ECE700.07: Game Theory with Engineering Applications

Lecture 3: Games in Normal Form

Seyed Majid Zahedi

Outline

- Strategic form games
- Dominant strategy equilibrium
- Pure and mixed Nash equilibrium
- Iterative elimination of strictly dominated strategies
- Price of anarchy
- Correlated equilibrium

- Readings:
 - MAS Sec. 3.2 and 3.4, GT Sec. I and 2

Strategic Form Games

- Agents act simultaneously without knowledge of others' actions
- Each game has to have
 - (1) Set of agents (2) Set of actions (3) Utilities
- Formally, strategic form game is triplet $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$
 - $\mathcal I$ is finite set of agents
 - S_i is set of available actions for agent i and $s_i \in S_i$ is action of agent i
 - $u_i: S \to \mathbb{R}$ is utility of agent *i*, where $S = \prod_i S_i$ is set of all action profiles
 - $s_{-i} = [s_j]_{j \neq i}$ is vector of actions for all agents except i
 - $S_{-i} = \prod_{j \neq i} S_j$ is set of all action profiles for all agents except i
 - $(s_i, s_{-i}) \in S$ is strategy profile, or outcome

Example: Prisoner's Dilemma

Prisoner 2 Prisoner 1	Stay Silent	Confess
Stay Silent	(-1, -1)	(-3, 0)
Confess	(0, -3)	(-2, -2)

- First number denotes utility of A1 and second number utility of A2
 - Row *i* and column *j* cell contains (x, y), where $x = u_1(i, j)$ and $y = u_2(i, j)$

- Strategy is complete description of how to play
- It requires full contingent planning
 - As if you have to delegate play to "computer"
 - You would have to spell out how game should be played in every contingency
 - In chess, for example, this would be an impossible task
- In strategic form games, there is no difference between action and strategy (we will use them interchangeably)

Finite Strategy Spaces

- When S_i is finite for all i, game is called finite game
- For 2 agents and small action sets, it can be expressed in matrix form
- Example: matching pennies

Agent 2 Agent 1	Heads	Tails
Heads	(-1, 1)	(1, -1)
Tails	(1, -1)	(0, 0)

• Game represents pure conflict; one player's utility is negative other player's utility; thus, zero sum game

Infinite Strategy Spaces

- When S_i is infinite for at least one i, game is called infinite game
- Example: Cournot competition
 - Two firms (agents) produce homogeneous good for same market
 - Agent *i*'s action is quantity, $s_i \in [0, \infty]$, she produces
 - Agent *i*'s utility is her total revenue minus total cost
 - $u_i(s_1, s_2) = s_i p(s_1 + s_2) c s_i$
 - p(s) is price as function of total quantity, c is unit cost (same for both agents)

Dominant Strategy

- Strategy $s_i \in S_i$ is dominant strategy for agent i if $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ for all $s'_i \in S_i$ and for all $s_{-i} \in S_{-i}$
- Example: prisoner's dilemma

Prisoner 2 Prisoner 1	Stay Silent	Confess
Stay Silent	(-1, -1)	(-3, 0)
Confess	(0, -3)	(-2, -2)

- Action "confess" strictly dominates action "stay silent"
- Self-interested, rational behavior does not lead to socially optimal result

Dominant Strategy Equilibrium

- Strategy profile s^* is (strictly) dominant strategy equilibrium if for each agent i, s_i^* is (strictly) dominant strategy
- Example: ISP routing game
 - ISPs share networks with other ISPs for free
 - ISPs choose to route traffic themselves or via partner
 - In this example, we assume cost along link is one

ISP 2 ISP 1	Route Yourself	Route via Partner
Route Yourself	(-3, -3)	(-6, -2)
Route via Partner	(-2, -6)	(-5, -5)

Dominated Strategies

- Strategy $s_i \in S_i$ is strictly dominated for agent i if $\exists s'_i \in S_i$: $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}), \forall s_{-i} \in S_{-i}$
- Strategy $s_i \in S_i$ is weakly dominated for agent i if $\exists s'_i \in S_i$: $u_i(s'_i, s_{-i}) \ge u_i(s_i, s_{-i}), \forall s_{-i} \in S_{-i}$ $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}), \exists s_{-i} \in S_{-i}$

Rationality and Strictly Dominated Strategies

Prisoner 2 Prisoner 1	Stay Silent	Confess	Suicide
Stay Silent	(-1, -1)	(-3, 0)	(0, -10)
Confess	(0, -3)	(-2, -2)	(-1, -10)
Suicide	(-10, 0)	(-10, -1)	(-10, -10)

- There is no DS because of additional "suicide" strategy
 - Strictly dominated strategy for both prisoners
- No ''rational'' agent would choose ''suicide''
 - No agent should play strictly dominated strategy

Rationality and Strictly Dominated Strategies (cont.)

