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Regret-based Sampling of Pareto Fronts for
Multi-Objective Robot Planning Problems
Alexander Botros, Nils Wilde, Armin Sadeghi, Javier Alonso-Mora and Stephen L. Smith

Abstract—Many problems in robotics seek to simultaneously
optimize several competing objectives. A conventional approach is
to create a single cost function comprised of the weighted sum of
the individual objectives. Solutions to this scalarized optimization
problem are Pareto optimal solutions to the original multi-
objective problem. However, finding an accurate representation
of a Pareto front remains an important challenge. Uniformly
spaced weights are often inefficient and do not provide error
bounds. We address the problem of computing a finite set of
weights whose optimal solutions closely approximate the solution
of any other weight vector. To this end, we prove fundamental
properties of the optimal cost as a function of the weight
vector. We propose an algorithm that greedily adds the weight
vector least-represented by the current set, and provide bounds
on the regret. We extend our method to include suboptimal
solvers for the scalarized optimization, and handle stochastic
inputs to the planning problem. Finally, we illustrate that the
proposed approach significantly outperforms baseline approaches
for different robot planning problems with varying numbers of
objective functions.

I. INTRODUCTION

In many robotic planning problems, one seeks to opti-
mize several competing objectives. Examples include motion
planning and trajectory generation for autonomous vehicles
[1]–[5], human-robot cooperation for task completion [6],
warehouse robotics [7], mobility-on-demand servicing [8], and
neural networks [9] to name a few.

In Multi-Objective Optimization (MOO) [10], one seeks
solutions that achieve an appropriate trade-off between objec-
tives. These problems are often solved through scalarization,
which combines multiple objectives into a single cost function.
An example is linear scalarization, where the cost function is
a weighted sum of objectives. Linear scalarization leads to
solutions that are Pareto optimal for the MOO problem [11].
That is, the solution to the scalarized single-objective problem
cannot be changed to improve the value of one of its objectives
without degrading the value of another. However, a challenge
in linear scalarization is how to appropriately choose weights
on each objective to achieve a desired trade-off.
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(b) Proposed min-regret sampling of weights.

Fig. 1: Optimal trade-offs between trajectory length and jerk for a
Dubins vehicle, comparing solutions computed for uniformly sampled
weights (a) and solutions found with the proposed method (b).

This work is motivated by two classes of robotics problems:
1) obtaining online near-optimal solutions to a linearly scalar-
ized multi-objective optimization problem (LSMOP) for any
given weight vectors, and 2) learning the preferred solution
behavior of a human user. Applications of the first class
include [8] where an adjustable trade-off between the ser-
vice quality and operating costs for autonomous mobility-on-
demand systems are optimized. Conversely, the second class
of problems seeks to compute a weight vector representing
the relative importance of each objective to a user given some
knowledge of that users’ preferred solutions [7], [12]–[16].

In either class, it is often beneficial to pre-compute solutions
to the LSMOP for a set of weight vectors. If the LSMOP is
computationally intensive to solve, requiring online solutions
may be impractical. This motivates the problem of finding a
set of weight vectors and their corresponding optimal solutions
such that for any possible weight vector, there exists an
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element of the set whose solution is close to optimal. A
naive approach would involve densely sampling the set of
all possible weight vectors. However, the sensitivity of some
objectives to changes in solution may result in a skewed
sampling of Pareto optimal solutions. This is illustrated in
Figure 1 where we seek to compute a Dubins trajectory
between fixed start and goal configurations that minimizes a
trade-off between trajectory length and discomfort (measured
as the integral of the squared jerk over the trajectory [17]). In
the top figure, a set of weight vectors is selected uniformly
and the resulting solution trajectories (right) and Pareto front
(bottom left) is shown. We observe that uniformly sampling
weights generates multiple similar trajectories and does not
approximate well all different trade-offs, as shown by the large
gap in the Pareto Front.

In this paper, we propose a greedy algorithm that constructs
a set of weight vectors Ω by recursively adding weight vectors
that are least represented by the current set. Only assuming
that the given objective functions are bounded the correspond-
ing optimal solutions for weights in Ω provide homogeneous
coverage of the Pareto front, as illustrated in Figure 1b.

A. Contributions

The contributions of this work are as follows:
1) Assuming that an exact solver for an LSMOP is avail-

able, we propose an algorithm to compute a set of
weight vectors Ω whose corresponding solutions provide
homogeneous sampling of the Pareto front.

2) We provide a bound on the error incurred from ap-
proximating the optimal solution to an LSMOP for
any arbitrary weight with a solution corresponding to
a weight vector from Ω.

3) We relax the requirement that an exact solver be avail-
able and extend the first contribution to include a sub-
optimal solver. We extend the second contribution if an
approximation factor for this solver is known.

4) If a probability density function over the set of all
weights is known (e.g., representing the likelihood that
a desired weight lies in a sub-region), we extend the first
and second results to reflect the expected error.

5) Finally, we showcase the advantages of our sampling al-
gorithm in different robotics applications, namely robot
trajectory planning, multi-vehicle traveling salesman
problem (mTSP), and learning user preferences.

Our earlier work [18] established the first and second contri-
butions listed above. This paper extends that work by incorpo-
rating sub-optimal solvers (third contribution) and stochastic
settings (fourth contribution) into the proposed approach.
Finally, we extend the simulations to showcase our third and
fourth contributions and include the work of [19] as a baseline.

B. Related Work

We review three areas of related work: a) the use of
weighted sums to tackle multi-objective planning problems in
robotic applications, b) the use of weighted sums to describe
user preferences in HRI, and c) techniques for approximating
Pareto Fronts.

a) Linear Scalarization in Robotics: The simplicity of
linear scalarization has made it one of the most widely used
tools in robotics for considering different objectives in a cost
or reward function. Though the technique is not able to capture
all Pareto-optimal solutions for non-convex fronts, it does
guarantee that all LSMOP solutions are Pareto-optimal. For
instance, cost functions in autonomous driving often consider
objectives such as trajectory length, comfort (measured via
jerk), or clearance [1]–[5], [17], [20]. Other examples for
motion planners that use weighted sums to balance between
objectives include local planners for mobile robots navigating
in cluttered environments [21] or social spaces [22], [23],
trajectory planners for manipulators [24], [25], and multi-robot
planning [26].

In [27], a trajectory smoothing algorithm is proposed based
on the weighted sum of competing objectives, namely trajec-
tory length, smoothness, and obstacle distances. The authors of
[28] minimize the weighted trade-off between mission comple-
tion time and communication outage duration in the navigation
of cellular-connected UAVs, while in [29], linear scalarization
is used to optimize robotic limitations and observation rewards
for use in autonomous human activity tracking. The authors of
[30] consider bi-objective path planning. In particular, the goal
is to simultaneously optimize for path length and clearance
to obstacles in the plane for which they propose a complete
and efficient algorithm. Our work does not consider specific
objectives as the above-mentioned papers. Instead, we focus
on Pareto-optimal trade-offs for any multi-objective planning
problem that is formulated as a weighted sum.

b) Weighted sums describing user preferences: In
human-robot interaction (HRI), weight vectors are used to
represent a user’s preference for robot behaviour, i.e., the
relative importance of objectives [12], [15], [16], [31]–[33].
In reward learning the objective is to learn a user’s weight
vector using interactions such as demonstrations, corrections,
or choice feedback. In order to expedite the learning process,
feasible solutions for the multi-objective optimization problem
are often pre-computed and shown to the user who then
provides feedback. In [12], [16], [34], each pre-computed
solution is generated with random action sequences. Thus, the
solutions used in the learning process are usually not optimal
for any weight. In [15], [35], the authors pre-compute Pareto-
optimal solutions enabling an active learning method based
on regret leading to significant improvement over randomly
generated solutions. However, the work in [15], [35] rely
on uniformly sampled weight vectors. Though this approach
asymptotically covers the set of all LSMOP-optimal solutions,
it can be inefficient as different weight vectors can have
very similar, or even identical solutions. The counter intuitive
relationship between weights and collected reward was further
studied in [36]. Moreover, the authors of [37] observed that the
presence of similar solution strongly influences the Boltzmann
decision model which is commonly used in HRI. They propose
a decision model where a similarity metric corrects the bias
induced by a high number of similar trajectories. Similarly, in
our work we are interested in finding solutions with dissimilar
features. While [37] handles the over-representation of similar
solutions in the ground set with their proposed decision
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model, we instead address the problem at an earlier stage:
our algorithm can be used to generate a ground set where
similarities are minimized.

c) Approximating Pareto Fronts: Our work is motivated
from the following observation: a uniform sampling of weights
does not generally provide a uniform sampling of solutions as
illustrated in Figure 1. These shortcomings of weighted sum
methods are well studied within the optimization literature
[38], [39], yet have received less attention in the robotics
community despite the wide usage of weighted sums as ob-
jective functions. Researchers in optimization developed many
techniques for approximating Pareto-fronts, including more
complex scalarization methods such as Chebyshev scalariza-
tion [38]. Unfortunately, these methods are often not directly
applicable to robot planning since they require solving more
complex scalar optimization problems. As a consequence,
many multi-objective robot planning problems still rely on
the simple weighted sum formulation. Finding a set of rep-
resentative scalarization weights requires solving a series of
optimization problems e.g., solving path or motion planning
instances, which can be computationally burdensome. Thus,
efficient computation of such a set is of particular interest.

Closely related to our work is the Adapted Weighted Sum
(AWS) method [19], [40]. The AWS iteratively places Pareto
samples by partitioning existing samples into subsets and
placing new samples into the subset that has the largest
gap. This requires solving an optimization problem with an
additional linear constraint on the objective value, which
can result in a harder problem then the original weighted
sum optimization. In contrast, our method identifies the most
promising weights for additional samples and then solves
the weighted sum optimization problem. Further, our method
minimizes the regret of the weighted samples and returns an
error bound.

