ECE700.07: Game Theory with Engineering Applications

Lecture 3: Games in Normal Form

Seyed Majid Zahedi
UNIVERSITY OF
WATERLOO

Outline

- Strategic form games
- Dominant strategy equilibrium
- Pure and mixed Nash equilibrium
- Iterative elimination of strictly dominated strategies
- Price of anarchy
- Correlated equilibrium
- Readings:
- MAS Sec. 3.2 and 3.4, GT Sec. I and 2

Strategic Form Games

- Agents act simultaneously without knowledge of others' actions
- Each game has to have
- (I) Set of agents (2) Set of actions (3) Utilities
- Formally, strategic form game is triplet $\left\langle\mathcal{J},\left(S_{i}\right)_{i \in \mathcal{J}},\left(u_{i}\right)_{i \in \mathcal{J}}\right\rangle$
- J is finite set of agents
- S_{i} is set of available actions for agent i and $s_{i} \in S_{i}$ is action of agent i
- $u_{i}: S \rightarrow \mathbb{R}$ is utility of agent i, where $S=\prod_{i} S_{i}$ is set of all action profiles
- $s_{-i}=\left[s_{j}\right]_{j \neq i}$ is vector of actions for all agents except \boldsymbol{i}
- $S_{-i}=\prod_{j \neq i} S_{j}$ is set of all action profiles for all agents except i
- $\left(s_{i}, s_{-i}\right) \in S$ is strategy profile, or outcome

Example: Prisoner's Dilemma

Prisoner 2	Stay Silent	Confess
Stay Silent	$(-1,-1)$	$(-3,0)$
Confess	$(0,-3)$	$(-2,-2)$

- First number denotes utility of AI and second number utility of A2
- Row i and column j cell contains (x, y), where $x=u_{1}(i, j)$ and $y=u_{2}(i, j)$

Strategies

- Strategy is complete description of how to play
- It requires full contingent planning
- As if you have to delegate play to "computer"
- You would have to spell out how game should be played in every contingency
- In chess, for example, this would be an impossible task
- In strategic form games, there is no difference between action and strategy (we will use them interchangeably)

Finite Strategy Spaces

- When S_{i} is finite for all i, game is called finite game
- For 2 agents and small action sets, it can be expressed in matrix form
- Example: matching pennies

Agent 2	Heads	Tails
Heads	$(-1,1)$	$(1,-1)$
Tails	$(1,-1)$	$(0,0)$

- Game represents pure conflict; one player's utility is negative other player's utility; thus, zero sum game

Infinite Strategy Spaces

- When S_{i} is infinite for at least one i, game is called infinite game
- Example: Cournot competition
- Two firms (agents) produce homogeneous good for same market
- Agent i 's action is quantity, $s_{i} \in[0, \infty]$, she produces
- Agent i 's utility is her total revenue minus total cost
- $u_{i}\left(s_{1}, s_{2}\right)=s_{i} p\left(s_{1}+s_{2}\right)-c s_{i}$
- $p(s)$ is price as function of total quantity, c is unit cost (same for both agents)

Dominant Strategy

- Strategy $s_{i} \in S_{i}$ is dominant strategy for agent i if

$$
u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } \mathrm{s}_{i}^{\prime} \in S_{i} \text { and for all } \mathrm{s}_{-i} \in S_{-i}
$$

- Example: prisoner's dilemma

Prisoner 1	Stay Silent	Confess
Stay Silent	$(-1,-1)$	$(-3,0)$
Confess	$(0,-3)$	$(-2,-2)$

- Action "confess" strictly dominates action "stay silent"
- Self-interested, rational behavior does not lead to socially optimal result

Dominant Strategy Equilibrium

- Strategy profile s^{*} is (strictly) dominant strategy equilibrium if for each agent $i, \mathrm{~s}_{i}^{*}$ is (strictly) dominant strategy
- Example: ISP routing game
- ISPs share networks with other ISPs for free
- ISPs choose to route traffic themselves or via partner
- In this example, we assume cost along link is one

