
Instructors: J. Zarnett (001), A. Morton (002) Midterm Examination: ECE 252 Fall 2019

Instructions:

1. No aids are permitted except non-programmable calculators with no persistent memory.

2. Turn off all communication devices. Communication devices must be stored with your personal items for the
duration of the exam. Taking a communication device to a washroom break during this examination is not
allowed and will be considered an academic offence.

3. Place all bags at the front or side of the examination room, or beneath your table, so they are inaccessible.

4. There are three (3) questions, some with multiple parts. Not all are equally difficult.

5. The exam lasts 60 minutes and there are 50 marks.

6. Verify that your name and student ID number is on the cover page and that your examination code appears
on the bottom of each page of the examination booklet.

7. If you feel like you need to ask a question, know that the most likely answer is “Read the Question”. No
questions are permitted. If you find that a question requires clarification, proceed by clearly stating any
reasonable assumptions necessary to complete the question. If your assumptions are reasonable, they will
be taken into account during grading.

8. An API reference document is provided to accompany this exam. This will not be collected, so do not use it
as extra space.

9. Do not fail this city.

10. After reading and understanding the instructions, sign your name in the space provided below.

Signature

1

CROWDMARK

Times: Monday 2019-10-21 at 17:45 to 18:45 (5:45 to 6:45PM)

Duration: 1 hour (60 minutes)

Exam ID: 4288816

Sections: ECE 252 LEC 001,002

Instructors: Andrew Morton, Jeff Zarnett

Please print in pen:
Waterloo Student ID Number:

WatIAM/Quest Login Userid:
Examination
Midterm
Fall 2019
ECE 252Times: Monday 2019-10-21 at 17:45 to 18:45 (5:45 to 6:45PM)

Duration: 1 hour (60 minutes)

Exam ID: 4288816

Sections: ECE 252 LEC 001,002

Instructors: Andrew Morton, Jeff Zarnett

Special Materials
Candidates may bring only the listed aids.

Calculator - Non-Programmable ·

ECE 252 Fall 2019 Midterm
© 2019 University of Waterloo

Please initial:

Page 1 of 6

Instructors: J. Zarnett (001), A. Morton (002) Midterm Examination: ECE 252 Fall 2019

1 Interprocess Communication

1.1 Message Queues [11 marks]

On the Enterprise, every three months, Commander Riker and Counselor Troi perform crew evaluations. Com-
mander Riker needs to send the results to the head of each division; he’s asked you to write a program to help.
Completed evaluations are stored in a file on the main computer, sequentially, but in no particular order. Evalua-
tions need to be read into memory and sent to the division heads using a message queue.

Crew members are evaluated on different criteria depending on their division, and accordingly, the evaluation
data is a different size for each division. Each evaluation in the file is preceded by its type (which is 4 bytes long).
Thus, the first four bytes of the file are the type of the first evaluation. This type tells you how many bytes the
first evaluation is. It is followed by the first evaluation. Then, the next four bytes will be the type of the second
evaluation, followed by the data of second evaluation. This pattern continues until the end of the file.

See the table for the sizes and types:

Division Size of Evaluation Evaluation Type

Command (Red) CMD_SIZE CMD_TYPE

Operations (Gold) OPS_SIZE OPS_TYPE

Science (Blue) SCI_SIZE SCI_TYPE

The structure of a message to be put on the queue is below. Regardless of the type of evaluation, the struct

eval_data is large enough to hold it. The mtype field should be assigned the type of evaluation.

typedef struct {

long mtype;

struct eval_data data;

} eval;

Once an evaluation is ready, send it into the message queue. When creating the queue, use the provided key_t to
create it with the flags 0640 | IPC_CREAT. Complete the process() function below to implement the behaviour
described above. For the sake of time, you may assume all system calls will succeed.

void process(char* filename, key_t key) {

}

int main(int argc, char** argv) {

key_t key = ftok(argv[1], 1);

process(argv[1], key);

}

2

CROWDMARK

ECE 252 Fall 2019 Midterm
© 2019 University of Waterloo

Please initial:

Page 2 of 6

Instructors: J. Zarnett (001), A. Morton (002) Midterm Examination: ECE 252 Fall 2019

1.2 Ping... Pong... [12 marks]

The ping command is used to check if a remote system is online and reachable. We will use sockets to simulate
this command. The client creates a streaming connection with the server on port 5000. Whenever the client sends
the string “ping” to the server, the server sends back the current time. The time sent is of type time_t and it is a
4-byte numeric type. The server will respond an unspecified number of times before it closes the connection.

