

Please print in pen:
Waterloo Student ID Number:

WatIAM/Quest Login UserID:

Final Exam - Winter 2022 - ECE 350

Question Points Assigned Points Obtained

1 40

2 18

3 24

4 18

Total 100

1. Before you begin, make certain that you have one 2-sided booklet with 10 pages.
You have 100 minutes to answer as many questions as possible. The number in
parentheses at the beginning of each question indicates the number of points for
that question.

2. Please read all of the questions before starting the exam, as some of the questions
are substantially more time consuming. Read each question carefully. Make your
answers as concise as possible. If there is something in a question that you
believe is open to interpretation, then please write your interpretation and
assumptions!

3. All solutions must be placed in this booklet. If you need more space to complete
an answer, you may be writing too much. However, if you need extra space, use
the blank space on the last page of the exam clearly labeling the question and
indicate that you have done so in the original question.

Good Luck!

1. (40 points) True-False with explanation.

For each question:
• Circle your answer and write your explanation below each question.
• Explanations should not exceed 3 sentences.
• One point for correct true-false.
• One point for correct explanation.
• No points for any explanation if true-false is incorrect.

1. Different threads in the same process share the same heap.
True False
True, all threads within the same process share the same address space.

2. Different threads in the same process can access each other’s stacks.
True False
True, all threads within the same process share the same address space.

3. Efficient implementation of operating system abstractions relies completely on

software techniques rather than hardware support.
True False
False, hardware support is often needed for efficient implementation of OS
abstractions (e.g., TLB for fast virtual address translation).

4. Both type-1 and type-2 hypervisors rely on the host operating system for virtual

machine management.
True False
False, only type-2 hypervisors rely on the host OS for VM management.

5. CPU utilization is higher in simple-batch operating systems compared to

multiprogramming-batch operating systems.
True False
False, multiprogramming batch OSes have higher utilization as they switch to
another job if the current job request I/O.

6. For each system call, the operating system can reliably use user-provided

arguments if it validates the arguments before copying them from user-space
memory to kernel memory.

True False
False, other user-space threads could alter the arguments in user-space after kernel
validates arguments and before kernel copies arguments to its memory.

7. Two user-managed threads within the same process can run simultaneously (in
parallel) on two different cores in a multiprocessor.

True False
False, OS does not assign separate TCBs to the user-managed threads and is not
aware of them. Therefore, it cannot schedule them in parallel on multiple cores.

8. In x86, the user-space stack pointer is saved twice during a mode transfer.
True False
False, it is only saved once.

9. In the following code for scheduler functions (used in the lectures for

implementation of mutex), interrupts are disabled to guarantee mutual exclusion.
True False

False, interrupts are disabled to avoid deadlock when interrupt handler tries to access
scheduler's spinlock.

10. Compared to the microkernel architecture, obtaining service in monolithic kernels

often requires more mode transfers.
True False
False, microkernels require on average more mode transfers as they maintain services
out of the kernel code.

11. On x86 architecture, user programs can execute the instructions cli and sti to

enable/disable interrupts.
True False
False, user programs cannot disable or enable interrupts.

Scheduler::make_ready(TCB *tcb) {

 disable_interrupts();

 scheduler_spinlock.lock();

 ready_list.add(tcb);

 thread->state = READY;

 scheduler_spinlock.unlock();

 enable_interrupts();

}

Scheduler::suspend(Spinlock *spinlock) {

 disable_interrupts();

 scheduler_spinlock.lock();

 spinlock->unlock();

 runningTCB->state = WAITING;

 chosenTCB = ready_list.get_nextTCB();

 thread_switch(runningTCB, chosenTCB);

 runningTCB->state = RUNNING;

 scheduler_spinlock.unlock();

 enable_interrupts();

 }

12. With scheduler activations, if one user-managed thread blocks on I/O, it always
blocks other user-managed threads.

True False
False, when one thread issues I/O, the OS could signal the user-level scheduler to
allow it to run other user-managed threads.

13. For fully associative caches, increasing the cache size always increases the hit

rate.
True False
False, this depends on replacement policy. With FIFO, hit rate could decrease.