ISP 1 ISP 2	Route Yourself	Route via Partner
Route Yourself	$(-3,-3)$	$(-6,-2)$
Route via Partner	$(-2,-6)$	$(-5,-5)$

Dominated Strategies

- Strategy $s_{i} \in S_{i}$ is strictly dominated for agent i if $\exists \mathrm{s}_{i}^{\prime} \in S_{i}$:

$$
u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right), \forall s_{-i} \in S_{-i}
$$

- Strategy $s_{i} \in S_{i}$ is weakly dominated for agent i if $\exists \mathrm{s}_{i}^{\prime} \in S_{i}$:

$$
\begin{aligned}
& u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right), \forall s_{-i} \in S_{-i} \\
& u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right), \exists s_{-i} \in S_{-i}
\end{aligned}
$$

Rationality and Strictly Dominated Strategies

Prisoner 2	Stay Silent	Confess	Suicide
Stay Silent	$(-1,-1)$	$(-3,0)$	$(0,-10)$
Confess	$(0,-3)$	$(-2,-2)$	$(-1,-10)$
Suicide	$(-10,0)$	$(-10,-1)$	$(-10,-10)$

- There is no DS because of additional "suicide" strategy
- Strictly dominated strategy for both prisoners
- No "rational" agent would choose "suicide"
- No agent should play strictly dominated strategy

Rationality and Strictly Dominated Strategies (cont.)

- If A I knows that A 2 is rational, then she can eliminate $A 2$'s "suicide" strategy, and likewise for A2
- After one round of elimination of strictly dominated strategies, we are back to prisoner's dilemma game
- Iterated elimination of strictly dominated strategies leads to unique outcome, "confess, confess"
- Game is dominance solvable (We will come back to this later)

How Reasonable is Dominance Solvability?

- Consider k-beauty contest game is dominance solvable!

Existence of Dominant Strategy Equilibrium

- Does matching pennies game have DSE?

Agent 2	Heads	Tails
Agent 1	$(-1,1)$	$(1,-1)$
Heads	$(1,-1)$	$(-1,1)$

- Dominant strategy equilibria do not always exist

Best Response

- $B_{i}\left(s_{-i}\right)$ represents agent i 's best response correspondence to s_{-i}
- Example: Cournot competition
- $u_{i}\left(s_{1}, s_{2}\right)=s_{i} p\left(s_{1}+s_{2}\right)-c s_{i}$
- Suppose that $c=1$ and $p(s)=\max \{0,2-s\}$
- First order optimality condition gives

$$
\begin{aligned}
B_{i}\left(s_{-i}\right) & =\arg \max \left(s_{i}\left(2-s_{i}-s_{-i}\right)-s_{i}\right) \\
& = \begin{cases}\left(1-s_{-i}\right) / 2 & \text { if } s_{-i} \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Figure illustrates best response correspondences (functions here!)

Pure Strategy Nash Equilibrium

- (Pure strategy) Nash equilibrium is strategy profile $s^{*} \in S$ such that

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right), \quad \forall i, s_{i} \in S_{i}
$$

- No agent can profitably deviate given strategies of others
- In Nash equilibrium, best response correspondences intersect
- Strategy profile $s^{*} \in S$ is Nash equilibrium iff $s_{i}^{*} \in B_{i}\left(s_{-i}^{*}\right), \forall i$

Example: Battle of the Sexes

Husband Wife	Football	Opera
Football	$(4,1)$	$(-1,-1)$
Opera	$(-1,-1)$	$(1,4)$

- Couple agreed to meet this evening
- They cannot recall if they will be attending opera or football
- Husband prefers football, wife prefers opera
- Both prefer to go to same place rather than different ones

Existence of Pure Strategy Nash Equilibrium

- Does matching pennies game have pure strategy NE?

