ECE700.07: Game Theory with Engineering Applications

Lecture 2: Preferences and Utilities

Seyed Majid Zahedi
UNIVERSITY OF
WATERLOO

Overview

- Ordinal preferences
- Axioms of rational behavior
- Utility theorem
- Risk attitudes
- Readings
- MAS Sec. 3.I

Ordinal Preferences

- Agents rank outcomes
- $a>_{i} b$ means agent i strictly prefers a to b
- $\mathrm{a} \gtrsim_{i} \mathrm{~b}$ means agent i prefers a to b (a is at least as good as b)
- $\mathrm{a} \sim_{i} \mathrm{~b}$ means agent i is indifferent between a and b
- Lottery A defines probability distribution over outcomes $o \in \mathcal{L}$
- $A=\left[p_{1}: o_{1}, \ldots, p_{k}: o_{K}\right]$

Axioms of Rational Decision Making

- Completeness
- For every A and B, either $A \gtrsim B$ or $B \gtrsim A$
- Transitivity
- For every A, B, and C, if $A \gtrsim B$ and $B \succsim C$, then $A \gtrsim C$
- Independence of irrelevant alternatives
- For every A, B, C, and $p, A \gtrsim B$ if and only if $p A+(1-p) C \gtrsim p B+(1-p) C$
- Continuity
- For every A, B, and C, if $A \gtrsim B \gtrsim C$, then $\exists p$ such that $B \sim p A+(1-p) C$

von Neumann-Morgenstern Utility Theorem

- If all axioms are satisfied, then there exists function $u: \mathcal{L} \mapsto \mathbb{R}$ such that
- $u\left(o_{1}\right) \geq u\left(o_{2}\right)$ if and only if $o_{1} \succcurlyeq o_{2}$
- $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$
- Such function is called utility function
- What are units?
- Doesn't really matter
- Replacing $u(o)$ by $u^{\prime}(o)=a+b u(o)$, doesn't change agent's preference
- Conversely, agents maximizing expectation of a function obey axioms

Are People "Rational" Decision Makers?

-Which one do you prefer?

- Lottery ticket that pays out $\$ 10$ with prob 0.5 and $\$ 0$ otherwise
- Lottery ticket that pays out $\$ 3$ with prob I
- How about these?
- Lottery ticket that pays out $\$ 100,000,000$ with prob 0.5 and $\$ 0$ otherwise
- Lottery ticket that pays out \$30,000,000 with prob I
- Usually, people do not simply go by expected value

Uncertainty and Risk Attitudes

- Risk-neutral agent cares about expected value
- Risk-averse agent prefers expected value of lottery to the lottery ticket
- Most of people are this way
- Risk-seeking agent prefers lottery ticket to expected value of the lottery

Example

- Typically, at some point, having one more dollar does not make people much happier (decreasing marginal utility)

Example (cont.)

- Which one is better?
- Lottery I: get \$1400 with prob I
- Lottery 2: get $\$ 5000$ with prob 0.25 and $\$ 200$ otherwise
- What about expected amount of money?

Risk Attitudes (revisited)

- Green has decreasing marginal utility \rightarrow risk-averse
- Blue has constant marginal utility \rightarrow risk-neutral
- Red has increasing marginal utility \rightarrow risk-seeking
- Grey neither risk-averse (everywhere) nor risk-seeking (everywhere)

Questions?

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]