The authors of [41] present a Pareto front approximation for
trajectory planning using Markov chain random walks. Their
goal is to uniformly place samples on the Pareto front, while
our goal is to minimize error in the space of Pareto-optimal
costs. Moreover, the random walk technique does not rely on a
weighted sum objective but does not generalize to an arbitrary
choice of objective functions. Similar to our work, the authors
of [42] offer a technique of Pareto-uniform sampling based
on equispacing constraints. However, they only consider the
case of two competing objectives. Further, they accomplish
their goal by solving a nested optimization with the original
LSMOP as the inner-most problem, which can be significantly
harder. The work in [43] proposes a set of weight vectors that
approximately uniformly cover a Pareto front specifically for
use in the design of robots. The authors design the set that
minimizes the total squared error between the value of the
objectives in the set and heuristic objectives. It therefore relies
on the approximate optimality of these objectives. The work
in [44] proposes a method to cover the set of Pareto-optimal
solutions specifically for use in reinforcement learning appli-
cations. The authors seek to compute policies that maximize
expected returns by computing, storing, and updating a set of
samples. In [45] the authors provide a means of exploring a
(possibly non-convex) Pareto front in order to obtain a solution

that is near-optimal for a user. That work starts with an initial
guess solution which moves in a direction according to a
user’s preference. While the convexity of the Pareto front (a
requirement for linear scalarization to obtain all Pareto-optimal
solutions) is not assumed, their technique requires solving the
LSMOP online as the Pareto front is explored. Moreover, the
requirement of a user-preferred direction is not assumed in our
work.

In summary, most state-of-the-art methods either address
specific problem setups and thus do not generalize across
different robot planning problems, or address the problem
of finding scalarization weights more generally but pose a
complex optimization problem to compute a set of weights.
Our work considers the weighted sum formulation for an
arbitrary choice of objective functions. We iteratively compute
a set of weights, only requiring solving a linear program and
the weighted sum objective for different weights, and return a
bound on the approximation error for the computed set.

II. PROBLEM STATEMENT

For n ∈ N, a general multi-objective optimization problem
(MOP) is of the form

min
s∈S

{
f1(s), f2(s), . . . , fn(s)

}
. (1)

Here, the set of feasible solutions given constraints is denoted
S, and it is desired to simultaneously minimize n objectives
fi(s), for i ∈ {1, . . . , n}. However, such a solution typically
does not exist. As a result, multi-objective optimization often
seeks Pareto-optimal solutions: solutions s ∈ S such that there
does not exist another solution s̄ ∈ S where fi(s̄) ≤ fi(s)
for all i, and with strict inequality for at least one i. The
linear scalarization of the MOP above involves the creation
of a single cost function by introducing a vector of weights
w = [w1, w2, . . . , wn] ∈ Rn

≥0. Let c(s,w) denote the cost of
the solution s evaluated by the weights w, i.e.,

c(s,w) =

n∑
i=1

wi · fi(s) = w · f(s), (2)

where f(s) = [f1(s), . . . , fn(s)], ∀s ∈ S. The result-
ing linearly scalarized multi-objective optimization problem
(LSMOP) is to solve

u(w) = min
s∈S

c(s,w). (3)

For any weight w ∈ Rn
≥0, solution s ∈ S, and λ ∈ R>0, it

holds that c(s, λw) = λc(s,w) implying that a minimizer of
c(s,w) also minimizes c(s, λw). Further, if w = [0, 0, . . . , 0],
then u(w) is trivially 0. Thus, given w = [w1, . . . , wn]
where not all elements are identically 0, and letting λ =
(
∑n

i=1 wi)
−1, we can obtain all non-trivial optimal solutions

u(w) for all w ∈ Rn
≥0 using weights w ∈ W where

W =
{
w ∈ Rn

≥0,

n∑
i=1

wi = 1
}
. (4)

We refer to the set W as the weight space, and define

s∗(w) = argmin
s∈S

w · f(s), ∀w ∈ W, (5)
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as an optimal solution given weights w, implying that u(w) =
c(s∗(w),w) by (3). We start with the following assumptions:

Assumption 1 (Exact Solution). An exact solver exists for the
optimization problem (3).

Assumption 2 (Bounded Objectives). For any weight w ∈
Rn

≥0, and any optimal solution s∗(w) in (5), the objectives
f(s∗(w)) are bounded.

While Assumption 2 persists throughout this paper, As-
sumption 1 is relaxed for sub-optimal solvers (Section V).

In this work, we propose a method to compute a finite set
of weights Ω ⊂ W that will, for any w∗ ∈ W , allow us to
approximate u(w∗) with u(w′) for an appropriately chosen
w′ ∈ Ω. To evaluate the quality of a candidate set Ω, we use
the notion of regret from [15], [46], defined formally here:

Definition 1 (Regret). Given two weights w′,w∗ ∈ W , the
regret of w′ under w∗ is defined as

r(w′|w∗) = w∗ · f (s∗(w′))− u(w∗). (6)

Intuitively, r(w′|w∗) represents the error in cost incurred
by using an optimal solution given weight w′ (given by
s∗(w′)) to approximate a solution given weight w∗. We now
formally state the main problem addressed in this work.

Problem 1 (Min-Max Regret Sampling). For the LSMOP (3)
and an integer K > 0, find a set of weights Ω that solves

min
Ω

max
w∗∈W

min
w′∈Ω

r(w′|w∗)

s.t. |Ω| ≤ K.
(7)

Given a weight w∗ ∈ W and a set Ω ⊂ W , the first
minimization in (7), minw′∈Ω r(w′|w∗) represents the sub-
optimality of approximating a solution s∗(w∗) with a solution
s∗(w′) where w′ is the weight in Ω that minimizes this sub-
optimality – i.e., w′ is a best representative of w∗ in Ω. The
maximization maxw∗∈W minw′∈Ω r(w′|w∗), represents the
regret of the worst represented weight w∗ ∈ W by elements
in Ω. We refer to the solution of this maximization as the
maximum regret given Ω. In total, (7) seeks a set Ω such that
the regret of the worst represented element inW is minimized.

In this paper, we offer an approximate solution to the
optimization in (7) by way of an algorithm that computes a
feasible solution Ω such that the maximum regret given Ω
is bounded. In the next section, we provide the theoretical
groundwork that makes this solution possible.

III. PROBLEM ANALYSIS

We begin with a structural analysis of the cost function
u(w) from (3) to derive an efficient algorithm for solving
Problem 1. First, we make two critical observations.

Observation 1. Given any two weights w∗,w′ ∈ W , we have

u(w∗) ≤ w∗ · f(s∗(w′)), (8)

That is an optimal solution given weights w∗ will incur no
higher cost than a solution that is optimal for some different
weight vector w′. Here, s∗(w′) is optimal given weights w′

(see (5)) but not necessarily optimal given weights w∗. By
(6), the inequality in (8) implies that r(w′|w∗) ≥ 0.

Observation 2 (Optimal Cost Concavity). The optimal cost
function u(w) is a concave function of w. Indeed, for each
s ∈ S, the cost c(s,w) = w · f(s) is an affine function of w
(and is therefore concave). Therefore, u(w) = mins∈S c(s,w)
is concave [47, Section 3.2.3].

Observation 2 motivates the following Lemma:

Lemma 1 (Optimal Cost Continuity). Under Assumptions 1,
2, given any two weights in W , u(w) is continuous on the
line segment connecting those weights.

Proof. By Observation 2, u(w) is concave in W . Noting
in addition that W ⊂ Rn is convex, it must hold that
u(w) is continuous on the interior of W . This is because
concave functions are continuous on the interior of convex
sets. Therefore, it suffices to prove the result for the case
that at least one weight lies on the boundary of W . Consider
two weights w′,w′′ ∈ W at least one of which lies on the
boundary of W . Suppose that ||w′ − w′′|| ≤ δ for some
δ > 0 arbitrarily small, and – without loss of generality – that
u(w′) > u(w′′). Because it is assumed that u(w) is bounded
on W , if it experiences a discontinuity on the line connecting
w′,w′′, it must hold that u(w) experiences a jump between
w′,w′′. That is, there must exist a M ∈ R>0 independent of
δ such that u(w′′) + M ≤ u(w′). Since ||w′′ − w′|| ≤ δ,
and f(s∗(w′′)) is bounded by Assumption 2, there must
exist a value of δ sufficiently small so as to guarantee that
(w′ −w′′) · f(s∗(w′′)) < M/2. Therefore, by construction,

w′ · f(s∗(w′′)) <
M

2
+w′′ · f(s∗(w′′)) =

M

2
+ u(w′′)

≤ M

2
+ u(w′)−M = u(w′)− M

2
< u(w′).

Therefore, r(w′′|w′) = w′ · f(s(w′′))− u(w′) < 0 which is
a contradiction by Observation 1.

Critically, the previous results do not require unique so-
lutions s∗(w) or continuous objectives f(s∗(w)). Extending
these results:

Theorem 1 (Convexity of Regret). For a fixed weight w′ ∈
W , the regret r(w′|w) is a convex function of w.

Proof. By (6), r(w′|w) = w · f(s∗(w′)) − u(w) where
w·f(s∗(w′)) is linear in w and u(w) is concave (Observation
2). Thus, r(w′|w) is the difference of linear and concave
functions of w which is convex.

Because u(w) is continuous and concave, it must hold that
the function lies below any sub-gradient. This motivates the
following Corollary which follows directly from the definition
of u(w) and the concavity of c(s,w) for each fixed s ∈ S
[47, Section 6.5.5].