Agent 2	Heads	Tails
Heads	$(-1,1)$	$(1,-1)$
Tails	$(1,-1)$	$(-1,1)$

- Pure strategy Nash equilibria do not always exist

Mixed Strategies

- Let Σ_{i} denote set of probability measures over pure strategy set S_{i}
- E.g., 45% left, I 0% middle, and 45% right
- We use $\sigma_{i} \in \Sigma_{i}$ to denote mixed strategy of agent i, and $\sigma \in \Sigma=\prod_{i \in \mathcal{J}} \Sigma_{i}$ to denote mixed strategy profile
- This implicitly assumes agents randomize independently
- Similarly, we define $\sigma_{-i} \in \Sigma_{-i}=\prod_{j \neq i} \Sigma_{j}$
- Following von Neumann-Morgenstern expected utility theory, we have

$$
u_{i}(\sigma)=\int_{S} u_{i}(s) d \sigma(s)
$$

Strict Dominance by Mixed Strategy

Agent 1 Agent 2	a	b
a	$(2,0)$	$(-1,0)$
b	$(0,0)$	$(0,0)$
c	$(-1,0)$	$(2,0)$

- Agent I has no pure strategy that strictly dominates b
- However, b is strictly dominated by mixed strategy $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$
- Action s_{i} is strictly dominated if there exists σ_{i} such that $u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right), \quad \forall s_{-i} \in S_{-i}$
- Strictly dominated strategy is never played with positive probability in mixed strategy NE
- However, weakly dominated strategies could be used in Nash equilibrium

Iterative Elimination of Strictly Dominated Strategies

- Let $S_{i}^{0}=S_{i}$ and $\Sigma_{i}^{0}=\Sigma_{i}$
- For each agent i, define
- $S_{i}^{n}=\left\{s_{i} \in S_{i}^{n-1} \mid \nexists \sigma_{i} \in \Sigma_{i}^{n-1}: \quad u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-i}^{n-1}\right\}$
- And define
- $\Sigma_{i}^{n}=\left\{\sigma_{i} \in \Sigma_{i} \mid \sigma_{i}\left(s_{i}\right)>0\right.$ only if $\left.s_{i} \in S_{i}^{n}\right\}$
- Finally, define S_{i}^{∞} as set of agent i 's strategies that survive IESDS
- $S_{i}^{\infty}=\cap_{n=1}^{\infty} S_{i}^{n}$

Mixed Strategy Nash Equilibrium

- Profile σ^{*} is (mixed strategy) Nash equilibrium if for each agent i

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right), \quad \forall \sigma_{i} \in \Sigma_{i}
$$

- Profile σ^{*} is (mixed strategy) Nash equilibrium iff for each agent i

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(s_{i}, \sigma_{-i}^{*}\right), \quad \forall s_{i} \in \Sigma_{i}
$$

-Why?

- Hint: Agent i's utility for playing mix strategies is convex combination of his utility when playing pure strategies

Mixed Strategy Nash Equilibria (cont.)

- For G, finite strategic form game, profile σ^{*} is NE iff for each agent, every pure strategy in support of σ_{i}^{*} is best response to σ_{-i}^{*}
- Why?
- Hint: If profile σ^{*} puts positive probability on strategy that is not best response, shifting that probability to other strategies improves expected utility
- Every action in support of agent's NE mixed strategy yields same utility

Finding Mixed Strategy Nash Equilibrium

Husband Wife	Football	Opera
Football	$(4,1)$	$(-1,-1)$
Opera	$(-1,-1)$	$(1,4)$

- Assume H goes to football with probability p and W goes to opera with probability q
- Using mixed equilibrium characterization, we have

$$
\begin{aligned}
& p-(1-p)=-p+4(1-p) \Rightarrow p=\frac{5}{7} \\
& q-(1-q)=-q+4(1-q) \Rightarrow q=\frac{5}{7}
\end{aligned}
$$

- Mixed strategy Nash equilibrium utilities are $\left(\frac{3}{7}, \frac{3}{7}\right)$