14. An interrupt handler is a kernel thread with the highest priority.
True False
False, an interrupt handler is not schedulable. Therefore, it is not a thread.

15. Without atomic load-modify-store instructions, mutual exclusion cannot be

implemented in multiprocessors.
True False
False, a counter example is the Peterson's algorithm.

16. One of the reasons for BIOS to load bootloader instead of OS is to properly

handle multiple OSes.
True False
True, bootloader could check and see if there are multiple OS images exist.

17. In sequential consistency, the result of any execution is the same as if the

operations of all CPUs were executed in a unique total sequential order.
True False
False, with SQ, the result of any execution is the same as if the operations of all
CPUs were executed in some sequential order not a unique one.

18. Assuming no context-switching overhead, for a fix workload of N tasks, in round-

robin scheduling, if task A's CPU burst is shorter than the time quantum, Q, then
A's wait time is less than or equal to (N-1)*Q.

True False
True, the task will at most wait for the other (N-1) tasks to run during their time
quantum.

19. TLBs are typically implemented as fully associative caches.
True False
True, with fully associative caches, conflict misses are avoided.

20. In the Clock algorithm, if access bit is 1 for all pages every time a page fault

happens, then the replacement policy is equivalent to MIN policy.
True False
False, it is equivalent to FIFO policy.

21. Each PCIe device can implement its own address translation cache.
True False
True, address translation services (ATS) allow PCIe devices to bypass IOMMU
and implement address translation cache (ATC) similar to TLB.

22. In FAT file system, file number is used to index into FAT.
True False
True, the file's file number is its first storage block in FAT file system.

23. Improving the average response time always improves throughput.
True False
False, avg response time and throughput are not directly related.

24. For a non-preemptive scheduler, work-conserving policies always result in lower

average waiting time compared to non-work conserving policies.
True False
False, delaying a long task to wait for a short one to come improves avg waiting time.

25. Every I/O request will result in the invocation of the device driver's bottom half.
True False
False, if the data for the I/O request is available, then kernel serves the request
immediately.

26. Both "accessed" bit and "dirty" bit can be emulated by the operating system in

software instead of being implemented in hardware.
True False
True, software can emulate access bit by making all pages invalid and dirty bit by
making pages read only.

27. A conflict miss could be a reason for a page fault.
True False
False, memory is a fully associative cache of permanent storage. There is no conflict
miss in a fully associative cache.

28. A shared library code could write data to an absolute virtual address.
True False
False, each process has its private copy of the data. Library code can access data
through multiple levels of indirection.

29. Flash storage pages can be erased individually.
True False
False, a block of multiple pages can only be erased.

30. The size of inverted page table does not provide good cache locality.
True False
True, consequent virtual pages cannot be guaranteed to be mapped to consequent
physical pages.

31. With base and bound address translation, a program with base 0x1100 and bound

0x0100 can access the virtual memory address 0x1110 without raising exceptions.
True False
False, bound 0x0100 means the allowed virtual memory range is from 0x0000 to
0x00FF.

32. With multi-segment address translation, the same physical address can be mapped

to different virtual addresses in two different processes.
True False
True, each process can assign different segment numbers to a shared physical
segment.

33. On a cache miss, caching a whole block of multiple bytes is beneficial because of

temporal locality.
True False
False, caching more than one byte (the single byte that is accessed) is only beneficial
if there is spatial locality.

34. Multi-segment address translation eliminates external fragmentation.
True False
False, external fragmentation is mitigated but is not completely resolved, since
segments are of different sizes.

35. On a TLB misse, if the hardware has implemented page tables, hardware always

fills the TLB without kernel involvement.
True False
False, if PTE is invalid, kernel will be notified.

36. In modern processors, a TLB miss could be resolved without accessing the main

memory.
True False
True, PTE entries could be cached.

37. According to the Amdahl's law, if 99% of the code is parallelizable, then we can

achieve more than 9.2 speedup by using 10 cores compared to 1 core.
True False
False, maximum speedup with 10 cores is strictly less than 9.18 if 99% of the code is
parallelizable.

38. In firm real-time systems, completing tasks after their deadlines might still be

useful.
True False
False, once the deadline passes, completing the task has no value in firm real-time.
systems.