Corollary 1.1 (Sub-gradient Optimal Cost). For any w ∈ W
and any minimizing solution s∗(w) ∈ S, the vector of
objectives f(s∗(w)) is a sub-gradient, ∂u(w), of u at w.
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(a) (b)

Fig. 2: (a) Regret as the error of a first order approximation. (b)
Maximum regret given a set Ω = {w′,w′′} at the intersection of
their tangent lines.

Observe that sub-gradients are defined even for non-
differentiable continuous functions. Further, The results above
imply that given two weights w′,w∗ ∈ W , the regret
r(w′|w∗) — which coincides with the error incurred by
approximating a solution s∗(w∗) with the solution s∗(w′) —
is exactly the error of approximating a concave function via
linear interpolation. Indeed, the first order approximation of
u(w∗) given u(w′) is given by u(w∗) ≈ u(w′) +∇u(w′) ·
(w∗ − w′) assuming u is differentiable at w′. However, by
Corollary 1.1, ∇u(w) = ∂u(w) = f(s∗(w)). This together
with the definition u(w′) = f(s∗(w′)) ·w′ allows us to con-
clude that u(w∗) ≈ u(w′)+f(s∗(w′))·w∗−f(s∗(w′))·w′ =
f(s∗(w′)) ·w∗. The error of this first order approximation is
f(s∗(w′)) ·w∗−u(w∗) which is exactly the regret r(w′|w∗).

This is illustrated in Figure 2 (a). Further, given any two
weights w′,w′′ ∈ W , the maximum regret on the line segment
L between w′,w′′ given Ω = {w′,w′′} occurs at the weight
on L coinciding with the intersection of the tangent lines to
u(w) at w′ and w′′ along L (Figure 2 (b)). In light of this
analysis, the objective in (7) is solved by a set Ω that provides
the best linear interpolation of the concave function u(w).
These insights are leveraged in the following section.

IV. ALGORITHM

In this section, we present our solution to Problem 1. The
algorithm we propose recursively adds weights to a solution
set Ω. A strong candidate weight to add is one that is least
represented by the current iteration of Ω. The basic framework
for such an approach could be described recursively:

Ωk+1 = Ωk ∪ {argmax
w∗∈W

min
w′∈Ωk

r(w′|w∗)}, (9)

where Ωk is the solution after k iterations from an initial set.
Here, (9) recursively adds the weight with the maximum regret
given Ωk. Obtaining the maximizer w∗ is non-trivial due to
its nested structure. Instead, our approach replaces r(w′|w∗)
in (9) with an upper bound R(w′|w∗) whose maximizer w∗

is obtained from a linear program (LP).
Given a set of weights Ω ⊆ W , we define N as a set of n

(recall that n is the number of objectives) linearly independent
weights w1, . . . ,wn ∈ Ω, and we let C(N) ⊂ Rn denote the
convex hull of N . We loosely refer to N as a neighborhood,
and define a linear lower bound of the objective value u(w)
from (3) inside a neighbourhood N . Let P :W → R≥0 be the
linear function taking values P (wi) = u(wi) for all wi ∈ N

Algorithm 1:
MINIMUM-REGRET PARETO SAMPLING (MRPS)
Input: An exact solver to find s∗(w),f(s∗(w)); a

budget K ≥ n
Output: Sampled weights Ω and maximum regret

1 Ω← {ei, i = 1, . . . , n} // where ei is the ith row of
the n× n identity matrix

2 Obtain s∗(ei),f(s∗(ei)), i = 1, . . . , n from exact
solver

3 N ← {Ω}
4 for k = n to K do
5 N = neighborhood in N with maximum R̄(N)
6 if R̄(N) = 0 then
7 break // Terminate if maximum upper regret

bound is 0
8 Ω← Ω ∪ {w̄(N)}
9 Obtain s∗(w̄(N)),f(s∗(w̄(N))) from exact solver

10 N = N \N // Remove max-regret neighborhood
11 for wi in N do
12 N i ← N \ {wi} ∪ {w̄(N)} // Replace wi with

weight of the maximum regret bound
13 if N i is a neighborhood, i.e., its weights are

lin. independent then
14 N = N ∪N i

15 F(N i)←
F(N) \ {f(s∗(wi))} ∪ {f(s∗(w̄(N)))}

16 return Ω and the maximum value of R̄(N) over all
N ∈ N

(Figure 3 (a)). We denote the difference between the tangent
plane at w′ and the P evaluated at w∗ with R(w′|w∗) =
f(s∗(w′))w∗ − P (w∗), ∀w′ ∈ N,w∗ ∈ C(N). Further, let

R̄(N) = max
w∗∈C(N)

min
w′∈N

R(w′|w∗),

w̄(N) = argmax
w∗∈C(N)

min
w′∈N

R(w′|w∗).
(10)

Finally, we let F(N) represent the set of objective vectors of
the neighborhood:

F(N) = {f(s∗(wi)),wi ∈ N}. (11)

Thus, R(w′|w∗) is similar to r(w′|w∗) from (6), but with
u(w∗) replaced with P (w∗). These definitions, illustrated in
Figure 3, motivate the Theorem:

Theorem 2 (Upper Bound of Maximum Regret in a Neigh-
borhood). Given a neighborhood N of weights, it holds that

max
w∗∈C(N)

min
w′∈N

r(w′|w∗) ≤ R̄(N).

Proof. For w∗ ∈ C(N), let w′
1 = argminw′∈N r(w′|w∗),

w′
2 = argminw′∈N R(w′|w∗). Note that w′

1 = w′
2. Indeed,

we have R(w′
2|w∗) ≤ R(ŵ|w∗) for all ŵ ∈ N if and only

if w∗ · f(s∗(w′
2)) ≤ w∗ · f(s∗(ŵ)) which is equivalent to

r(w′
2|w∗) ≤ r(ŵ|w∗).

By Observation 2, u(w) is concave on C(N) implying that
for w ∈ C(N), u(w) ≥ P (w) (see Figure 3). Thus, by (6),
r(w′|w∗) ≤ R(w′|w∗) for w∗ ∈ C(N). The result follows.
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(a) P (w), C(N) for N = {w1,w2,w3}

(b) Regret r, and regret bound R

Fig. 3: Illustrative example of a neighborhood and its properties.

The value of R̄(N) with corresponding weight w̄(N) from
(10) can be obtained by solving the following LP:

max
x∈R,w∈Rn

x− P (w)

s.t.

f1(s
∗(w1)) . . . fn(s

∗(w1)) −1
...

. . .
...

...
f1(s

∗(wn)) . . . fn(s
∗(wn)) −1

[
w
x

]
≽ 0,

w ∈ C(N).

(12)

If (x∗,w∗) solves (12), the optimal cost is given by
x∗ − P (w∗) = R̄(N), and w∗ = w̄(N). Indeed, for
any feasible x,w, it holds that x ≤ minwi∈N f(s(wi)) ·
w. Since x is maximized, this will hold with equality
for x∗,w∗. Therefore, the cost of (12) is equivalent to
maxw∈C(N) minwi∈N R(wi|w) = R̄(N). A detailed expla-
nation of the implementation for Equation (12) is provided in
the supplementary materials.

In (12), if P (w) is replaced with u(w), then the resulting
problem is solved by x∗,w∗ if and only if w∗ maximizes the
regret in C(N) given the neighborhood N . This problem is not
linear and would require solving the LSMOP in (3) potentially
many times. Using the LP in (12) our method is summarized
in Algorithm 1 described in the next section. We iteratively
partition W into smaller neighborhoods, adding weights that
result in the largest upper bound of regret.

A. Algorithm Description

Algorithm 1 creates and maintains a setN of neighborhoods
N ⊂ W . Each N ∈ N is a set of weights N = {w1, . . . ,wn}
where wi ∈ Ω, i = 1, . . . , n. We compute R̄(N) and w̄(N)
with the LP in (12) for N using the set of objective vectors
F(N). The algorithm begins with a single neighborhood
whose weights are the n canonical basis elements of Rn

(Line 1). The solutions for these basis weights correspond
to the single-objective solutions for all n objective functions.
We assume that the budget K is at least the number of
objective functions n. The algorithm then iteratively selects the
neighborhood N in N with the largest upper bound of regret
(Line 5), and adds its regret weight w̄(N) to Ω (Line 8). It then
splits and replaces N with at most n smaller neighborhoods
(Lines 11-15) formed by iteratively replacing elements in N
with w̄(N) (Line 12). Finally, the algorithm returns the set Ω
as well as an upper bound on the regret given Ω (Line 16). Two
steps of the algorithm are illustrated in Figure 4, starting with
a single neighborhood N1 in (a) which is then split around
w3 = w̄(N1) into two new neighborhoods N = {N2, N3} in
(b). Since R̄(N3) > R̄(N2), N3 is split around w5 = w̄(N3)
in (c). Finally, in (d), the red area shows the regret given Ω.

Observe that Algorithm 1 may be modified to compute a
set Ω given a desired maximum regret rmax > 0. This could
be accomplished by replacing the input K with rmax, and the
stopping criteria in Line 4 with a while loop that runs until
R̄ ≤ rmax. Here, R̄ represents the maximum regret over all
neighborhoods R̄ = maxN∈N R̄(N) and can be maintained
in the body of the loop. Since N forms a partition of W , we
are guaranteed that the regret of any weight given Ω is no more
than R̄ by Theorem 2. Therefore, if Algorithm 1 terminates
when R̄ ≤ rmax, the desired maximum regret is achieved.

B. Algorithm Properties

We observe several beneficial properties to the approach
outlined above.

