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Pure and mixed Nash equilibrium

terative elimination of strictly dominated strategies

Price of anarchy

Correlated equilibrium

Readings:
e MAS Sec. 3.2 and 34, GT Sec. | and 2



Strategic Form Games

* Agents act simultaneously without knowledge of others’ actions

* Each game has to have
* (1) Set of agents (2) Set of actions (3) Utilities

* Formally, strategic form game is triplet (7, (S;);e7, (U;)ie7)
* J is finite set of agents
* S; Is set of avallable actions for agent i and s; € S; Is action of agent i
* u;: S = Ris utility of agent i, where § = []; S; is set of all action profiles

°*S_; = [S] .. Is vector of actions for all agents except i
l RN ET]

* S_i =112 Sj is set of all action profiles for all agents except i

* (s;, S_;) € S Is strategy profile, or outcome



Example: Prisoner’s Dilemma

: soner 2 Stay Silent Confess
Prisoner 1
Stay Silent (-1, -1) (-3, 0)
Confess (0, -3) (-2, -2)

* First number denotes utility of Al and second number utility of A2
* Row i and column j cell contains (x,y), where x = u(i,j) and y = u,(i,j)



Strategies

* Strategy Is complete description of how to play

* [t requires full contingent planning
* As if you have to delegate play to “computer”
* You would have to spell out how game should be played in every contingency
* In chess, for example, this would be an impossible task

* In strategic form games, there is no difference between action and
strategy (we will use them interchangeably)



Finite Strategy Spaces

* When §; is finite for all i, game is called finite game
* For 2 agents and small action sets, it can be expressed in matrix form

* Example: matching pennies

Agent 2 :
Agent 1 Heads Tails
Heads -1, 1) (1, -1)
Tails (1, -1) (0, 0)

* Game represents pure conflict; one player's utility is negative other player’s utility;
thus, zero sum game



Infinite Strategy Spaces

* When §; Is infinite for at least one i, game is called infinite game

* Example: Cournot competition
* Two firms (agents) produce homogeneous good for same market
* Agent i's action is quantity, s; € [0, 00], she produces
* Agent ['s utility i1s her total revenue minus total cost

* ui(s1,82) = sip(sy + s2) — sy
* p(s) is price as function of total quantity, ¢ is unit cost (same for both agents)



Dominant Strategy

* Strategy s; € S; Is dominant strategy for agent [ If
ui(si,s_l-) = ui(si', S—i) for all Sl{ S Si and for all S_; € S—i

* Example: prisoner’s dilemma

risoner 2 .
Prisoner 1 Stay Silent Confess
Stay Silent (-1, -1) (-3, 0)
Confess (0, -3) (-2, -2)

* Action “confess’” strictly dominates action “stay silent”

* Self-interested, rational behavior does not lead to socially optimal result



Dominant Strategy Equilibrium

* Strategy profile s™ is (strictly) dominant strategy equilibrium if for each

agent i, s; is (strictly) dominant strategy

* Example: ISP routing game

* |ISPs share networks with other ISPs for free
* ISPs choose to route traffic themselves or via partner

* In this example, we assume cost along link is one

ISP 2
ISP 1

Route Yourself

Route via Partner

Route Yourself

(-3,-3)

(-6, -2)

Route via Partner

(-2, -6)

(_5= '5)

ISP1: st t1
ISP2: s2 »t2

Peering points



Dominated Strategies

e Strategy s; € S; is strictly dominated for agent i if Is; € S;:
u;(s;,s-;) > u(s,5-;), Vs_; €S

e Strategy s; € S; is weakly dominated for agent i if 3s; € S;:
u;(s;,s-1) = ui(s;,s-;), Vs_; €S_;

u; (s, s—) >u(s;,s-y), Is_; €S



Rationality and Strictly Dominated Strategies

Prisoner :isoner 2 Stay Silent Confess Suicide
Stay Silent (-1,-1) (-3, 0) (0, -10)
Confess (0, -3) (-2, -2) (-1, -10)
Suicide (-10, 0) (-10, -1) (-10, -10)

* There is no DS because of additional “suicide” strategy
* Strictly dominated strategy for both prisoners

* No "rational” agent would choose “suicide”
* No agent should play strictly dominated strategy



Rationality and Strictly Dominated Strategies (cont.)

* [f Al knows that A2 Is rational, then she can eliminate A2's “suicide”
strategy, and likewise for A2

* After one round of elimination of strictly dominated strategies, we are
back to prisoner’s dilemma game

* [terated elimination of strictly dominated strategies leads to unique
outcome, “confess, confess”

* Game Is dominance solvable (VWe will come back to this later)



How Reasonable is Dominance Solvability?

* Consider k-beauty contest game Is dominance solvable!

100
dominated

(2/3)*100 |
dominated after removal of

(2/3)*(2/3)*100 (originally) dominated
strategies




Existence of Dominant Strategy Equilibrium

* Does matching pennies game have DSE?