- If A1 knows that A2 is rational, then she can eliminate A2's "suicide" strategy, and likewise for A2
- After one round of elimination of strictly dominated strategies, we are back to prisoner's dilemma game
- Iterated elimination of strictly dominated strategies leads to unique outcome, "confess, confess"
- Game is dominance solvable (We will come back to this later)

How Reasonable is Dominance Solvability?

• Consider k-beauty contest game is dominance solvable!

Existence of Dominant Strategy Equilibrium

• Does matching pennies game have DSE?

Agent 2 Agent 1	Heads	Tails
Heads	(-1, 1)	(1, -1)
Tails	(1, -1)	(-1, 1)

• Dominant strategy equilibria do not always exist

Best Response

- $B_i(s_{-i})$ represents agent *i*'s best response correspondence to s_{-i}
- Example: Cournot competition
 - $u_i(s_1, s_2) = s_i p(s_1 + s_2) c s_i$
 - Suppose that c = 1 and $p(s) = \max\{0, 2 s\}$
 - First order optimality condition gives

$$B_i(s_{-i}) = \arg\max(s_i(2 - s_i - s_{-i}) - s_i)$$
$$= \begin{cases} (1 - s_{-i})/2 & \text{if } s_{-i} \leq 1\\ 0 & \text{otherwise} \end{cases}$$

• Figure illustrates best response correspondences (functions here!)

Pure Strategy Nash Equilibrium

- (Pure strategy) Nash equilibrium is strategy profile $s^* \in S$ such that $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \quad \forall i, s_i \in S_i$
- No agent can profitably deviate given strategies of others
- In Nash equilibrium, best response correspondences intersect
- Strategy profile $s^* \in S$ is Nash equilibrium iff $s_i^* \in B_i(s_{-i}^*)$, $\forall i$

Example: Battle of the Sexes

Wife Husband	Football	Opera
Football	(4, 1)	(-1, -1)
Opera	(-1, -1)	(1, 4)

- Couple agreed to meet this evening
- They cannot recall if they will be attending opera or football
- Husband prefers football, wife prefers opera
- Both prefer to go to same place rather than different ones

Existence of Pure Strategy Nash Equilibrium

• Does matching pennies game have pure strategy NE?

Agent 2 Agent 1	Heads	Tails
Heads	(-1, 1)	(1, -1)
Tails	(1, -1)	(-1, 1)

• Pure strategy Nash equilibria do not always exist

Mixed Strategies

- Let Σ_i denote set of probability measures over pure strategy set S_i
 - E.g., 45% left, 10% middle, and 45% right
- We use $\sigma_i \in \Sigma_i$ to denote mixed strategy of agent i, and $\sigma \in \Sigma = \prod_{i \in \mathcal{I}} \Sigma_i$ to denote mixed strategy profile
 - This implicitly assumes agents randomize independently
- Similarly, we define $\sigma_{-i} \in \Sigma_{-i} = \prod_{j \neq i} \Sigma_j$
- Following von Neumann-Morgenstern expected utility theory, we have

$$u_i(\sigma) = \int_S u_i(s) d\sigma(s)$$

Strict Dominance by Mixed Strategy

Agent 2 Agent 1	а	b
а	(2, 0)	(-1, 0)
b	(0, 0)	(0, 0)
С	(-1, 0)	(2, 0)

- Agent I has no pure strategy that strictly dominates b
- However, b is strictly dominated by mixed strategy $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$
- Action s_i is strictly dominated if there exists σ_i such that $u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i})$, $\forall s_{-i} \in S_{-i}$
- Strictly dominated strategy is never played with positive probability in mixed strategy NE
- However, weakly dominated strategies could be used in Nash equilibrium

Iterative Elimination of Strictly Dominated Strategies

- Let $S_i^0 = S_i$ and $\Sigma_i^0 = \Sigma_i$
- For each agent *i*, define
 - $S_i^n = \{ s_i \in S_i^{n-1} | \not\exists \sigma_i \in \Sigma_i^{n-1} : u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \forall s_{-i} \in S_{-i}^{n-1} \}$
- And define
 - $\Sigma_i^n = \{\sigma_i \in \Sigma_i | \sigma_i(s_i) > 0 \text{ only if } s_i \in S_i^n\}$
- Finally, define S_i^∞ as set of agent i's strategies that survive IESDS
 - $S_i^{\infty} = \bigcap_{n=1}^{\infty} S_i^n$

- Profile σ^* is (mixed strategy) Nash equilibrium if for each agent i $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*), \quad \forall \sigma_i \in \Sigma_i$
- Profile σ^* is (mixed strategy) Nash equilibrium iff for each agent i $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(s_i, \sigma_{-i}^*), \quad \forall s_i \in \Sigma_i$
 - Why?
 - Hint: Agent *i*'s utility for playing mix strategies is convex combination of his utility when playing pure strategies

Mixed Strategy Nash Equilibria (cont.)