Observation 3 (Runtime). For a budget of K, Algorithm 1
will require that the LSMOP in (3) be solved at most K times,
once per element of Ω. Let tLSMOP be the runtime to solve
(3). Using the interior-point method allows for solving LPs in
O(a2b3/2) time with a being the number of variables, and b the
number of constraints. The LP in (12) has 2n variables and 2n
constraints with n being the number of objective functions (see
Equation (21) in the appendix for details). Thus, the runtime
of Algorithm 1 is O(K(tLSMOP + n3)).

Observation 4 (Regret bound). The value of R̄(N) returned
by the algorithm is an upper-bound on the value of regret
in the original problem (7). Indeed, initially N = {Ω} and
C(Ω) =W . At every iteration, a neighborhood N ∈ N is split
into at most n sub-neighborhoods such whose convex hulls are
disjoint and collectively form C(N). Then, by Theorem 2, it
holds that maxw∗∈W minw′∈Ω r(w′|w∗) ≤ maxN∈N R̄(N).
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(a) First iteration

(b) Second iteration

(c) Third iteration

(d) Regret after three iterations

Fig. 4: Illustration of the first two iterations of Algorithm 1.

Lemma 2 (Algorithm Completeness). The set Ω(K) returned
by Algorithm 1 on input K asymptotically and monotonically
approaches a set with zero regret as K →∞.

Proof. The proof follows by contradiction: If the result did not
hold, then a neighborhood N ∈ N would fail to decrease in
size when split (Lines 11-15). This in turn requires that there
is a wi ∈ N ⊆ Ω(K) such that ||w̄(N)−wi||2 decreases to 0.

Since w̄(N) is chosen to maximize R̄(N), this can only occur
if R̄(N) is unbounded at wi implying that the objectives are
unbounded at wi in violation of Assumption 2.

Observation 5 (Optimality for Discrete Solution Spaces). In
the case where the solution space S of the LSMOP in (3)
is discrete, the function u(w) will be piece-wise linear by
Lemma 1. If K is at least the number of linear pieces of u(w),
the solution set Ω(K) has zero maximum regret and is the
smallest set that accomplishes this. Indeed Ω(K) is comprised
of exactly one weight in each linear piece of u(w). Since the
regret is defined by the error of a first order approximation,
this value is exactly zero on each linear piece.

In the next section, we extend Algorithm 1 to the case
where Assumption 1 does not hold. That is, where no exact
solver for the optimization problem 3. This is followed by an
extension to Algorithm 1 for the case when a prior belief about
the optimal weights of a user are known (See Section VI). It
should be noted that both extensions reduce to Algorithm 1
when the sub-optimal solver is optimal, or the prior belief is
uniform (respectively). Moreover, these extensions can be used
in tandem for the case where Assumption 1 is violated and
a prior belief about the optimal user weights is known. This
last is not formally stated, but is trivially obtained from the
descriptions of each extension to follow.

V. EXTENSION TO SUBOPTIMAL SOLVERS

In this section, we illustrate how Algorithm 1 can be adapted
to accept sub-optimal solvers for the underlying LSMOP.
Instead of s∗(w), an optimal solution to an LSMOP for
weights w (see (5)), consider a feasible solution ŝ(w) ∈ S
obtained from a sub-optimal solver. Following Section II and
given any weight vector w ∈ W , we let û(w) = c(ŝ(w),w)
(see (2)) be the cost of the solution ŝ(w) given weights w.
Observe that û is identical to the function u (see (3)) except
that a sub-optimal solution ŝ(w) is now in place of s∗(w).

A. Look-up Table Solutions

Algorithm 1 relies heavily on the concavity of u(w) as a
function of w, which is guaranteed from the optimality of
s∗(w). Therefore, the function û(w) — the cost of a solution
computed using a sub-optimal solver — is not guaranteed
to be concave. In this section, we begin with a technique to
replace û(w) with a concave function. The high level idea is
to maintain a look-up table, i.e., a set of discovered solutions
T . Given any weight w ∈ W , we define a new solver sT to
select the best solution in T . In detail, given a set of sampled
weights Ω = {w1, . . . ,wr} ⊂ W, r ≥ 1, we denote by
T (Ω) = {ŝ(w),w ∈ Ω} the set of all solutions to weights
w ∈ Ω obtained via the sub-optimal solver ŝ.

For any subset of weights Ω ⊂ W and its associated set
of discovered solutions T (Ω), we define the best discovered
solution to any weight w ∈ W as

sT (w) = argmin
s∈T (Ω)

c(s,w). (13)
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Further, we define a best discovered cost function uT (w) =
c(sT (w),w). Finally, we define the best discovered regret
function for any weights w′,w∗ ∈ W:

rT (w
′|w∗) = w∗ · f(sT (w′))− uT (w

∗)

We now prove that for any subset Ω, the best discovered cost
function uT (w) has the same properties as the optimal cost
function u(w) from (3) that are leveraged by Algorithm 1.
For the remainder of this section, we assume that Ω is a non-
empty countable subset of W , and we let T (Ω) denote the
associated set of discovered solutions.

Lemma 3 (Best Discovered Cost Properties). For any set
of weights Ω, it holds that uT (w) is a concave continuous
function of w ∈ W for which ∂uT (w) is a sub-gradient
given by f(sT (w)) for all w ∈ W . Further, for all w ∈ Ω,
uT (w) ≤ û(w).

Proof. Begin by observing that for any weights w1,w2 ∈ W ,
it must hold that uT (w1) ≤ c(sT (w2),w1). Indeed, by the
definition of uT , if the observation does not hold, then

uT (w1) = c(sT (w1),w1) > c(sT (w2),w1),

implying that sT (w1) is not a minimizer of c(s,w1) over
T (Ω) (since sT (w2) ∈ T (Ω) by (13)), which is a contra-
diction of the definition of sT (w1) from (13). Therefore,
uT (w1) ≤ c(sT (w2),w1) for all w1,w2 ∈ W . Next, we
establish the concavity of uT (w).

For any w1,w2 ∈ W and λ1 ∈ [0, 1], λ2 = 1 − λ1, let
w = λ1w1 + λ2w2. From (13), and the definition of uT ,

uT (w) = c(sT (w),w) = w · f(sT (w))

= λ1w1 · f(sT (w)) + λ2w2 · f(sT (w))

= λ1c(sT (w),w1) + λ2c(sT (w),w2)

≥ λ1uT (w1) + λ2uT (w2),

where the inequality holds by the observation made at the
top of the proof. This establishes the concavity of uT (w).
The continuity of uT (w) therefore follows from the proof of
Lemma 1. Next we show ∂uT (w

∗) = f(sT (w
∗)), ∀w∗ ∈

W . Let w′,w∗ ∈ W , then from our first observation,

uT (w
′)− uT (w

∗) = w′ · f(sT (w′))−w∗ · f(sT (w∗))

≤w′ · f(sT (w∗))−w∗ · f(sT (w∗))

=f(sT (w
∗)) · (w′ −w∗)

Which establishes f(sT (w
∗)) as a sub-gradient of uT (w) at

w∗. Finally, we show that for all w′ ∈ T (Ω), uT (w
′) ≤

û(w′). Since w′ ∈ Ω, it must hold that ŝ(w′) ∈ T (Ω) by the
definition of T (Ω). Therefore, from (13) and the definition
of uT (w), it must hold that uT (w

′) = c(sT (w
′),w′) ≤

c(ŝ(w′),w′) = û(w′) which completes the proof.

Lemma 3 implies that the cost function uT (w) has the same
properties as the optimal cost function u(w) (established in
Section III) that made Algorithm 1 possible.

Algorithm 2: MRPS WITH HEURISTIC SOLVER

Input: A suboptimal ŝ solver to approximately
compute s(w); a budget K ≥ n

Output: Sampled weights Ω and maximum regret
1 Ω← {ei, i = 1, . . . , n}
2 T (Ω)← {ŝ(w),w ∈ Ω}
3 N ← {Ω}
4 for k = n to K do
5 N = neighborhood in N with maximum R̄(N) //

Here, R̄(N) is computed from (10) with s∗

replaced with sT defined in (13)
6 if R̄(N) = 0 then
7 N ← Largest Neighbourhood

8 w̄ ← Mean Weight(N)

9 Ω← Ω ∪ {w̄(N)}
10 T (Ω)← T (Ω) ∪ ŝ(w̄(N))
11 Lines 10-15 of Algorithm 1 with sT replacing s∗

12 return Ω and the maximum value of R̄(N) over all
N ∈ N

B. Adapted Algorithm

Leveraging Lemma 3, we now propose minor modifications
to Algorithm 1 that will allow it to accept sub-optimal solvers.
The procedure is outlined in Algorithm 2 and closely follows
Algorithm 1. The primary modifications are as follows: In line
2 of Algorithm 2, we initialize the set of discovered solutions
T (Ω). In Line 5, we replace the definition of R̄(N) for a
neighborhood N ∈ N that is given in (10) with a version
where s∗(w) is replaced with sT (w) given in (13) for any
weight w ∈ W . Following the definitions in Section IV,
recall that given a set of weights Ω ⊆ W and a neighborhood
N associated with weights in Ω, the function R̄(N), and its
associated weight vector w̄(N) are defined in (10) relative to
a function R(w′|w∗) for weights w′,w∗ ∈ W . This latter
function is defined as R(w′|w∗) = w∗ · f(s∗(w′))− P (w∗)
for a specific plane P defined in that section. It was shown
in Theorem 2 that R̄(N) is an upper bound for the maximum
regret in the neighborhood N given Ω. In Algorithm 2, we
simply replace s∗(w) with sT (w) in all preceding function
definitions. In a manner identical to the proof of Theorem
2, it is easily verified from the results of Lemma 3 that the
modified function R̄(N) is an upper bound on the maximum
best known regret rT in the neighborhood N . Further, the
values R̄(N), w̄(N) may still be obtained by solving the linear
program (12) with s∗ replaced with sT .

