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1. Before you begin, make certain that you have one 2-sided booklet with 12 pages. 
You have 150 minutes to answer as many questions as possible. The number in 
parentheses at the beginning of each question indicates the number of points for 
that question.  
 

2. Please read all of the questions before starting the exam, as some of the questions 
are substantially more time consuming. Read each question carefully. Make your 
answers as concise as possible. If there is something in a question that you 
believe is open to interpretation, then please ask us about it! 
 

3. All solutions must be placed in this booklet. If you need more space to complete 
an answer, you may be writing too much. However, if you need extra space, use 
the blank space on the last page of the exam clearly labeling the question and 
indicate that you have done so in the original question. 

 
Good Luck! 



1. (X points) True-False and Why? For each question:  
• CIRCLE YOUR ANSWER 
• One point for correct true-false. 
• One point for correct explanation.  
• No points for any explanation if true-false is not correct.  
• No points for an explanation that exceeds 3 sentences. 

 
1.a. If each waiting thread in a system is waiting for a resource held by another waiting 
thread, then the system is in deadlock. 
 
True  False  Why? 
 
 
 
 
 
1.b. For the Communal Dining Politicians problem where there are N chopsticks in the 
middle of a table and N politicians who can grab one chopstick at a time, there are N 
unsafe states. 
 
True  False  Why? 
 
 
 
 
 
1.c. In a uniprocessor, for a workload of tasks with fixed sizes, work-conserving 
schedulers achieve better throughput than non-work conserving schedulers. 
 
True  False  Why? 
 
 
 
 
 
1.d. Assuming zero overhead for Round Robin time slicing, FIFO is always better than 
Round Robin for average response time. 
 
True  False  Why? 
 
  

False, circular chain of requests is a necessary condition for deadlock, but it’s not a sufficient 
condition. 

False, there is only one unsafe state in which all politicians hold one chopstick 

True, a non-work conserving scheduler could add to the total execution time of the workload 
thus reducing the system throughput. 

False, RR with short time quantum achieves better ART than FIFO for a workload with one 
extremely long job and several small ones. 



1.e. The execution time of a parallel job could be more than 9.2 times faster on ten cores 
than on one core if only 99% of the job’s execution time can be parallelized. 
 
True  False  Why? 
 
 
 
 
 
1.f. With virtual memory, the memory content of a user process is hidden from other 
user processes. 
 
True  False  Why? 
 
 
 
 
 
1.g. In a segmented memory, different processes can access the same physical address 
using different virtual addresses. 
 
True  False  Why? 
 
 
 
 
 
1.h. Using TLBs could increase the cost of address translation for some processes and 
decrease it for others. 
 
True  False  Why? 
 
 
 
 
 
1.i. On a context switch, TLB does not have to be flushed. 
 
True  False  Why? 
 
 
  

False, using Amdahl’s Low, the maximum achievable speedup for this job on 10 cores is less 
than 9.2. 

False, with Spectre and Meltdown attacks, an attacker can extract information about other 
processes’ memory content due to side-channel vulnerabilities. 

True, each process can assign different segment numbers to a shared physical segment which 
leads to addressing the same physical location with different virtual addresses. 

True, TLB, like any other caches, is useful only when the process reuses the cached data. TLB 
degrades performance if the process doesn’t have locality of references. 

True, by tagging TLB entries with the process ID, modern processors avoid flushing the TLB on 
every context switch. 



1.j. Any modification to page table entries in a multiprocessor necessarily requires a 
TLB shootdown. 
 
True  False  Why? 
 
 
 
 
 
1.k. In a system with base and bound address translation, virtually addressed caches do 
not suffer from the aliasing problem. 
 
True  False  Why? 
 
 
 
  
 
1.l. If no new task arrives, SJF scheduler never preempts currently running task. 
 
True  False  Why? 
 
 
 
 
 
1.m. Threads within the same process can share data with one another by passing 
pointers to objects on their stacks. 
 
True  False  Why? 
 
 
 
 
 
1.n. With copy-on-write, immediately after a process has been forked, the same variable 
in both the parent and the child will have the same virtual address but different physical 
addresses. 
 
True  False  Why? 
 
 

False, although we can do a TLB shootdown on every modification to a page table, some 
modifications, such as adding permission to a page, do not require TLB shootdown. 

True, aliasing only is an issue when different virtual addresses can point to the same physical 
address. However, with base and bound address translation, processes cannot share memory 
locations. 

True, the currently running task has to be the shortest one. If no shorter task arrives, the 
currently running task will remain the shortest one until it finishes. 

True, threads in the same process share an address space. 

Initially, the child and parent have the same physical memory mapped into their address 
spaces. 