- For G, finite strategic form game, profile σ^* is NE iff for each agent, every pure strategy in support of σ^*_i is best response to σ^*_{-i}
 - Why?
 - Hint: If profile σ^* puts positive probability on strategy that is not best response, shifting that probability to other strategies improves expected utility
- Every action in support of agent's NE mixed strategy yields same utility

Finding Mixed Strategy Nash Equilibrium

Wife Husband	Football	Opera
Football	(4, 1)	(-1, -1)
Opera	(-1, -1)	(1, 4)

- Assume H goes to football with probability p and W goes to opera with probability q
- Using mixed equilibrium characterization, we have

$$p - (1 - p) = -p + 4(1 - p) \Longrightarrow p = \frac{5}{7}$$
$$q - (1 - q) = -q + 4(1 - q) \Longrightarrow q = \frac{5}{7}$$

• Mixed strategy Nash equilibrium utilities are $\left(\frac{3}{7}, \frac{3}{7}\right)$

Example: Bertrand Competition with Capacity Constraints

- Two firms charge prices $p_1, p_2 \in [0, 1]$ per unit of same good
- There is unit demand which has to be supplied
- Customers prefer firm with lower price
- Assume each firm has capacity constraint of 2/3 units of demand
 - If $p_1 < p_2$, firm 2 gets 1/3 units of demand
- If both firms charge same price, each gets half of demand
- Utility of each firm is profit they make (c = 0, for both firms)

Example: Bertrand Competition with Capacity Constraints (cont.)

- Without capacity constraint, $p_1 = p_2 = 0$ is unique pure strategy NE
 - You will prove this in first assignment!
- With capacity constraint, $p_1=\,p_2=0$ is no longer pure strategy NE
 - Either firm can increase its price and still have 1/3 units of demand
- We consider symmetric mixed strategy Nash equilibrium
 - I.e., both firms use same mixed strategy
- We use cumulative distribution function, $F(\cdot)$, for mixed strategies

Example: Bertrand Competition with Capacity Constraints (cont.)

• What is expected utility of firm 1 when it chooses p_1 and firm 2 uses mixed strategy $F(\cdot)$?

$$u_1(p_1, F(\cdot)) = F(p_1)\frac{p_1}{3} + (1 - F(p_1))\frac{2p_1}{3}$$

- Each action in support of mixed strategy must yield same utility at NE
 - $\forall p \text{ in support of } F(\cdot)$

$$\frac{2p}{3} - F(p)\frac{p}{3} = k,$$

• $\exists k \ge 0$

$$F(p) = 2 - \frac{3k}{p}$$

Example: Bertrand Competition with Capacity Constraints (cont.)

- Note that upper support of mixed strategy must be at p = 1, which implies that F(1) = 1
- Combining with preceding, we obtain

$$F(p) = \begin{cases} 0, & \text{if } 0 \le p \le \frac{1}{2} \\ 2 - \frac{1}{p}, & \text{if } \frac{1}{2} \le p \le 1 \\ 1, & \text{if } p \ge 1. \end{cases}$$

Nash's Theorem

- Theorem (Nash): Every <u>finite</u> game has mixed strategy NE
- Why is this important?
 - Without knowing the existence of equilibrium, it is difficult (perhaps meaningless) to try to understand its properties
 - Armed with this theorem, we also know that every finite game has at least one equilibrium, and thus we can simply try to locate equilibria
 - Knowing that there might be multiple equilibria, we should study efficiency/inefficiency of games' equilibria

Example: Braess's Paradox

- There are 2k drivers commuting from s to t
- C(x) indicates travel time in hours for x drivers
- k drivers going through v and k going through w is NE
 - Why?

Example: Braess's Paradox (cont.)