Next, Lines 6-8 replace the conditional stopping criteria
in Lines 6-7 of Algorithm 1. In practice, we have noticed
that if the sub-optimal solver ŝ is a poor estimate of the
optimal solution s∗, then using a conditional stopping criteria
R̄(N) = 0 for all N ∈ N tends to cause the Algorithm
to terminate prematurely. This is because there may exist
neighborhoods N and weights w in the convex hull of N such
that c(ŝ(w),w) < minw′∈N uT (w

′) which cannot happen
when using an optimal solver. Finally, in Line 10, when a
weight w̄ is added to Ω, its corresponding sub-optimal solution
ŝ(w̄) is added to T (Ω). The remainder of the Algorithm is
unchanged from Algorithm 1. Observe that if ŝ(w) = s∗(w)
for all w ∈ W , that is, if the ‘sub-optimal’ solver is in
fact optimal, then Algorithm 2 reduces to Algorithm 1 by
construction.
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C. Extended Error Bound

We conclude with an error bound guarantee in the case that
solutions ŝ(w) are derived from a sub-optimal solver with a
known approximation factor. Let Ω be a set of weight vectors
computed by Algorithm 2, and let N be the set of partitioning
neighborhoods associated with Ω. Finally, let

β = max
N∈N

max
w∈N

R̄(N)

uT (w)
. (14)

Intuitively, β represents the maximum relative regret over all
neighborhoods N ∈ N . We write β as a ratio opposed to a
difference as in (6) to derive an approximation factor. Observe
that the value of β is easily computed since each neighborhood
N is a discrete set of weights in Ω. Thus, for each w ∈ N and
each N ∈ N , uT (w) = w ·f(sT (w)). We offer the following
result.

Theorem 3 (Approximation factor). Let Ω be the set of
weights computed by Algorithm 2 with input solutions ŝ(w)
and β be given by (14). If the solutions ŝ(w) are derived from
a solver with known approximation factor α, then, for every
w∗ ∈ W , there exists a w′ ∈ Ω such that

c(sT (w
′),w∗) ≤ α(β + 1)u(w∗).

Proof. For any w∗ ∈ W , there must exist a neighborhood N
such that w∗ ∈ C(N) since C(N), N ∈ N forms a partition of
W . Since N ⊆ Ω it must hold by Lemma 3 and the assumption
that ŝ(w) is derived from a solver that approximates s∗(w)
to within a factor of α of the resulting cost, that for all
w ∈ N , uT (w) ≤ û(w) ≤ αu(w). Let P denote the
hyperplane passing through {u(w),w ∈ N} and PT the
hyperplane passing through {uT (w),w ∈ N}. Observe that
since u(w) ≥ α−1uT (w) for all w ∈ N and P, PT are planes,
it must hold that αP (w) ≥ PT (w),∀w ∈ C(N). From the
definition of R̄(N), there must exist a weight w′ ∈ N with
w∗ · f(sT (w′))− PT (w

∗) ≤ R̄(N) implying that

w∗ · f(sT (w′)) ≤ R̄(N) + PT (w
∗)

≤ R̄(N) + αP (w∗)

≤ R̄(N) + αu(w∗),

(15)

where the final inequality holds from the concavity of u(w)
(see Observation 2) implying that u(w) lies below the plane
P (w) for w ∈ C(N). Letting w′′ = argminw∈N u(w), we
observe by the concavity of u(w), uT (w) (see Lemma 3)
that u(w) ≥ u(w′′) and uT (w) ≥ minw∈N uT (w). Since
uT (w) is within a factor of α of u(w) for all w ∈ N and
w′′ ∈ N by definition, it must hold that u(w∗) ≥ u(w′′) ≥
α−1uT (w

′′) ≥ α−1 minw∈N uT (w). Thus,

R̄(N)

u(w∗)
≤ α

R̄(N)

min
w∈N

uT (w)
= αmax

w∈N

R̄(N)

uT (w)
≤ αβ. (16)

Thus, from (15), (16),

w∗ · f(sT (w′))

u(w∗)
≤ α(β + 1).

Finally, noting that c(sT (w′),w∗) = w∗ · f(sT (w∗)) com-
pletes the proof.

In this section, we extended the algorithm introduced in
Section IV to include sub-optimal solvers. Moreover, when
the suboptimal solver is an approximation algorithm we retain
a bound on the error of a solution set. In the following section,
we consider another extension to include stochastic settings.

VI. EXTENSION TO STOCHASTIC SETTINGS

In this section, we consider two cases of stochastic inputs
to the problem: first, there is a bias representing the likely
relevance of some weights over others. Second, the constraints
defining the planning problem are random, i.e., different
instances have to be considered.

A. Weights as a Random Variable

In practice, some regions of the weight space W may
correspond to Pareto-optimal solutions that are less relevant,
e.g., there is prior information available on what weights may
be likely to represent of a user’s preference. In the example
in Figure 1, feasible solutions were trajectories between fixed
start and goal configurations, while the objectives were trajec-
tory length and comfort. It may be very unlikely for any user
to only care about comfort.

In this section we consider that a probability density func-
tion (PDF) g(w) over W is given. The problem then becomes
one of computing a set of weights Ω that approximates solu-
tions corresponding to probable weights, i.e., that minimizes
the maximum regret discounted by the prior g(w).

First, we introduce a notation shorthand: Given a set of
sampled weights Ω and a weight w inW , we define the regret
of w using Ω as

rΩ(w) = min
w′∈Ω

r(w′|w) (17)

The goal of this section is to compute a set of weights that
address Problem 1 while considering the prior belief expressed
by g(w). To this end, consider two optimization problems:

min
Ω

|Ω|≤K

∫
W

rΩ(w∗)g(w∗)dw∗, (18a)

min
Ω

|Ω|≤K

ess sup
w∗∈W

rΩ(w∗)g(w∗). (18b)

We refer to the term rΩ(w∗)g(w∗) as the discounted
regret. The problem in (18a) seeks to compute a set Ω that
minimizes the expected regret E[rΩ(w∗)], while the second
(18b) minimizes the essential supremum (supremum up to a
set of measure zero) of the discounted regret.

While both problems have their applications, we focus on
solving (18b). The main shortcoming of (18a) is that it can
lead to placing samples to reduce the regret for a large set
of weights with low probability. However, as we have seen
in Figure 1, there can be a large subset of samples that
yields similar – or even identical – corresponding optimal
solutions. Minimizing the expected regret can then overly
favour minimizing the regret for a large subset of weights,
regardless of the incurred regret.
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B. Probabilistic Sampling Algorithm

We now adapt Algorithm 1 to solve the probabilistic prob-
lem posed in (18b). To this end, for any neighborhood N of
weights with convex hull C(N), let

p(N) =

∫
C(N)

g(w)dw,

denote the probability that the random variable w∗ lies in
C(N). We propose a simple, yet effective change to Algorithm
1 in order to handle probabilities over weights, and denote
the new algorithm as MRPS-P. To solve for the objective in
(18b), we replace R̄(N) in Lines 5, 16 of Algorithm 1 with
R̄p(N) = p(N)R̄(N). That is, the neighborhood N we select
to place an additional sampled weight is the one with the
largest regret bound R̄(N), discounted by the probability p(N)
that C(N) contains w∗. In this way, we avoid adding weights
to Ω that lie in regions that are unlikely to contain w∗ unless
the regret of not including such a weight is sufficiently large.
Letting Ω, R̄p denote the outputs of the modified version of
Algorithm 1, we offer the following results with regard to the
objective (18b):

Lemma 4 (Worst Case Discounted Regret). The maximum
discounted regret R̄p returned by Algorithm MRPS-P is an
upper bound on the objective in (18b):

ess sup
w∗∈W

rΩ(w∗)g(w∗) ≤ R̄p. (19)

Proof. Since N forms a partition of W (Section IV-B), there
exists a neighborhood N ∈ N with w∗ ∈ C(N). Therefore,

rΩ(w∗)g(w∗) ≤
∫
C(N)

rΩ(w)g(w)dw

≤ R̄(N)

∫
C(N)

g(w)dw = R̄p(N) ≤ R̄p.

(20)

The first inequality holds by Theorem 2, while the final
inequality holds since modified Algorithm 1 returns the max-
imum value R̄p over all neighborhoods in N .

In addition to providing a bound on the objective of (18b),
we observe that R̄p also provides a bound on the objective of
(18a). Indeed, by Lemma 4,

E[rΩ(w∗)] =

∫
W

rΩ(w)g(w)dw ≤ R̄p

∫
W

dw = R̄p.

Thus, with a simple modification, we can adapt the MRPS

algorithm to incorporate prior beliefs over weights. The al-
gorithm then greedily minimizes an upper bound of the
discounted regret. Observe that if the PDF is uniform, that
is, if all weights are equally likely to represent a user, then
the proposed extension to the MRPS algorithm, reduces to
the original MRPS algorithm. In the next section, we extend
Algorithm 1 to account for multiple problem instances.

C. Constraints as a Random Variable

As a final extension of Algorithm 1, we treat the constraints
S in (1) as random variables. This encompasses the case where
multiple instances of (3) are possible. Consider, for example,
the problem detailed in Figure 1. Here, we compute trajectories

between a fixed start and goal to minimize a tradeoff between
travel time and discomfort. However, changing the positions
of the start and goal would result in a different instance of
problem (3) with a (potentially) different set of weights Ω
computed by Algorithm 1.