39. In MSI protocol, if one CPU has a cache block in "Modified" state, that cache

block should be in "Invalid" state for the other CPUs.
True False
True, only one core can be in Modified state at any given time - M (modified) is an
exclusive state, forces other CPUs/caches w/ the data to go to Invalid.

40. Reducing the period of the polling server means giving higher priority to

aperiodic tasks.
True False
True, PS uses rate monotonic scheduling (RM).

2. (18 Points) Condition Variables. Fill in the blanks to implement CV using only
semaphores. Write at most one statement per line. You may not need all lines.

3. (24 Points) Fair Scheduling. Consider a uniprocessor system. Suppose that there are
3 tasks, A, B, and C. All three tasks have a CPU burst time of 1 hour, and all three are
ready to execute at time 0. Suppose that context switching overhead is zero.

a. (12 Points) Suppose that A's weight is 1, B's weight is 2, and C's weight is 3.
Complete the table below to indicate what the CPU runs for its first 8
milliseconds under weighted max-min fair scheduling with target latency of 20ms.
Use A to indicate that CPU runs task A, B for task B, and C for task C. Assume
that the scheduler always picks A over B and C if they have the same virtual time
and B over C if they both have the same virtual time. Show your work.

Time 0 to 1ms 1 to 2ms 2 to 3ms 3 to 4ms 4 to 5ms 5 to 6ms 6 to 7ms 7 to 8ms

Task A A A A and B B B B B

class CV {
private:

 queue<Semaphore> cvQueue;

public:
 wait(*mutex) {

 semaphore = new Semaphore;

 queue.add(semaphore);

 mutex->unlock();

 semaphore.P();

 mutex->lock();
 }

 signal() {

 if (!queue.empty()) {

 semaphore = queue.remove();

 semaphore.V();

 }
 }

 broadcast() {

 while (!queue.empty()) {

 semaphore = queue.remove();

 semaphore.V();

 }
 }

}

b. (12 Points) Suppose that A has one ticket, B has 2 tickets, and C has 3 tickets.

Complete the table below to indicate what the CPU runs for its first 8
milliseconds under stride scheduling with time quantum of 1ms and W of 600.
Use A to indicate that CPU runs task A, B for task B, and C for task C. Assume
that the scheduler always picks A over B and C if they have the same pass and B
over C if they both have the same pass. Show your work.

Time 0 to 1ms 1 to 2ms 2 to 3ms 3 to 4ms 4 to 5ms 5 to 6ms 6 to 7ms 7 to 8ms

Task A B C C B C A B

4. (18 Points) Real-time Systems.

a. (5 Points) Consider the following tasks: T1(12, 1), T2(6,3), and T3(24,10). Unit
of time is a millisecond. All tasks arrive at t = 0ms. With EDF scheduling, during
the first 24 milliseconds, T3 gets preempted by T2 times. (Put a single
number in the box below - when tasks have the same deadline, A gets higher
priority, then B, and then C - task A is preempted by task B if a job of B preempts
an unfinished job of A) Show your work.

3

b. (13 Points) Consider a uniprocessor with 3 tasks: H, M, and L. Priority of H is

high, priority of M is medium, and priority of L is low. Strict-priority scheduling
is used to schedule tasks. The system also implements the priority-ceiling
protocol.

 - Suppose that there are two mutexes used by different tasks: R2 and R2.
 - L arrives at time t = 0, M arrives at time t = 3ms, and H arrives at t = 6ms.
 - If L runs by itself (without M and H being present in the system), it runs for
 1ms. Then, it locks R1. It then runs for 6ms. It then releases R1 and terminates.
 - If M runs by itself (without L and H being present in the system), it runs for
 1ms. It then locks R2. Then, it runs for 1ms. Then, it locks R1. Then it
 runs for another 1ms. Then it releases both mutexes and terminates.
 - If H runs by itself (without L and M being present in the system), it runs for
 1ms. It then locks R2. Then it runs for another 2ms. It then releases R2 and
 terminates.
 Complete the table below to indicate what the CPU runs for its first 13
 milliseconds. Show your work.

0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 11 to 12 12 to 13

L L L M L L H H H L L M M

