

Please print in pen:
Waterloo Student ID Number:

WatIAM/Quest Login UserID:

Midterm Exam - Winter 2020 - SE 350

Question Points Assigned Points Obtained

1 38

2 15

3 23

4 24

Total 100

1. Before you begin, make certain that you have one 2-sided booklet with 12 pages.
You have 110 minutes to answer as many questions as possible. The number in
parentheses at the beginning of each question indicates the number of points for
that question.

2. Please read all of the questions before starting the exam, as some of the questions
are substantially more time consuming. Read each question carefully. Make your
answers as concise as possible. If there is something in a question that you
believe is open to interpretation, then please ask us about it!

3. All solutions must be placed in this booklet. If you need more space to complete
an answer, you may be writing too much. However, if you need extra space, use
the blank space on the last page of the exam clearly labeling the question and
indicate that you have done so in the original question.

Good Luck!

1. (X points) True-False and Why? For each question:
• CIRCLE YOUR ANSWER
• One point for correct true-false.
• One point for correct explanation.
• No points for any explanation if true-false is not correct.
• No points for an explanation that exceeds 3 sentences.

1.a. With base and bound protection, it is not possible for any two threads to share code.

True False Why?

1.b. Every I/O request from a user process eventually invokes the device driver’s bottom
half.

True False Why?

1.c. If hardware does not provide atomic read-modify-write instructions, then libraries
that implement user-mode threads have to use kernel-implemented locks to provide
mutual exclusion.

True False Why?

1.d. First-come, first serve could minimizes average response time when tasks have
equal length.

True False Why?

1.e. Consider two systems, A and B, that have identical hardware and software except
that A has faster access to its memory cache. Throughput of A is at least as high as that
of B AND average response time of A is at least as low as that of B.

True False Why?

1.f. Improving average response time leads to improved throughput.

True False Why?

1.g. Under Round-Robin scheduling, response time of the longest task in a workload
does not change for any time quantum.

True False Why?

1.h. Every thread has its own stack.

True False Why?

1.i. Condition variables could be implemented using Semaphores.

True False Why?

1.j. Any modification to page table entries in a multiprocessor necessarily requires a
TLB shootdown.

True False Why?

1.k. Implementing critical sections and mutual exclusion involves waiting.

True False Why?

1.l. If no new task arrives, the shortest task first scheduler never preempts currently
running task.

True False Why?

1.m. The shortest remaining task first scheduling policy can lead to starvation.

True False Why?

1.n. “Hyperthreading” refers to the situation in which a modern operating system allows
thousands of threads to access the same address space.

True False Why?

1.o. Thread pools are a useful tool to help prevent an overly popular web site from
crashing the hosting web servers.

True False Why?

1.p. Switching the order of two P() semaphore primitives can lead to deadlock.

True False Why?

1.q. The function thread_yield() will always ensure that another thread starts running.

True False Why?

1.r. Dual-mode operation prevents a process from accessing another process’ memory.

True False Why?

1.s. A kernel process can always enforce mutual exclusion by disabling interrupts on its
running processor.

True False Why?

2. (15 points) Uniprocessor Scheduling. We are going to compare the behavior of three
schedulers on a workload consisting of 4 tasks:

• Task A arrives at time 0 with priority 0, uses the CPU for 1 s, issues I/O that takes
2 s, and then uses the CPU for 3s.

• Task B arrives at time 1 s with priority 1, uses the CPU for 6 s.
• Task C arrives at time 2 s with priority 2, uses the CPU for 2 s, issues I/O that

takes 2 s, and then uses the CPU for 2 s.
• Task D arrives at time 3 s with priority 3, uses the CPU for 1 s, issues I/O that

takes 1 s, uses CPU for 1 s, issues I/O that takes 1 s, and then uses CPU for 1 s.

This workload is illustrated below as if each executes on its own dedicated CPU.

 0 1 2 3 4 5 6 7
A CPU I/O I/O CPU CPU CPU
B CPU CPU CPU CPU CPU CPU
C CPU CPU I/O I/O CPU CPU
D CPU I/O CPU I/O CPU

You will consider three scheduling algorithms: (1) first-come, first-serve (FCFS), (2)
round robin (RR), and (3) shortest remaining time first (SRTF). The following apply:

• All schedulers are preemptive.
• The time quantum of the RR scheduler is 1.
• The moment a task arrives, it can be scheduled.
• If two tasks arrive at the same time, they are inserted in the ready queue in the

lexicographical order. For example, if B and C arrive at the same time, B is
inserted first, and C second in the ready queue.

• In the case of FCFS, once a task issues I/O, the scheduler schedules the next
runnable task if there are any. This means that one the I/O issuing task is done
with I/O, it is inserted at the end of the read list before any newly arriving tasks at
that time.

• In the case of the RR scheduler, a new arriving task is inserted at the end of the
ready queue. When the RR time quantum expires, the currently running task is
added at the end of the ready list before any newly arriving tasks at that time.

• The RR and FCFS schedulers ignore the priorities.
• The SRTF scheduler uses priorities to break ties, i.e., if two tasks have the same

remaining time, we schedule the one with the highest priority (3 is highest and 0
is the lowest).