1.o. Disabling interrupts on any computer system that supports it guarantees 
atomicity. 
 
True  False  Why? 
 
 
 
 
 
1.p. Switching the order of two P() semaphore primitives can lead to deadlock. 
 
True  False  Why? 
 
 
 
 
 
1.q. The function thread_create() will always ensure that another thread starts running. 
 
True  False  Why? 
 
 
 
 
 
2. (18 points) Uniprocessor Scheduling.  
2.a. (9 points). Given the following mix of tasks, task lengths, and arrival times, 
compute the completion time for each task for the FIFO, RR, and SJF algorithms. 
Assume a zero-cost time slicing of 10 milliseconds and that all times are in milliseconds. 
For RR, arriving tasks has lower priority than tasks that are already waiting. If a time 
slice completes at the same time that a job arrives, assume the arriving job has lower 
priority than tasks that are already waiting, but higher priority than the task completing 
its quantum. 
 

Task Length Arrival Time FIFO RR SJF 
0 85 0    
1 30 10    
2 35 15    
3 20 80    
4 50 85    

      
   85 220 220 
   115 80 40 
   150 135 75 
   170 145 100 
   220 215 150 

 

False, disabling interrupts on a multiprocessor doesn’t guarantee atomicity 

True, If one P() is used to acquire a lock, and another one to wait(), we can get deadlock if the 
wait() happens in the critical section without releasing the lock. 

False, pthread_create() puts the new thread on the ready queue. The thread might never run 
if the parent process terminates before the thread has started. 



 
Show your work here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.b (9 points) Consider the following preemptive priority-scheduling algorithm based 
on dynamically changing priorities. Larger numbers imply higher priority. Tasks are 
preempted whenever there is a higher priority task. Assume that time is divided into 
1millisecond time quanta and tasks do not arrive in the middle of a time quantum. When 
a task is waiting for CPU (in the ready queue, but not running), its priority changes at 
rate 𝑎: 𝑃(𝑡) = 𝑃(𝑡 − 1) + 𝑎, and when it is running, the task’s priority changes at rate 
𝑏: 𝑃(𝑡) = 𝑃(𝑡 − 1) + 	𝑏. Suppose that 𝑃(𝑡) = 0 for all 𝑡 ≤ 𝑡., where 𝑡. is the time at 
which the task joins the ready queue. 
 
2.b.1 (3 points). What is the algorithm that results from 𝑏 > 𝑎 > 0? 
 
 
 
 
 
2.b.2 (3 points). What is the algorithm that results from 𝑎 < 𝑏 < 0? 
 
 
 
 
 
 
2.b.3 (3 points). Suppose that tasks retain their priority when they are preempted. What 
happens if two tasks arrive at nearly the same time and 𝑎 > 0 > 𝑏? 
 
 
 

With round robin, the task schedule is: 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1 (done at time 80), 0, 2, 4, 5, 0, 
2 (done at time 135), 3 (done at time 145), 4, 0, 4, 0, 4, 0, 4 (done at 215), 0 (done at 220). This 
is slightly better than FIFO, but considerably less than shortest job first. 
 
 
 
With shortest job first, the task schedule is: 0 (until time 10), 1 (until it is done at time 40), 2 
(until it is done at time 75), 0 (until time 80), 3 (until it is done at time 100), 4 (until it is done at 
time 150), and then 0 until is done at time 220. 

FIFO; A running task gains priority faster than any waiting tasks, and any waiting tasks will have 
a priority greater than any task that arrives later. Therefore, this will act like FIFO. 

LIFO; Any newly arrived task will have higher priority than any waiting or running task, and so 
will be immediately scheduled. Once it is running, its priority will decrease more slowly than 
any waiting tasks, so it will keep the processor until another task arrives or it completes. Thus, 
this is last-in-first-out (LIFO). 

RR; Tasks gain priority as they wait and lose priority as they get CPU time. If the two tasks 
started with priorities near 0, then whoever ran first would have the CPU for a short time 
before being preempted and will get the CPU back quickly. This will be similar to round robin 
with a very short time quantum. 



3. (17 points) Magnetic Disk. Consider a magnetic disk with the following spec. 
 

Seek time from middle to outer track 10.3 ms 
Seek time from middle to inner track 10.1 ms 
Seek time from inner to outer track 19 ms 
Average seek time  10.5 ms 
Rotation time 8.3 ms 
Transfer rate 54 - 128 MB/s 
Bytes per sector  512 

 
3.a. (6 points) SPTF is not optimal. Assume that the disk’s head is on the middle track. 
Suppose that there are two sets of pending requests. The first set is 1000 requests to read 
each of the 1000 sectors on the inner track of the disk; the second set is 2000 requests to 
read each of the 2000 sectors on the outer track of the disk. Compare the average 
response time per request (i.e., the time for a request to complete, form when a request 
arrives until it is done, excluding the transfer time) for the SPTF schedule (first read 
the “nearby” inner track and then read the outer track) and the alternative of reading the 
outer track first and then the inner track. Write your final answer in the boxes. 
 