Example: Bertrand Competition with Capacity Constraints

- Two firms charge prices $p_{1}, p_{2} \in[0,1]$ per unit of same good
- There is unit demand which has to be supplied
- Customers prefer firm with lower price
- Assume each firm has capacity constraint of $2 / 3$ units of demand
- If $p_{1}<p_{2}$, firm 2 gets I/3 units of demand
- If both firms charge same price, each gets half of demand
- Utility of each firm is profit they make ($c=0$, for both firms)

Example: Bertrand Competition with Capacity Constraints (cont.)

- Without capacity constraint, $p_{1}=p_{2}=0$ is unique pure strategy NE
- You will prove this in first assignment!
- With capacity constraint, $p_{1}=p_{2}=0$ is no longer pure strategy NE
- Either firm can increase its price and still have I/3 units of demand
- We consider symmetric mixed strategy Nash equilibrium
- l.e., both firms use same mixed strategy
- We use cumulative distribution function, $F(\cdot)$, for mixed strategies

Example: Bertrand Competition with Capacity
 Constraints (cont.)

- What is expected utility of firm I when it chooses p_{1} and firm 2 uses mixed strategy $F(\cdot)$?

$$
u_{1}\left(p_{1}, F(\cdot)\right)=F\left(p_{1}\right) \frac{p_{1}}{3}+\left(1-F\left(p_{1}\right)\right) \frac{2 p_{1}}{3}
$$

- Each action in support of mixed strategy must yield same utility at NE
- $\forall p$ in support of $F(\cdot)$

$$
\frac{2 p}{3}-F(p) \frac{p}{3}=k,
$$

- $\exists k \geq 0$

$$
F(p)=2-\frac{3 k}{p}
$$

Example: Bertrand Competition with Capacity
 Constraints (cont.)

- Note that upper support of mixed strategy must be at $p=1$, which implies that $F(1)=1$
- Combining with preceding, we obtain

$$
F(p)= \begin{cases}0, & \text { if } 0 \leq p \leq \frac{1}{2} \\ 2-\frac{1}{p}, & \text { if } \frac{1}{2} \leq p \leq 1 \\ 1, & \text { if } p \geq 1\end{cases}
$$

Nash's Theorem

- Theorem (Nash): Every finite game has mixed strategy NE
- Why is this important?
- Without knowing the existence of equilibrium, it is difficult (perhaps meaningless) to try to understand its properties
- Armed with this theorem, we also know that every finite game has at least one equilibrium, and thus we can simply try to locate equilibria
- Knowing that there might be multiple equilibria, we should study efficiency/inefficiency of games' equilibria

Example: Braess's Paradox

- There are $2 k$ drivers commuting from s to t
- $C(x)$ indicates travel time in hours for x drivers
- k drivers going through v and k going through w is NE
- Why?

Example: Braess's Paradox (cont.)

- Suppose we install teleportation device allowing drivers to travel instantly from v to w
- What is new NE? What is drivers' commute time?
- What is optimal commute time?
- Does selfish routing does not minimize commute time?
- Price of Anarchy (PoA) is ratio between system performance with strategic agents and best possible system performance
- Ratio between 2 and 3/2 in Braess's Paradox

Correlated Strategies

- In NE, agents randomize over strategies independently
- Agents can randomize by communicating prior to taking actions
- Example: battle of the sexes

Husband Wife	Football	Opera
Football	$(4,1)$	$(-1,-1)$
Opera	$(-1,-1)$	$(1,4)$

- Unique mixed strategy NE is $\left(\left(\frac{5}{7}, \frac{2}{7}\right),\left(\frac{5}{7}, \frac{2}{7}\right)\right)$ with utilities $\left(\frac{3}{7}, \frac{3}{7}\right)$
- Can they both do better by coordinating?