This may seem to limit the applicability of the approach
presented here. However, there is a simple extension. We
define a random variable I existing in a sample space I
which represents a possible instance of the constraints S.
Defining s∗I(w) as an optimal solution (5) with S = I given
fixed weights w, we may define a vector of hyper-objectives
fE(w) = EI [f(s

∗
I(w))]. Similarly, we define uE(w) =

w · fE(w). It is easily verified using an identical strategy to
the proofs presented in Section III that uE(w) possesses all of
the properties (continuity, concavity, ∂u(w) = fE(w) for all
w ∈ W) that make Algorithm 1 possible. Further, the function
uE(w) is precisely the expected optimal cost EI [uI(w)] for
uI(w) = w · f(s∗I(w)). Indeed for any weight w ∈ W

EI [uI(w)] = w · EI [f(s
∗
I(w))] = w · fE(w) = uE(w).

This implies that if rE(w′|w∗) = w∗ · fE(w′)− uE(w∗) for
w′,w∗ ∈ W then rE(w′|w∗) is precisely the expected regret
EI [w

∗ · f(s∗I(w′))− uI(w
∗)]. Thus, by replacing f(s∗(w))

with fE(w) in Algorithm 1, we can obtain a set Ω with
bounded maximum expected regret over all constraints I.

VII. NUMERICAL RESULTS

We demonstrate our algorithm in simulations for two differ-
ent applications: trajectory planning and multi-robot coordina-
tion. We consider three variations of our problem: i) optimal
solvers are available (Section IV), ii) only a suboptimal solver
is available (Section V), and iii) a prior belief over relevant
weights is given (Section VI). These experiments illustrate
how the proposed methods allow for computing pre-sampled
sets of weights and their solutions that closely approximate
solutions to any weight requested online. In particular, we
report the worst-case approximation error. In an additional
experiment, we investigate how the proposed method can be
used for presampling solution in order to learn user prefer-
ences.

A. Simulation Setup

a) Planning problems: The first planning problem in-
volves computing Dubins trajectories for different objectives,
similar to the example shown in Figure 1. In the two-objective
case we consider the competing objectives of trajectory length
and integral square jerk (a common metric of comfort [2],
[17]). For higher dimensions we additionally consider the
maximum jerk, as well as avoiding high-risk areas of the
environment. Given a weight vector, we compute the Du-
bins’ trajectory that optimizes the resulting cost function
numerically. In detail, because Dubins’ trajectories are easily
computed for a fixed minimum turning radius, we iterate
over small increments in turning radius within given bounds
selecting the one with minimum cost. Though the result is
sub-optimal, it can be made arbitrarily close to optimal by
increasing the resolution; our experiments used 10, 000 steps.
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Thus, we consider this approach to satisfy Assumption 1.
The second planning problem is the multi-vehicle traveling
salesman problem (mTSP) with deadlines [48]. We consider
two objectives: the number of vertices visited before their
deadline and the total distance travelled by all robots. Since
the problem is NP-hard, we use it to highlight the extension
of our work to suboptimal solvers in Section V.

b) Evaluation measures: For evaluation we rely on a
large (1000) set of uniformly randomly sampled weights. We
evaluate algorithm performance using the regret as defined
in (6), as well as the relative regret where the difference in
(6) is replaced with a ratio. For the experiments with prior
distributions over weights, we consider the essential supremum
of the discounted regret and the expected regret from (18b) and
(18a), respectively.

c) Baseline algorithms: We compare our proposed al-
gorithm against three baselines: i) Uniform sampling in the
weight space [15], [49], [50], denoted by Uniform, ii) sam-
pling weights from a prior distribution for the stochastic
problem settings, denoted by Prior and iii) the adaptive
weight sampling [19], [40], denoted as AWS. We refer to
our proposed approach from Algorithm 1 as MRPS, and its
modification to suboptimal solvers as MRPS-S and considering
probabilistic weights as MRPS-P.

d) Sampling budgets: We test the different algorithms
with different budgets K for the number of weight samples.
Since our algorithm initially computes the n single-objective
solutions, we only consider K ≥ n.

B. Experiments with Optimal Solvers

We begin with planning Dubins trajectories as shown in
Figure 1. To find solutions s∗(w), the motion planner can
sample a large set of Dubins trajectories using different turn
radia and pick the optimum among these.

a) Illustrative Example: First, we present more insight
into the example from Figure 1 with K = n + 5 = 7
samples. We notice that MRPS produces a larger variety of
sample trajectories, especially those with shorter length. This
is also visualized in the approximations of the Pareto front:
Uniform exhibits a large gap, while the proposed method
places samples more homogeneously. In Figure 5 we show
the optimal cost u(w) (ground truth computed with 10,000
uniform weights), together with the tangent planes of the
approximating samples of both baselines Uniform and AWS

and our proposed approach. Here, Uniform places weights
– and thus tangents – in an equal distance along the x-axis
from one another. This results in numerous samples with
similar tangents on the left side of the plot where the function
u(w) is almost linear. At the right end where u(w) changes
more rapidly, uniform does not have sufficient samples for a
tight approximation. In contrast, MRPS places more samples
at the right end resulting in a smaller gap between the best
approximating tangent and the u(w), such that the maximum
regret is ≈ 1/10 compared to Uniform. While AWS improves
over Uniform, the approximation is not as tight as MRPS,
resulting in a maximum regret that is still twice as large.

Solver Budget K
n+ 1 n+ 3 n+ 5 n+ 10 n+ 20

Uniform 0.59/1.08 0.25/0.44 0.14/0.2 0.05/0.07 0.02/0.03
AWS 0.37/0.91 0.10/0.14 0.10/0.14 0.06/0.14 0.05/0.14
MRPS 0.26/0.45 0.06/0.11 0.03/0.07 0.01/0.02 0.00/0.01

(a) Maximum regret for n = 2 objectives.

Solver Budget K
n+ 1 n+ 3 n+ 5 n+ 10 n+ 20

Uniform 1.14/1.7 0.67/1.03 0.66/1.03 0.65/1.03 0.51/0.88
AWS 0.83/1.41 0.39/0.63 0.25/0.58 0.22/0.58 0.22/0.58
MRPS 0.76/1.61 0.15/0.25 0.13/0.22 0.07/0.11 0.03/0.05

(b) Maximum regret for n = 3 objectives.

Solver Budget K
n+ 1 n+ 3 n+ 5 n+ 10 n+ 20

Uniform 0.81/1.33 0.8/1.31 0.71/1.31 0.48/1.04 0.34/0.85
AWS 0.78/1.31 0.65/1.31 0.62/1.31 0.46/1.17 0.44/1.17
MRPS 0.58/1.09 0.2/0.34 0.15/0.28 0.1/0.2 0.05/0.12

(c) Maximum regret for n = 4 objectives.

TABLE I: Mean and 95th percentile of the maximum regret for the
Dubins planning problem with an optimal solver.

b) Quantitative Analysis: We repeat the above Dubins
planning experiment with randomized goal locations and var-
ious sampling budgets K. Results are shown in Figure 6.
When K = n only the basis solutions e1, . . . , en, i.e., the
single objective solutions, are available. We observe that MRPS
achieves substantially smaller absolute and relative regret val-
ues for all K > n compared to Uniform. With just 3 samples,
MRPS achieves a performance comparable to Uniform using
10 samples, and for 20 samples MRPS provides approximations
with effectively no regret. The AWS approach performs similar
to MRPS for few samples (K = n + 1 and K = n + 3),
yet makes only very little progress for larger K. In summary,
the experiment shows that the proposed MRPS method is able
to efficiently place samples that allow for minimum regret
approximations for any scalarization weight.

c) Varying number of objectives: We also considered
problem variances with 3 or 4 objectives with detailed results
shown in Table I. As expected, with increasing number of
objectives the regret increases (with exception of MRPS for
K = n+1). Nonetheless, MRPS achieves the best performance
under all settings. In particular, MRPS continues to decrease
the regret for larger K almost converging to an optimal set of
samples with zero regret. In contrast, Uniform and AWS make
only little progress for K > n+5 in the three objective setup.

In summary, this experiment showed that, given an optimal
solver, Algorithm 1 solves Problem 1 for varying number of
objectives, strongly outperforming baseline methods.

C. Experiments with Suboptimal Solvers

Next we conduct experiments when no optimal solver is
available, as discussed in Section V. The planning problem
is a multi-vehicle Traveling Salesman Problem (mTSP) with
deadlines. Suboptimal solutions are computed using a Large
Neighbourhood Search (LNS) heuristic [51] running for with



12

Fig. 5: Example results for the Dubins planning problem with two objectives. Shown are the approximations of u(w) and resulting regret
with Uniform, adaptive sampling (AWS), and the proposed approach MRPS.

Fig. 6: Results for the Dubins experiment with n = 2 objectives.

varying computation budget, i.e., number of iterations. We
randomly generate 10 different problem instances with 20
vertices and 20 robots, all starting at a central depot. Due
to the poor scalability of exact solvers for the problem, we do
not have access to the ground truth u(w). Instead, we compute
the regret with respect to solutions found by the LNS heuristic
with 10, 000 iterations.

Figure 7 shows the results, comparing Uniform with MRPS

and the modification MRPS-S proposed in Section V. Given
the suboptimal solver for mTSP, the assumption made in
MRPS are not satisfied. The algorithm can still be executed,
yet it may prematurely determine that it is unable to make
further progress and thus terminate. This experiment thus
highlights the benefit of MRPS-S when no exact solver is
available. The AWS approach cannot be directly incorporated
into the LNS solver since it poses an equality constraint
on the solution vector. Such a constraint raises issues of
feasibility particularly in discrete optimization problems like
mTSP. Thus, AWS is omitted from this experiment. Further, we
compare algorithm performance when different solvers for the
mTSP are available: We consider a strong heuristic, where we
run LNS with 1, 000 iterations, and a cheap heuristic, using
LNS with only 10 iterations.