 
SPTF:     Outer-track-first: 
 
Show your work here: 
 
 
 
 
 
 
 
 
3.b. (3 points) Sequential Access. Now suppose that the head of the disk is on a random 
track. Consider 1000 read requests for sequential sectors on the outer track. How long 
does serving these requests take on average (considering the transfer time and out of 
order read)? Write your answer in the box. 
 
Average sequential access time:  
 
Show your work here: 
 
 

SPTF: (1000 (10.1 + 4.15) + 2000 (10.1 + 8.3 + 19 + 4.15)) / 3000 = 32.45 ms 
 
Outer-track-first: (2000 (10.3 + 4.15) + 1000 (10.3 + 8.3 + 19 + 4.15)) / 3000 = 23.55 ms 

32.43 ms 
 

23.53 ms 
 

10.5 (seek time) + 4.15 (average rotation time) + 4ms (transfer time: 1000 sector * 512 
bytes/sector * 1/(128 MB/s)) – 1.03 (out of order read = 8.3 * ½ * ¼) = 17.62 ms 

17.62 ms 



3.c. (2 points). Effective Bandwidth. In 3.b. what fraction of the disk’s bandwidth is 
realized? Write your answer in the box. 
 
Effective bandwidth:  
 
Show your work here: 
 
 
 
 
 
 
3.d. (6 points) Linked List vs. Tree. Consider two different file systems FAT and FFS. 
For FFS, there are twelve direct pointers, one indirect pointer, one double indirect 
pointer, and one triple indirect pointer. Suppose that data blocks are 4KB in both file 
systems and suppose that FFS has 4-byte block pointers. Suppose that we create a new 
file, write 4 KB at offset 0, seek to block offset 223, and write another 4 KB. How many 
blocks does each file system use to store the file? Write your answer in the boxes. 
 
 
FAT:        FFS: 
 
Show your work here: 
 
 
 
 
 
 
 
4. (12 points) Address Translation. Consider a system with the following parameters. 
 

Variable Measurement Value 
𝑃456 Probability of TLB hit 0.95 
𝑃52 Probability of a first-level cache hit for all accesses 0.99 
𝑃7 Probability of a page fault when a TLB miss occurs on user 

pages (assume page faults do not occur on page tables). 
0.001 

𝑇456 Time to access TLB 1ns 
𝑇52 Time to access L1 cache 10 ns 
𝑇9 Time to access DRAM 250 ns 
𝑇: Time to transfer a page to/from disk 103 ns 

29.05 MB/s 

Effective bandwidth = data / time = 1000 sectors * 512 bytes/sector * (1/17.62 ms) = 29.05 
MB/s 

223 + 1 4 
 

FAT uses link list representation in file allocation table which means it has to allocate all 223 +
1 blocks. FFS uses four blocks: two data blocks, a double indirect block, and a single indirect 
block. 



 
Suppose that the system has a 3-level page table that is stored in DRAM and are cached 
like other accesses. Also assume that the costs of the page replacement algorithm and 
updates to the page table are included in the 𝑇: measurement. Suppose that pages 
mapped on a page fault are not cached and hardware automatically fills TLB on a miss.  
 
4.a. (4 points). How long does it take for a user program to do one memory reference if 
the address translation is cached in TLB? Write your answer in the box. 
 
Show your work:        Time:  
 
 
 
 
 
4.b. (4 points). How long does it take for a user program to do one memory reference if 
the address translation is not cached in TLB? Write your answer in the box. 
 
Show your work:        Time:  
 

 

 

4.b. (4 points). How long does it take for a user program to do one memory reference? 
Write your answer in the box. 
 
