ECE700.07: Game Theory with Engineering Applications

Lecture 2: Preferences and Utilities

Seyed Majid Zahedi

- Ordinal preferences
- Axioms of rational behavior
- Utility theorem
- Risk attitudes

- Readings
 - MAS Sec. 3.1

Ordinal Preferences

- Agents rank outcomes
 - a \succ_i b means agent *i* strictly prefers a to b
 - a \gtrsim_i b means agent *i* prefers a to b (a is at least as good as b)
 - a \sim_i b means agent i is indifferent between a and b
- Lottery A defines probability distribution over outcomes $o \in \mathcal{L}$
 - $A = [p_1: o_1, ..., p_k: o_K]$

Axioms of Rational Decision Making

- Completeness
 - For every A and B, either $A \gtrsim B$ or $B \gtrsim A$
- Transitivity
 - For every A, B, and C, if $A \gtrsim B$ and $B \gtrsim C$, then $A \gtrsim C$
- Independence of irrelevant alternatives
 - For every A, B, C, and p, $A \gtrsim B$ if and only if $pA + (1-p)C \gtrsim pB + (1-p)C$
- Continuity
 - For every A, B, and C, if $A \gtrsim B \gtrsim C$, then $\exists p$ such that $B \sim pA + (1-p)C$

von Neumann-Morgenstern Utility Theorem

- If all axioms are satisfied, then there exists function $u\colon \mathcal{L} \mapsto \mathbb{R}$ such that
 - $u(o_1) \ge u(o_2)$ if and only if $o_1 \ge o_2$
 - $u([p_1:o_1,...,p_k:o_k]) = \sum_{i=1}^k p_i u(o_i)$
- Such function is called utility function
- What are units?
 - Doesn't really matter
 - Replacing u(o) by u'(o) = a + bu(o), doesn't change agent's preference
- Conversely, agents maximizing expectation of a function obey axioms

Are People "Rational" Decision Makers?

- Which one do you prefer?
 - Lottery ticket that pays out \$10 with prob 0.5 and \$0 otherwise
 - Lottery ticket that pays out \$3 with prob I
- How about these?
 - Lottery ticket that pays out \$100,000,000 with prob 0.5 and \$0 otherwise
 - Lottery ticket that pays out \$30,000,000 with prob I
- Usually, people do not simply go by expected value

Uncertainty and Risk Attitudes

- Risk-neutral agent cares about expected value
- Risk-averse agent prefers expected value of lottery to the lottery ticket
 - Most of people are this way
- Risk-seeking agent prefers lottery ticket to expected value of the lottery

• Typically, at some point, having one more dollar does not make people much happier (decreasing marginal utility)

Example (cont.)

- Which one is better?
 - Lottery I: get \$1400 with prob I
 - Lottery 2: get \$5000 with prob 0.25 and \$200 otherwise
- What about expected amount of money?

Risk Attitudes (revisited)

- Green has decreasing marginal utility \rightarrow risk-averse
- Blue has constant marginal utility \rightarrow risk-neutral
- Red has increasing marginal utility \rightarrow risk-seeking
- Grey neither risk-averse (everywhere) nor risk-seeking (everywhere)

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
 - Asu Ozdaglar [<u>MIT 6.254</u>]
 - Vincent Conitzer [Duke CPS 590.4]