First, we notice that the different version of the heuristic
directly influence the solutions: The regret is substantially

(a) Cheap heuristic (10 iterations). (b) Strong heuristic (1000 iterations).

Fig. 7: Results for the mTSP experiment with n = 2 objectives, 20
vertices and 20 robots with different suboptimal LNS heuristics.

smaller for the stronger heuristic using 1000 iterations. Yet,
under both settings we observe that MRPS does not make
any more progress after three iterations. Since Algorithm 1
depends on having access to an optimal solver, it terminates
prematurely. For both variants of the heuristic, Uniform even-
tually outperforms MRPS. However, we observe that MRPS-S
avoids the pitfalls of MRPS and strongly outperforms both,
MRPS and Uniform. We notice that due to the suboptimal
solver, none of the methods converge to a regret of zero. While
Uniform eventually ties with MRPS-S, our methods remains
much more efficient: For the strong heuristic, Uniform re-
quires n + 20 samples to achieve the same regret as MRPS-S
already has with n + 5 samples. Lastly, the performance gap
of MRPS-S (and MRPS) compared to Uniform is larger for the
stronger heuristic. Since our method relies on the solution
vectors of previous solutions, it is misguided when the solver
returns poor solutions. Thus, for unreliable solvers, Uniform
can be more robust.

Overall, the experiment has shown that i) the original
approach MRPS is challenged when a suboptimal solver is used,
eventually performing poorer than uniform sampling. This is
particularly apparent when the solver is a cheap heuristic.
ii) The extension MRPS-S addresses this shortcoming and is
able to find strong solutions within few iterations, strongly
outperforming greedy for cheap and strong heuristics.
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D. Experiments with Stochastic Problem Inputs
We now consider the setup from Section VI-A where a prior

belief over weights is available. The objective is to minimize
the essential supremum of the discounted regret formulated
in (18b). We consider priors g(w) in the form of a normal
distribution, with uniformly random mean from the weight
space W , and uniformly random variance within [.01, .1]n.

a) Illustrative Example: Figure 8 showcases the differ-
ence between the different approaches when planning Dubins
trajectories with two objectives. We observe that for all ap-
proaches, the maximum regret and the maximum discounted
regret occurs at different weights. While MRPS achieves the
lowest regret, its discounted regret is largest since it neglect to
sample around weights with a high prior belief. In contrast, the
modified approach MRPS-P places fewer samples at the right
end, trading-off a higher regret for a smaller discounted regret.
In comparison, directly sampling from the prior belief (labelled
Prior) does not yield the desired result: Here samples are too
concentrated around the distribution mean and does incur a
higher maximum discounted regret.

b) Quantitative Results: Figure 9 shows detailed results
for varying numbers of samples K. for Dubins trajectories
with three objectives. We include the maximum discounted
regret and expected regret corresponding to the problems for-
mulated in (18a) and (18b), respectively. Table II additionally
contains the discounted regret for 2 and 4 objectives.

In Figure 9, we observe that MRPS-P does not perform well
with only K = n + 1 sample. Indeed, in the first iteration
it is equivalent to MRPS and does not consider the prior
belief since there is only one neighbourhood to explore. Yet,
for K = n + 3 MRPS-P shows already the lowest essential
supremum of the discounted regret, and approaches 0 for
K = n + 10. The original method MRPS achieves a similarly
strong performance for only K = n + 20. Thus, when the
sampling budget is limited, MRPS-P performs better. Among
the baselines Uniform performs best. As highlighted in the
example in Figure 8, only sampling from the prior belief
(Prior) does not explore different weights efficiently and
thus only makes little progress after the first few iterations.
In the right plot, we illustrate the expected regret. Overall,
we observe a similar trend as for the maximum discounted
regret, yet Uniform, MRPS also approach 0 for K = n + 20.
Yet, MRPS-P shows the strongest benefit for K = n + 3 and
K = n + 5, highlighting that while MRPS-P is designed to
solve (18a), it also bounds the error for (18b) and thus is
suitable for tackling both problems. For completeness, we
include results for AWS. Since this approach does not take the
prior into account, it is unable to effectively progress after a
few iterations and thus not suitable for this problem without
further adaptation.

Overall, the third experiment showed that MRPS-P effectively
adapts the original algorithm to the setting where a prior
belief over weights is given. For the two objectives – the
maximum discounted regret and the expected regret – MRPS-P
proved to be more sample efficient than the baseline methods
and the original MRPS algorithm. In summary, throughout
the three different experiments we demonstrated that our
proposed algorithm and its two extensions provide are able to

Budget K
Solver n+ 1 n+ 3 n+ 5 n+ 10 n+ 20

Uni. 0.36/1.25 0.20/0.74 0.10/0.33 0.04/0.12 0.01/0.05
AWS 0.86/3.64 0.13/0.30 0.09/0.25 0.05/0.22 0.03/0.22
MRPS 0.32/0.87 0.12/0.31 0.05/0.16 0.01/0.03 0.00/0.01
Prior 0.35/1.31 0.24/0.85 0.24/0.85 0.17/0.53 0.17/0.53
MRPS-P 0.32/0.87 0.06/0.17 0.03/0.08 0.01/0.02 0.00/0.01

(a) Maximum discounted regret for n = 2 Objectives.

Budget K
Solver n+ 1 n+ 3 n+ 5 n+ 10 n+ 20

Uni. 0.55/1.70 0.19/0.47 0.14/0.39 0.11/0.30 0.07/0.20
AWS 0.49/1.67 0.39/1.40 0.39/1.40 0.39/1.40 0.39/1.40
MRPS 1.13/3.29 0.31/0.85 0.18/0.57 0.10/0.24 0.04/0.12
Prior 0.26/0.66 0.25/0.66 0.23/0.55 0.23/0.55 0.21/0.55
MRPS-P 1.13/3.29 0.20/0.58 0.10/0.24 0.05/0.17 0.03/0.08

(b) Maximum discounted regret for n = 3 Objectives.

Budget K
Solver n+ 1 n+ 3 n+ 5 n+ 10 n+ 20

Uni. 3.71/7.04 2.39/7.04 2.09/4.38 0.80/2.02 0.49/1.07
AWS 4.83/13.96 2.68/13.96 2.38/13.96 0.94/2.90 0.93/2.90
MRPS 4.85/13.96 1.56/4.93 0.84/3.21 0.56/1.73 0.34/1.52
Prior 2.26/7.00 1.90/7.00 1.71/6.00 1.65/6.00 1.49/5.89
MRPS-P 4.85/13.96 1.42/1.92 0.74/1.52 0.39/1.13 0.21/0.58

(c) Maximum discounted regret for n = 4 Objectives.

TABLE II: Mean and 95th percentile of the maximum discounted
regret for the Dubins planning problem with an optimal solver and
prior distributions over weights.

approximate the set of Pareto-optimal solutions for different
problem variants.

E. Computation times

We briefly report the practical computation time for a
Python implementation run on a I7-10750H 2.6GHz with
32GB ram. Computing K = n + 10 samples with MRPS or
MRPS-P for the Dubins problem runs within ≈ .4s for two
objectives, and within ≈ .5s for four objectives, on average.
For the mTSP problem the computation time of MRPS-S for
K = n + 10 samples is ≈ 1.1s for the cheap heuristic, and
≈ 17s for the strong heuristic.

F. Reward Learning

To illustrate the practical impact of the proposed method,
we consider the problem of learning user preferences, i.e.,
learning a user specific, but hidden weight vector w∗. Our
algorithm serves a pre-processing step to generate a ground
set of potential robot behaviours, from which we then elicit
the solution that best fits a user’s preferences. As mode of
user interaction, we consider learning from choice [7], [12],
[15], [16], [50] where the user is iteratively queried with two
potential robot trajectories and indicates the preferred one.
Repeating this over multiple iterations allows the robot infer
about the user weights w∗. Most algorithms for this problem
require a set of presampled trajectories from which the best
query is selected using some heuristic [12], [15], [16], [50].
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Fig. 8: Pareto sampling with prior distributions over weights. We compare the original algorithm MRPS with the adaptation MRPS-P proposed
in Section VI-A. Top row: Objective function u(w) and the sample points placed by the respective algorithms. Middle row: Prior belief.
Bottom row: Regret and discounted regret incurred by the solutions.

Fig. 9: Results for the Dubins experiment with n = 3 objectives and
prior distributions over weights.

These presamples are either random trajectories [12], [16],
or optimal solutions for uniformly random weights for the
LSMOP [15], [35], [50].

Our proposed algorithm MRPS can be used to generate
presamples for these learning problems. Thus, we compare
the learning progress over 10 iterations when either using
Uniform or MRPS samples. For a clear comparison, we use
a simple, deterministic user model: presented with trajectories
A and B, they choose A if and only if f(A)w∗ ≤ f(B)w∗.
Similar to [7], [46] the trajectory preferred in the previous
iteration constitutes one of the two trajectories presented in
the next. The robot can actively choose the second trajectory
to be presented in the next iteration. We employ a random
selection from the presampled set (Random), or the minmax
regret approach from [15] (Regret). Finally, generating ran-
dom user weights w∗ is not trivial: When w∗ is drawn
uniformly random, the sample set Uniform comes from the
same distribution, biasing the experiment. Thus, we randomly
select users from the union of two sample sets Ω(Uniform)

and Ω(MRPS) each of size K = 20. We evaluate learning
performance using the relative error f(S∗(w′))·w∗

/u(w∗) where
w′ is the expected user weight. This measure is widely used
in reward learning problems [36] and captures how well the
learned cost function approximates the unknown user cost
function (parameterized by w∗) in terms of the quality of the
corresponding solutions.