Show your work:        Time:  
 

 

5. (19 points) Locks and Deadlocks. 
5.a. (5 points) Spinlock Using Swap. We want to implement locks using the swap() 
primitive. swap() has the following semantics, and is executed atomically: 
 
void swap(int *a, int *b) { 

int temp = *a; 
*a = *b; 
*b = temp; 

} 
 

13.5 ns 

𝑇456 + 𝑇52 + (1 − 𝑃52) × 𝑇9 = 1 + 10 + 0.01 * 250 = 13.5 ns 

1050.98 ns 

(1 − 𝑃7) × <𝑇456 + 4 × (𝑇52 + (1 − 𝑃52) × 𝑇9)> + 𝑃7 × (𝑇456 + 6 × (𝑇52 + (1 − 𝑃52) ×
𝑇9) + 𝑇: + 𝑇456 + 𝑇52 + 𝑇9) = 0.999 * (1 + 4 * 12.5) + 0.0001 * (1 + 6 * 12.5 + 10,000,000 + 
10 + 250) = 1050.98 ns 

65.37 ns 

𝑃456 ∗ 13.5 + (1 − 𝑃456)1050.98 = 0.95 * 13.5 + 0.05 * 1050.98 = 65.37 ns 



You have to implement Initialize, Acquire and Release for the lock operations. It is OK 
to busy wait. 
 
void Initialize(int* lock) { 
 
 
 
} 
void Acquire(int* lock) { 
 
 
 
 
 
 
 
 
 
 
} 
void Release(int* lock) { 

 
 
 
} 
 
5.b. (4 points). A Two-Phase Locking Paradigm. Suppose that we break up the 
modification of shared data into "two phases", this is what gives the process its name. 
There are actually three activities that take place in the "two-phase" update algorithm: 
(1) Lock Acquisition; (2) Modification of Data; (3) Release Locks. The modification of 
data, and the subsequent release of the locks that protected the data are grouped together 
and called the second phase. Consider a system with four mutual exclusion locks (A, B, 
C, and D) and a readers/writers lock (E) which allows multiple “reader” threads to 
simultaneously access the shared data. For E, any number of threads can safely read 
shared data at the same time, as long as no thread is modifying the data. However, only 
one “writer” thread may hold E at any one time. Suppose the programmer follows these 
rules:  

a) During the first phase, no lock may be released, and, if E is held in writing 
mode, it cannot be downgraded to reading mode. Furthermore, lock A may not be 
acquired if any of locks B, C, D, or E are held in any mode. Lock B may not be 
acquired if any of locks C, D, or E are held in any mode. Lock C may not be 
acquired if any of locks D or E are held in any mode. Lock D may not be acquired 
if lock E is held in any mode. Lock E may always be acquired in read mode or 
write mode, and it can be upgraded from read to write mode but not downgraded 
from write to read mode.  

 
 

*lock = 0; 
 
 
 
 

int l = 1; 
do { 

swap(&l, 
lock); 
} while (l == 1); 
// Or 
// while(l == 1) { 
// swap(&l, lock); 
// } 

 
 
 

*lock = 0; 
 
 
 



b) During the second phase, any lock may be released, and lock E may be 
downgraded from write mode to read mode; releases and downgrades can happen 
in any order; by the end of part 2, all locks must be released; and no locks may be 
acquired or upgraded.  
 

These rules ensure freedom from deadlock. 
 
True  False   Why? 
 
 
 
 
 
 
5.c. (10 points) Banker’s Algorithm. Suppose there are three jobs A, B, and C running 
in a multi-core processor. Each job requires 4 resources (CPUs, last-level cache, 
memory capacity, and memory bandwidth) to run. Suppose that the multi-core processor 
has 16 cores, 12 MB last-level cache, 32 GB memory, and 70 GB/s memory bandwidth. 
For each job, the maximum possible usage for each resource is specified in the table 
below.  
 

Job CPU Cache (MB) Mem. Capacity (GB) Mem. Bandwidth (GB/s) 
A 4 8 20 16 
B 6 6 10 32 
C 10 4 14 36 

 
5.c.1. (5 points). Consider the following allocation. Is the system in a safe state? If so, 
give an example guaranteed safe execution. If not, give an example of requests that 
could deadlock the system. Circle your answer and show your work. 
 

Job CPU Cache (MB) Mem. Capacity (GB) Mem. Bandwidth (GB/s) 
A 2 2 10 8 
B 3 5 8 30 
C 8 2 12 20 

 
Yes  No  Why? 
 
 
 
 
 

False, the problem is that upgrading E to a write lock can wait for a read lock on E held by some 
other thread, so there can be a cycle among threads holding a read lock on E and trying to 
upgrade to a write lock. 

Yes, B -> A (or C) -> C (or A) 



 
5.c.2. (5 points). Consider the following safe allocation. Is it safe to allocate to C four 
more cores? If so, give an example guaranteed safe execution. If not, give an example of 
additional requests that could deadlock the system. Show your work. 
 

Job CPU Cache (MB) Mem. Capacity (GB) Mem. Bandwidth (GB/s) 
A 3 7 18 16 
B 4 3 6 20 
C 5 1 6 34 

 
Yes  No  Why? 
 
 
 
 
 
 
 
 

No, by allocating four cores to C, there would be no enough resources to safely finish any of 
the jobs. 