Complete the code for the client below. The client should repeatedly ping the server by sending the string “ping”
to the remote server. After each ping, the client should print the time received from the server using

char *ctime(const time_t *timep)

which returns a null-terminated string of the form

"Tue Oct 8 17:59:56 2019\n"

After the server closes the connection, the client should close the socket and free any dynamically allocated mem-
ory. Assume all necessary header files are included. Make sure to check return values of your system calls; if an
error occurs, and return -1 from main after cleaning up.

const char *ping = "ping";

int main(int argc, char **argv) {

struct addrinfo hints;

struct addrinfo *res;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_INET;

hints.ai_socktype = SOCK_STREAM;

int r = getaddrinfo(argv[1], "5000", &hints, &res);

if(r != 0) {

return -1;

}

int sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

if (sockfd < 0) {

return -1;

}

int result = connect(sockfd, res->ai_addr, res->ai_addrlen);

if (result != 0) {

return -1;

}

}

3

CROWDMARK

ECE 252 Fall 2019 Midterm
© 2019 University of Waterloo

Please initial:

Page 3 of 6

Instructors: J. Zarnett (001), A. Morton (002) Midterm Examination: ECE 252 Fall 2019

2 Concurrency & Synchronization

2.1 Where’s the lamb sauce?! [14 marks]

On his well-known cooking competition show, Gordon Ramsay orders around a group of chefs. The chefs work in
a system where each chef is assigned a station (appetizer, meat, fish, garnish, or dessert). At the start of service,
Gordon creates the chef threads and assigns them to stations. When an order arrives at the kitchen, Gordon
activates the relevant chefs, waits for their food to be ready, and then checks it. If the food is okay, it is served. If
not, he swears a lot and the order must be restarted. Once all orders are successfully served, Gordon terminates
all chef threads. Complete the gordon() function below to implement this behaviour. You can assume that the
relevant station and order structures have been created and initialized properly.

typedef struct {

sem_t call;

sem_t food;

} station;

typedef struct

dish * dishes; /* Array of dishes */

int size; /* Size of the array */

} order;

/* Used by a chef to cook the current order */

void cook();

/* Returns a pointer to the station that the chef with

the given array index is supposed to take for

tonight’s dinner service */

station* get_station(int i);

/* Get the next order from the waitstaff; returns NULL

if there are no more orders */

order* get_next();

/* Reads the order and updates the provided pointer s

to point to an array of the relevant stations for

this order; num is assigned the size of that array

. Deallocation of the returned array is the

responsibility of the caller. */

void read_order(order* o, stations ** s, int * num);

/* Returns true if the food is made correctly; false

otherwise */

bool check_food();

/* Used by Gordon if the dish is not correct */

void swear();

/* Serves the dish (use only if dish is correct)

Deallocates the order when it has been served */

void serve(order* order);

void* chef(station* s) {

while(true) {

sem_wait(&(s->call));

cook();

sem_post(&(s->food));

}

}

void gordon(pthread_t* chefs, int num_chefs) {

/* Create chef threads, assign stations */

/* Start cooking orders */

/* All orders complete */

}

4

CROWDMARK

ECE 252 Fall 2019 Midterm
© 2019 University of Waterloo

Please initial:

Page 4 of 6

Instructors: J. Zarnett (001), A. Morton (002) Midterm Examination: ECE 252 Fall 2019

2.2 Coordination is Complicated [4 marks]

Three (3) threads, all created simultaneously, each execute the pseudocode below. Write down all possible outputs.
Initial values are: mutex = 1, count = 0, semA = 0, semB = 0.

1. wait(mutex)

2. count++

3. if count == 1

4. post(mutex)

5. wait(semA)

6. wait(mutex)

7. print A

8. post(mutex)

9. else if count == 2

10. post(mutex)

11. wait(semB)

12. wait(mutex)

13. print B

14. post(mutex)

15. else

16. post(semA)

17. post(semB)

18. print C

19. post(mutex)

20. end if

3 PNG File Manipulation [9 marks]

In lab1 and lab2, we worked on simple PNG format files. An important step in PNG file concatenation is to read
the data field from an IDAT chunk, and then inflate the data to a buffer. You will need to allocate enough buffer
space to hold the inflated data. Assume the PNG image is RGBA. That is: for each pixel it contains red, green,
blue, and alpha samples. Recall bit depth means how many bits are needed to represent a sample. The image
dimensions are described in terms of horizontal and vertical pixels.

Part 1. [5 marks] Complete the function below calculate the inflated data buffer size.

/**

* @brief returns the number of bytes a uncompressed filtered RGBA PNG image needs

* @param int width, width of the image, should be positive

* @param int height, height of the image, should be positive

* @param int bit-depth, number of bits per sample needs, only allows 8-bit or 16-bit samples

* @return long, number of bytes the uncompressed filtered RGBA PNG image needs on success; -1 on failure

*/

long get_size_inflated_data_RGBA(int width, int height, int bit_depth) {

}

Part 2. [4 marks] Assume the above function is implemented correctly. Now you want to use it in your code to
inflate an image (only has one idat chunk) that has dimensions of 400 x 6000 and 8-bit depth.

void inflate_one_idat(void *args) {

long size_inf = get_size_inflated_data_RGBA(400, 6000, 8);

char buf_inf[size_inf];

/* call mem_inf here and buf_inf is the destination buffer to hold the inflated data */

/* do the rest of stuff here, assume args contain output params */

}

Identify two (2) problems with the above code and explain how you would fix them.

5

CROWDMARK

ECE 252 Fall 2019 Midterm
© 2019 University of Waterloo

Please initial:

Page 5 of 6

CROWDMARK

ECE 252 Fall 2019 Midterm
© 2019 University of Waterloo

Please initial:

Page 6 of 6