We test this learning framework using the four feature
Dubins planning problem from earlier, with one fixed goal lo-
cation. Figure 10 shows the result for learning with presampled
sets of various sizes K. We observe that the MRPS samples lead
to a smaller learning error than Uniform samples, regardless of
the query method (Random or Regret). Indeed, the Uniform

sets do not always include a close-to-optimal sample such
that the learning is eventually unable to make progress. That
is the case when w∗ was drawn from the MRPS samples.
However, the opposite effect is negligible: Learning with the
MRPS samples finds close-to-optimal solutions, implying that
the error is very small even when w∗ comes from Uniform.

When comparing different sizes K of the sample sets, we
observe that all approaches learn slightly slower for larger K -
the increased number of available trajectories seems to rather
distract the learning algorithm than offering more informative
queries. More surprisingly, when using Uniform samples, the
learning still stops making progress. This indicates that the
larger set still does not contain close-to-optimal solutions. This
further supports our earlier findings that while MRPS only needs
small K to find a close-to-optimal sample for any w∗, while
Uniform is unable to achieve the same even for large K.

In summary, the experiment shows that using MRPS to gener-
ate pre-sampled solutions in reward learning allows for learn-
ing close-to-optimal solutions with significantly fewer samples
than when relying on randomly generated pre-samples.

VIII. SUMMARY

In this paper, we studied the problem of computing different
trade-offs between competing objectives in robot planning
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Fig. 10: Learning from choice with presampled sets of different size K.

problems. Commonly, such problems are approached via linear
scalarization where multiple objectives are combined into a
single objective taking the form of a weighted sum. Thus, we
focused on computing a finite set of weights and corresponding
solutions such that any other solution can be approximated
with minimal regret. We studied fundamental properties of this
linear objective function and its relation to regret. Assuming
that we have access to an optimal solver for the scalarized
objective, we presented an iterative sampling algorithm that
repeatedly adds weights where the regret of the current set is
largest and return a tight error bound. Next, we extended the
algorithm to accept suboptimal solvers, and retained the error
bound when approximation factors are provided. In a second
extension, we also considered prior beliefs over practically
relevant scalarization weights and adapted our algorithm to
minimize the discounted maximum regret. In a series of
simulations, we showcased the proposed methods for the three
different problem variants, demonstrating their higher sam-
pling efficiency compared to baselines. In a further experiment,
we highlighted the practical effect of well-designed sample
sets when learning user preferences for robot behavior.

IX. DISCUSSION AND FUTURE WORK

We extended our earlier results [2] eliminating the restric-
tive assumption that an optimal solver is available and also
extended the framework to stochastic settings. This highly
increases the practical value of the proposed method. However,
in this paper we focused on establishing theoretical results and
limited the evaluation to a series of simulation experiments.
Future work should investigate the practical benefits of our
method in two different settings: Many planners require careful
parameter tuning. For any objective using a weighted sum, the
presented method can be used to efficiently explore different
parameter settings, especially when the the tuning process is
sensitive. The presented technique may also be adapted to
tuning loss functions for machine learning systems. The other
application is learning user preferences for robot behaviour.
We have shown that our method yields samples that allow for
learning user preferences more accurately and more efficiently.
The practical benefits should be further investigate consid-
ering different modes of user interaction and need practical
verification in user studies. Finally, our analysis is limited to
linear scalarization. If the Pareto front of the underlying MOP
is non-convex, linear scalarization fails to capture all Pareto-
optimal solutions, i.e., is not Pareto-complete. However, many

of the theoretical results presented here can be extended to
any scalarization technique that is concave in the weight space.
Thus, future work should consider how our proposed algorithm
may be adapted to techniques such as Chebyshev-scalarization
to ensure Pareto-completeness.
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[15] N. Wilde, D. Kulić, and S. L. Smith, “Active preference learning using
maximum regret,” in 2020 IEEE/RSJ IROS, 2020, pp. 10 952–10 959.

[16] E. Biyik, M. Palan, N. C. Landolfi, D. P. Losey, and D. Sadigh, “Asking
easy questions: A user-friendly approach to active reward learning,” in
CoRL, 2019.

[17] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in IEEE Intelligent Vehicles Sympo-
sium, 2011, pp. 163–168.



16

[18] A. Botros, A. Sadeghi, N. Wilde, J. Alonso-Mora, and S. L. Smith,
“Error-bounded approximation of pareto fronts in robot planning prob-
lems,” in 15th Workshop on the Algorithmic Foundations of Robotics,
WAFR 2022. Springer, 2023, pp. 506–522.

[19] I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for
multiobjective optimization: a new method for pareto front generation,”
Structural and multidisciplinary optimization, vol. 31, no. 2, pp. 105–
116, 2006.

[20] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A
differentiable and modular control stack for autonomous vehicles,” in
Conference on Robot Learning. PMLR, 2023, pp. 2170–2180.

[21] Z. Lu, Z. Liu, G. J. Correa, and K. Karydis, “Motion planning for
collision-resilient mobile robots in obstacle-cluttered unknown environ-
ments with risk reward trade-offs,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 7064–7070.

[22] Y. Che, A. M. Okamura, and D. Sadigh, “Efficient and trustworthy social
navigation via explicit and implicit robot–human communication,” IEEE
Transactions on Robotics, vol. 36, no. 3, pp. 692–707, 2020.

[23] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic
environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4459–4466, 2019.

[24] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International Jour-
nal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[25] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” arXiv preprint
arXiv:2205.04422, 2022.

[26] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 604–611, 2020.

[27] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” IJRR,
vol. 29, no. 5, pp. 485–501, 2010.

[28] Y. Zeng, X. Xu, S. Jin, and R. Zhang, “Simultaneous navigation
and radio mapping for cellular-connected uav with deep reinforcement
learning,” IEEE Transactions on Wireless Communications, vol. 20,
no. 7, pp. 4205–4220, 2021.

[29] D. Kent and S. Chernova, “Human-centric active perception for au-
tonomous observation,” in 2020 IEEE ICRA, 2020, pp. 1785–1791.

[30] B. Sakcak and S. M. LaValle, “Complete path planning that simulta-
neously optimizes length and clearance,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
10 100–10 106.

[31] M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S. Kiesler,
“Human preferences for robot-human hand-over configurations,” in
IEEE/RSJ IROS, 2011, pp. 1986–1993.

[32] E. Bıyık, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning reward functions from diverse sources of human
feedback: Optimally integrating demonstrations and preferences,” The
International Journal of Robotics Research, vol. 41, no. 1, pp. 45–67,
2022.

[33] S. Habibian, A. Jonnavittula, and D. P. Losey, “Here’s what i’ve learned:
Asking questions that reveal reward learning,” ACM Transactions on
Human-Robot Interaction (THRI), vol. 11, no. 4, pp. 1–28, 2022.

[34] C. Basu, M. Singhal, and A. D. Dragan, “Learning from richer human
guidance: Augmenting comparison-based learning with feature queries,”
in Proceedings of the ACM/IEEE HRI, 2018, pp. 132–140.

[35] N. Wilde, E. Biyik, D. Sadigh, and S. L. Smith, “Learning reward
functions from scale feedback,” in CoRL. PMLR, 2022, pp. 353–362.

[36] N. Wilde and J. Alonso-Mora, “Do we use the right measure? challenges
in evaluating reward learning algorithms,” in Conference on Robot
Learning. PMLR, 2023, pp. 1553–1562.

[37] A. Bobu, D. R. Scobee, J. F. Fisac, S. S. Sastry, and A. D. Dragan,
“Less is more: Rethinking probabilistic models of human behavior,” in
Proceedings of the ACM/IEEE HRI, 2020, pp. 429–437.

[38] J. Branke, J. Branke, K. Deb, K. Miettinen, and R. Slowiński, Multiob-
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APPENDIX

A. Implementation of Max-Min Neighbourhood Regret

We detail the implementation of the linear program in Equa-
tion (12). We formulate the convex hull constraint w ∈ C(N)
using a scalars λ1, . . . , λn ∈ [0, 1] to write w as a convex
combination of the neighboughood weights w = λ1w1+· · ·+
λnwn. The equality constraints are given by

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
−1 0 . . . 0 w1

1 . . . wn
1

0 −1 . . . 0 w1
2 . . . wn

2
...

. . .
...

...
. . .

...
0 . . . −1 w1

n . . . wn
n





w1

...
wn

λ1

...
λn


=


1
1
0
...
0

 . (21)

The first row ensures that w lies inW (i.e., all its components
sum to 1). The second ensures the same for λ1, . . . , λn.
The other rows ensure that the i-th element of the vecotr
w is a convex combination of the i-th component of all
neighbourhood vectors w1, . . . ,wn. In the objective function,
we write P (w) using the same convex combination as

x−
n∑

i=1

λiu(wi). (22)

Finally, we require that wi ≥ 0 and λi ≥ 0 for all i =
1, . . . , n.

BIOGRAPHY SECTION



17

Alexander Botros (Member, IEEE) is the director
of Machine Learning & Artificial Intelligence at
Integrus Solutions, a Hong Kong-based due dili-
gence research company. He completed this work
during a postdoctoral fellowship at the Autonomous
Systems Lab at the University of Waterloo where
he received his PhD in Electrical & Computer Engi-
neering (2021). His current research includes natural
language processing, language and logic modelling,
and machine learning more broadly. Alex completed
his undergraduate (2007) & M.Sc. (2016) engineer-

ing work at Concordia University in Montreal.

Nils Wilde (Member, IEEE) is currently a Post-
doctoral Fellow in the Autonomous Multi-Robots
Lab working with Javier Alonso-Mora at TU Delft.
Until August 2021 he was a postdoctoral fellow at
the Autonomous Systems Lab at the University of
Waterloo where he also did my PhD in Electrical
and Computer Engineering (ECE) under the co-
supervision of Dana Kulić and Stephen L. Smith
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