- Suppose we install teleportation device allowing drivers to travel instantly from v to w
 - What is new NE? What is drivers' commute time?
 - What is optimal commute time?
 - Does selfish routing does not minimize commute time?
- Price of Anarchy (PoA) is ratio between system performance with strategic agents and best possible system performance
 - Ratio between 2 and 3/2 in Braess's Paradox

Correlated Strategies

- In NE, agents randomize over strategies independently
- Agents can randomize by communicating prior to taking actions
- Example: battle of the sexes

Wife Husband	Football	Opera
Football	(4, 1)	(-1, -1)
Opera	(-1, -1)	(1, 4)

- Unique mixed strategy NE is $\left(\left(\frac{5}{7}, \frac{2}{7}\right), \left(\frac{5}{7}, \frac{2}{7}\right)\right)$ with utilities $\left(\frac{3}{7}, \frac{3}{7}\right)$
- Can they both do better by coordinating?

Correlated Strategies (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get signal to go to football/opera
- If H/W sees heads, he/she believes that W/H will go to football, and therefore going to football is his/her best response
 - Similar argument can be made when he/she sees tails
- When recommendation of coin is part of Nash equilibrium, no agent has any incentives to deviate
- Expected utilities for this play of game increases to (2.5,2.5)

Correlated Equilibrium

• Correlated equilibrium of finite game is joint probability distribution $\pi \in \Delta(S)$ such that $\forall i, s_i \in S_i$ with $\pi(s_i) > 0$, and $t_i \in S_i$

$$\sum_{s_{-i} \in S_{-i}} \pi(s_{-i} | s_i) [u_i(s_i, s_{-i}) - u_i(t_i, s_{-i})] \ge 0$$

• Distribution π is defined to be correlated equilibrium if no agent can benefit by deviating from her recommendation, assuming other agents play according to their recommendations

Example: Game of Chicken

(-1, 1)

(0, 0)

- (D, S) and (S, D) are Nash equilibria
 - They are pure-strategy Nash equilibria: nobody randomizes

D

• They are also strict Nash equilibria: changing strategy will make agents strictly worse off

Example: Game of Chicken (cont.)

Driver 2 Driver 1	S	D
S	(-5, -5)	(1, -1)
D	(-1, 1)	(0, 0)

- Assume D1 dodges with probability p and D2 dodges with probability q
- Using mixed equilibrium characterization, we have

$$p - 5(1 - p) = 0 - (1 - p) \Longrightarrow p = \frac{4}{5}$$
$$q - 5(1 - q) = 0 - (1 - q) \Longrightarrow q = \frac{4}{5}$$

• Mixed strategy Nash equilibrium utilities are $\left(\frac{-1}{5}, \frac{-1}{5}\right)$, people may die!

Example: Game of Chicken (cont.)

- Is this correlated equilibrium?
- If DI gets signal to dodge
 - Conditional probability that D2 dodges is $\frac{0.2}{0.2+0.4} = \frac{1}{3}$
 - Expected utility of dodging is $\left(\frac{2}{3}\right) \times (-1)$
 - Expected utility of going straight is $\left(\frac{1}{3}\right) \times 1 + \left(\frac{2}{3}\right) \times (-5) = -3$
 - Following recommendation is better
- If D1 gets signal to go straight, she knows that D2 is told to dodge, so again, D1 wants to follow recommendation
- Similar analysis works for D2, so nobody dies!
- Expected utilities increase to (0,0)

Driver 2 Driver 1	S	D
S	(-5, -5)	(1, -1)
	0%	40%
D	(-1, 1)	(0, 0)
	40%	20%

Characterization of Correlated Equilibrium

- Proposition
 - Joint distribution $\pi \in \Delta(S)$ is correlated equilibrium of finite game iff

$$\sum_{s_{-i} \in S_{-i}} \pi(s) [u_i(s_i, s_{-i}) - u_i(t_i, s_{-i})] \ge 0, \quad \forall i, s_i, t_i \in S_i$$

- Proof
 - By definition of conditional probability, correlated equilibrium can be written as

$$\sum_{s_{-i} \in S_{-i}} \frac{\pi(s_i, s_{-i})}{\sum_{t_{-i} \in S_{-i}} \pi(s_i, t_{-i})} [u_i(s_i, s_{-i}) - u_i(t_i, s_{-i})] \ge 0, \forall i, s_i \in S_i \text{ with } \pi(s_i) > 0, \text{ and } t_i$$

- Denominator does not depend on variable of sum, so it can be factored and cancelled
- If $\pi(s_i) = 0$, then LHS of Proposition is zero regardless of i and t_i , so equation always holds

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
 - Asu Ozdaglar [<u>MIT 6.254</u>]
 - Vincent Conitzer [Duke CPS 590.4]