Agent 2
Agent 1

Heads -1, 1) (1, -1)

Heads Tails

Tails (1, -1) (-1, 1)

* Dominant strategy equilibria do not always exist



Best Response

* B;(s_;) represents agent i's best response correspondence to s_;

* Example: Cournot competition

* u;(s1,52) = s5;p(s1 + 52) —cs;
e Suppose that ¢ = 1 and p(s) = max{0, 2 — s}

1,2
* First order optimality condition gives

B;(s_;) = argmax(s;(2 —s; — s_;) — ;)

_ {(1 —5_4)/2 ifs_; <1

0 otherwise

* Figure illustrates best response correspondences (functions herel)



Pure Strategy Nash Equilibrium

* (Pure strategy) Nash equilibrium is strategy profile s* € S such that
u;(s;,sX;) =u;(s;,s)), Vi,s; € S;

* No agent can profitably deviate given strategies of others
* In Nash equilibrium, best response correspondences intersect

e Strategy profile s* € S is Nash equilibrium iff s; € B;(s~;), Vi




Example: Battle of the Sexes

Wife
Husban Football Opera
Football 4, 1) (-1, -1)
Opera (-1, -1) (1, 4)

* Couple agreed to meet this evening
* They cannot recall if they will be attending opera or football
* Husband prefers football, wife prefers opera

* Both prefer to go to same place rather than different ones



Existence of Pure Strategy Nash Equilibrium

* Does matching pennies game have pure strategy NE?

Agent 2
Agent 1

Heads -1, 1) (1, -1)

Heads Tails

Tails (1, -1) (-1, 1)

* Pure strategy Nash equilibria do not always exist



Mixed Strategies

* Let X; denote set of probability measures over pure strategy set S;
* E.g,45% left, 10% middle, and 45% right

* We use g; € X; to denote mixed strategy of agent i, and
o € X = |];eq Z; to denote mixed strategy profile
* This implicitly assumes agents randomize independently

* Similarly, we define o_; € Z_; = [];4; Z;

* Following von Neumann-Morgenstern expected utility theory, we have

() = f w(s)do(s)
S



Strict Dominance by Mixed Strategy

po Agent 2 . o
(2, 0) (-1, 0)
0, 0) (0, 0)
(-1,0) (2,0)

Agent | has no pure strategy that strictly dominates b

However, b is strictly dominated by mixed strategy (%, O,%)

Action s; is strictly dominated if there exists g; such that u;(o;, s—;) > u;(s;,s—;), Vs_; €S_;

Strictly dominated strategy is never played with positive probability in mixed strategy NE

However, weakly dominated strategies could be used in Nash equilibrium



Iterative Elimination of Strictly Dominated Strategies

e LetSY =S;and X} = 3
* For each agent i, define

e St ={s; €S Ao, €21 wi(oy,s_) > ui(sy, ) Vs_; € ST
* And define

« X' ={0; € Zi]oy(s;) > 0 onlyifs; € S]'}

* Finally, define S;” as set of agent i's strategies that survive IESDS
* S0 = Np=1 S



Mixed Strategy Nash Equilibrium

* Profile ™ Is (mixed strategy) Nash equilibrium if for each agent i

u;(o/,0-;) =2 u;(o;,0,;), Vo; € X;

* Profile 6™ is (mixed strategy) Nash equilibrium iff for each agent i
u;(o/,0%;) =2 u;i(s;,0;), Vs; € X;
* Why!
* Hint: Agent i’s utility for playing mix strategies is convex combination of his utility

when playing pure strategies



Mixed Strategy Nash Equilibria (cont.)

* For G, finite strategic form game, profile o™ is NE Iff for each agent,
every pure strategy in support of g; is best response to ¢ ;
* Why!
* Hint: If profile o™ puts positive probability on strategy that is not best response,

shifting that probability to other strategies improves expected utility

* Every action in support of agent's NE mixed strategy yields same utility



Finding Mixed Strategy Nash Equilibrium

Wife

Husban Football Opera
Football 4, 1) (-1, -1)
Opera (-1, -1) (1, 4)

* Assume H goes to football with probability p and W goes to opera with probability g

* Using mixed equilibrium characterization, we have
p—(A-p)=-p+4(l-p)=>p=

g—1-q@)=—q+4(1—q)=>q=

g U1 g o

+ Mixed strategy Nash equilibrium utilities are (3%)



Example: Bertrand Competition with Capacity
Constraints

* Two firms charge prices pq, P, € [0, 1] per unit of same good
* There is unit demand which has to be supplied
* Customers prefer firm with lower price

* Assume each firm has capacity constraint of 2/3 units of demand
* If p1 < py, firm 2 gets |/3 units of demand

* |f both firms charge same price, each gets half of demand

 Utlility of each firm is profit they make (¢ = 0, for both firms)



Example: Bertrand Competition with Capacity
Constraints (cont.)

* Without capacity constraint, p; = p, = 0 is unique pure strategy NE
* You will prove this in first assignment!

* With capacity constraint, p; = p, = 0 is no longer pure strategy NE

* Either firm can increase its price and still have |/3 units of demand

* We consider symmetric mixed strategy Nash equilibrium

* |l.e, both firms use same mixed strategy

* We use cumulative distribution function, F(+), for mixed strategies



Example: Bertrand Competition with Capacity
Constraints (cont.)