Correlated Strategies (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get signal to go to football/opera
- If H/W sees heads, he/she believes that W/H will go to football, and therefore going to football is his/her best response
- Similar argument can be made when he/she sees tails
- When recommendation of coin is part of Nash equilibrium, no agent has any incentives to deviate
- Expected utilities for this play of game increases to $(2.5,2.5)$

Correlated Equilibrium

- Correlated equilibrium of finite game is joint probability distribution π $\in \Delta(S)$ such that $\forall i, s_{i} \in S_{i}$ with $\pi\left(s_{i}\right)>0$, and $t_{i} \in S_{i}$

$$
\sum_{s_{-i} \in S_{-i}} \pi\left(s_{-i} \mid s_{i}\right)\left[u_{i}\left(s_{i}, s_{-i}\right)-u_{i}\left(t_{i}, s_{-i}\right)\right] \geq 0
$$

- Distribution π is defined to be correlated equilibrium if no agent can benefit by deviating from her recommendation, assuming other agents play according to their recommendations

Example: Game of Chicken

- (D, S) and (S, D) are Nash equilibria
- They are pure-strategy Nash equilibria: nobody randomizes
- They are also strict Nash equilibria: changing strategy will make agents strictly worse off

Example: Game of Chicken (cont.)

Driver 1 Priver 2	S	D
S	$(-5,-5)$	$(1,-1)$
D	$(-1,1)$	$(0,0)$

- Assume DI dodges with probability p and D2 dodges with probability q
- Using mixed equilibrium characterization, we have

$$
\begin{aligned}
& p-5(1-p)=0-(1-p) \Rightarrow p=\frac{4}{5} \\
& q-5(1-q)=0-(1-q) \Rightarrow q=\frac{4}{5}
\end{aligned}
$$

- Mixed strategy Nash equilibrium utilities are $\left(\frac{-1}{5}, \frac{-1}{5}\right)$, people may die!

Example: Game of Chicken (cont.)

- Is this correlated equilibrium?
- If DI gets signal to dodge
- Conditional probability that D2 dodges is $\frac{0.2}{0.2+0.4}=\frac{1}{3}$

Driver 2	S	D
S	$(-5,-5)$ 0%	$(1,-1)$ 40%
D	$(-1,1)$ 40%	$(0,0)$ 20%

- Expected utility of dodging is $\left(\frac{2}{3}\right) \times(-1)$
- Expected utility of going straight is $\left(\frac{1}{3}\right) \times 1+\left(\frac{2}{3}\right) \times(-5)=-3$
- Following recommendation is better
- If D I gets signal to go straight, she knows that D2 is told to dodge, so again, D I wants to follow recommendation
- Similar analysis works for D2, so nobody dies!
- Expected utilities increase to $(0,0)$

Characterization of Correlated Equilibrium

- Proposition
- Joint distribution $\pi \in \Delta(S)$ is correlated equilibrium of finite game iff

$$
\sum_{s_{-i} \in S_{-i}} \pi(s)\left[u_{i}\left(s_{i}, s_{-i}\right)-u_{i}\left(t_{i}, s_{-i}\right)\right] \geq 0, \quad \forall i, s_{i}, t_{i} \in S_{i}
$$

- Proof
- By definition of conditional probability, correlated equilibrium can be written as

$$
\sum_{s_{-i} \in S_{-i}} \frac{\pi\left(s_{i}, s_{-i}\right)}{{\Sigma_{--i} i S_{-i}}_{\pi\left(s_{i}, t_{-i}\right)}}\left[u_{i}\left(s_{i}, s_{-i}\right)-u_{i}\left(t_{i}, s_{-i}\right)\right] \geq 0, \forall i, s_{i} \in S_{i} \text { with } \pi\left(s_{i}\right)>0 \text {, and } t_{i}
$$

- Denominator does not depend on variable of sum, so it can be factored and cancelled
- If $\pi\left(s_{i}\right)=0$, then LHS of Proposition is zero regardless of i and t_{i}, so equation always holds

Questions?

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]

