-agent performance (Fig. 6), we
generate 100 random configurations by setting the starts
and goals within an 8m × 8m area for 3, 5, 7 and 9
agents and by setting their maximum speed by randomly
sampling vmax

i ∼ N (1.42, 0.26)m/s [32]. Our approach has
a competitive goal-efficiency and scales well with the number
of agents, while remaining collision-free. Although ORCA is
the most goal-efficient, it had the smallest minimum distance
to the other agents, suggesting a more aggressive behavior.
As a proxy for legibility and safety, we also report the
minimum time-to-collision (TTC). By indicating its intent
early, our policy maintains a high minimum TTC with a
varying number of agents, thus promoting safe behavior.

VII. CONCLUSION

In this work, we presented an approach for represent-
ing navigation interactions as dynamic goals with which
a motion planner can use to reason on its legibility and
predictability with respect to a passing side. These prop-
erties of motion were used to promote legible behavior in
ambiguous scenarios and predictable behavior otherwise. We
also tested our framework’s multi-agent performance, where
it is competitive with state-of-the-art approaches in terms of
goal-efficiency while remaining collision-free in randomly
generated scenarios. Our work is limited in that it has only
been tested in a simplified simulation environment. Future
work should include a user study to validate the legibility
and goal-efficiency trade-off in human-shared environments.
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