* What I1s expected utility of firm | when it chooses p; and firm 2 uses
mixed strategy F(-)?

2
uy(p1, F(1)) = F(p1) % + (1 - F(pl))%

* Each action in support of mixed strategy must yield same utility at NE

* V p in support of F(-)
2p p

?—F(P)§=k,

*Jk =0

3k
F(p) = )



Example: Bertrand Competition with Capacity
Constraints (cont.)

* Note that upper support of mixed strategy must be at p = 1, which
implies that F(1) = 1

* Combining with preceding, we obtain



Nash’s Theorem

* Theorem (Nash): Every finite game has mixed strategy NE

* Why is this important!
* Without knowing the existence of equilibrium, it is difficult (perhaps
meaningless) to try to understand its properties

* Armed with this theorem, we also know that every finite game has at least one
equilibrium, and thus we can simply try to locate equilibria

* Knowing that there might be multiple equilibria, we should study
efficiency/inefficiency of games’ equilibria



Example: Braess’s Paradox

* There are 2k drivers commuting from s to t
* C(x) indicates travel time in hours for x drivers

* k drivers going through v and k going through w is NE
* Why!



Example: Braess’s Paradox (cont.)

@

N
c(x)=0
( C(x)=x

O

c(x)=1

* Suppose we install teleportation device allowing drivers to travel instantly from v to w
* What is new NE? What is drivers’ commute time?
* What is optimal commute time?

* Does selfish routing does not minimize commute time?

* Price of Anarchy (PoA) is ratio between system performance with strategic agents and best possible
system performance

e Ratio between 2 and 3/2 in Braess's Paradox



Correlated Strategies

* In NE, agents randomize over strategies independently
* Agents can randomize by communicating prior to taking actions

* Example: battle of the sexes

Wife
Husban

Football 4, 1) (-1, -1)

Football Opera

Opera (-1, -1) (1, 4)

+ Unique mixed strategy NE is ((;%) , (;;)) with utilties (2,2)

* Can they both do better by coordinating?



Correlated Strategies (cont.)

* Suppose there Is publicly observable fair coin
* |f It Is heads/talls, they both get signal to go to football/opera

* |f H/WV sees heads, he/she believes that W/H will go to football, and
therefore going to football is his/her best response

* Similar argument can be made when he/she sees tails

* When recommendation of coin is part of Nash equilibrium, no agent
has any incentives to deviate

* Expected utilities for this play of game increases to (2.5,2.5)



Correlated Equilibrium

* Correlated equilibrium of finite game Is joint probability distribution 1
S A(S) such that V i, S; € Si with 7T(Si) > (0, and t; € Si

2 m(s_ils)[u; (s s-) —ui(t;,s-)] = 0

S_i€S_;

* Distribution 1 Is defined to be correlated equilibrium if no agent can
benefit by deviating from her recommendation, assuming other agents
blay according to their recommendations




Example: Game of Chicken

river 2

Driver 1 S D
S (-5, -5) (1, -1)
D (-1, 1) (0, 0)

* (B,5) and (5, D) are Nash equilibria
* They are pure-strategy Nash equilibria: nobody randomizes
* They are also strict Nash equilibria: changing strategy will make agents strictly worse off



Example: Game of Chicken (cont.)

river 2
Driver 1 S D
S (-5, -5) (1, -1)
D (-1, 1) (0, 0)

* Assume DI dodges with probability p and D2 dodges with probability q

* Using mixed equilibrium characterization, we have

p—5(1-p)=0-(1-p)=p=

SRS TINN

q—5(1-q)=0-(1-q)=q=

* Mixed strategy Nash equilibrium utilities are (_?1,_?1) people may diel



Example: Game of Chicken (cont.)

|s this correlated equilibrium?

f DI gets signal to dodge
» Conditional probability that D2 dodges is

* Expected utility of dodging is (g) X(—1)

* Expected utility of going straight is (%) X1 + (g) X(=5) = -3

* Following recommendation is better

If DI gets signal to go straight, she knows that D2 is told to dodge, so again, D |

wants to follow recommendation

02
0.2+0.4

Similar analysis works for D2, so nobody dies!

Expected utilities increase to (0, 0)

1
3

Driver 2

Driver 1

S

(_51_5)
0%

(1!'1)
40%

D

(-1,1)
40%

(0, 0)
20%




Characterization of Correlated Equilibrium

* Proposition

* Joint distribution m € A(S) is correlated equilibrium of finite game iff

Z m(s)[u;(si, s-) —wi(t,s-)] = 0, Vi, s, t; € S;

S_i€ES_;

e Proof

* By definition of conditional probability, correlated equilibrium can be written as

Vo oo TS0 oo ) —u(t,s.)] =0, Vi, s; € S; with m(s;) > 0,and ¢
S_{ES
—i —th_ies_in'(si,t_i)

* Denominator does not depend on variable of sum, so it can be factored and cancelled

* If(s;) = 0,then LHS of Proposition is zero regardless of i and t;, so equation always holds



Questions?
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