• I/O requests for A, C, and D are sent to different devices and could be done in
parallel.

• I/O time is not considered as tasks’ waiting time.

Given the above information, calculate average response time and average waiting time
for the three schedulers. Below is a scratch area for you to keep track of what each
scheduler does. We will not grade the grid, but it may help you work out the question.

Time FCFS RR SRTF
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Average Response Time
Average Waiting Time

Duplicate of table for your convenience:

 0 1 2 3 4 5 6 7
A CPU I/O I/O CPU CPU CPU
B CPU CPU CPU CPU CPU CPU
C CPU CPU I/O I/O CPU CPU
D CPU I/O CPU I/O CPU

3. (22 points) What the Fork()! Consider the following program. Assume that the
compiler and the hardware do not reorder instructions, all instructions are atomic, and
calls to fork and thread_create always succeed.
void* func1(int i) {

printf("%d\n", i);
return NULL;

}
int main(void) {

pid_t pid;
thread_t thread[2];
int status;
pid = fork();
if (!pid) {
 status = 12;

thread_create(&thread[1], func1, 11);
} else {
 status = 16;
 wait(pid);
 thread_create(&thread[1], func1, 14);

printf("15\n");
}
printf("%d\n", status);
return 0;

}

3.a (5 points) what is the minimum and maximum number of threads that will run?

3.b. (9 points) What are all the possible outputs in standard output? If there are multiple
possibilities, put each one in a different box. You may not need all the boxes.

3.c (9 points) Modify the code such that the output will always be:
11
13
14
15
16

Fill in the blanks to show your changes to the original program.
• You must use thread_create at least once.
• You may not call printf or the helper function, func1, directly.
• Write at most one statement per line. You may not need all lines.

int main(void) {

pid_t pid;
thread_t thread[2];
int status;
pid = fork();

if (!pid) {
 status = 12;

thread_create(&thread[1], func1, 11);

} else {
 status = 16;
 wait(pid);

 thread_create(&thread[1], func1, 14);

printf("15\n");

}
printf("%d\n", status);
return 0;

}

4. (24 points) Locks, Semaphore, and Barriers.
4.a. (8 points) Fetch and Increment. We want to implement a lock using the
fetch_and_increment primitive, which has the following semantics, and is executed
atomically.

int fetch_and_increment(int *a) {

int temp = *a;
*a = temp + 1;
return temp;

}

You have to implement acquire() and release() functions. Note that it is OK to busy wait.
Write at most one statement per line. You may not need all the blank lines.

class Lock {
 private:
 int ticket_number;
 int turn;
 public:
 Lock() {
 ticket_number = 0;
 turn = 0;
 }
 void acquire() {

}
void release() {

}

}

4.b. (8 points) Sleeping Barber Problem. A barber shop has one barber chair, and a
waiting room with N chairs. The barber goes to sleep if there are no customers. If a
customer arrives, and the barber chair along with all N chairs in the waiting room are
occupied, he leaves the shop. Otherwise, the customer sits on the waiting room chair and
waits. If the barber is asleep in his chair, the customer wakes up the barber.
Consider that the barber and each of the customers are independent, concurrent threads.
Fill in the following blanks to ensure that the barber and the customers are synchronized
and deadlock free. Assume each semaphore has P() and V() functions available as
semaphore.P() and semaphore.V(). Write at most one statement per line. You may not
need all the blank lines.

Semaphore barberReady = 0;
Semaphore accessWaitRoomSeats = 1;
Semaphore customerReady = 0;
int numberOfFreeWaitRoomSeats = N;

void Barber () {

while (true) {

numberOfFreeWaitRoomSeats += 1;

cutHair();

}
}

void Customer () {

if (numberOfFreeWaitRoomSeats > 0) {

numberOfFreeWaitRoomSeats -= 1;

getHairCut(); // Customer gets haircut :)

} else {

leaveWithoutHaircut(); // No haircut :(

}
}

4.c. (8 points). Synchronization Barrier. With data parallel programming, the
computation executes in parallel across a data set, with each thread operating on a
different partition of the data. Once all threads have completed their work, they can
safely use each other’s results in the next (data parallel) step in the algorithm. Google
MapReduce is an example of data parallel programming, but there are many other
systems with the same structure. For this to work, we need an efficient way to check
whether all N threads have finished their work. This is called a synchronization barrier,
which has only one operation—checkin. A thread calls checkin() when it has completed
its work; no thread may return from checkin until all N threads have checked in. Once all
threads have checked in, it is safe to use the results of the previous step. In this question
have to implement checkin(). Your code has to be efficient in the sense that each
checked-in thread has to receive at most one signal once all threads check in. Write at
most one statement per line. You may not need all the blank lines.

class Barrier {
 private:
 Lock lock;
 CV all_checked_in;

 int num_of_threads;
 int num_of_entered;
 public:
 Barrier (int n) {
 num_of_threads = n;
 num_of_entered = 0;
 }
 void checkin() {

}

}

