ECE700.07: Game Theory with Engineering Applications

Lecture 4: Computing Solution Concepts of Normal Form Games

Seyed Majid Zahedi
UNIVERSITY OF
WATERLOO

Outline

- Brief overview of (mixed integer) linear programs
- Solving for
- Dominated strategies
- Minimax and maximin strategies
- Nash equilibrium
- Correlated NE
- Readings:
- MAS Appendix B, and Sec. 4

Linear Program Example: Reproduction of Two Paintings

- Painting I sells for $\$ 30$
- Painting 2 sells for $\$ 20$
- We have 16 units of blue, 8 green, 5 red
- Painting I requires 4 blue, I green, I red
- Painting 2 requires 2 blue, 2 green, I red

$$
\begin{array}{ll}
\max . & 3 x+2 y \\
\text { s.t. } & 4 x+2 y \leq 16 \\
& x+2 y \leq 8 \\
& x+y \leq 5 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

Solving Linear Program Graphically

$$
\begin{array}{ll}
\max . & 3 x+2 y \\
\text { s.t. } & 4 x+2 y \leq 16 \\
& x+2 y \leq 8 \\
& x+y \leq 5 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

Modified LP

$$
\begin{array}{ll}
\max . & 3 x+2 y \\
\text { s.t. } & 4 x+2 y \leq 15 \\
& x+2 y \leq 8 \\
& x+y \leq 5 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

- Optimal solution: $x=2.5, y=2.5$
- Objective $=7.5+5=12.5$
- Can we sell half paintings?

Integer Linear Program

$$
\begin{array}{ll}
\max . & 3 x+2 y \\
\text { s.t. } & 4 x+2 y \leq 15 \\
& x+2 y \leq 8 \\
& x+y \leq 5 \\
& x \in \mathbb{N}_{0} \\
& y \in \mathbb{N}_{0}
\end{array}
$$

Mixed Integer Linear Program

$$
\begin{array}{ll}
\max . & 3 x+2 y \\
\text { s.t. } & 4 x+2 y \leq 15 \\
& x+2 y \leq 8 \\
& x+y \leq 5 \\
& x \geq 0 \\
& y \in \mathbb{N}_{0}
\end{array}
$$

Solving Mixed Linear/Integer Programs

- Linear programs can be solved efficiently
- Simplex, ellipsoid, interior point methods, etc.
- (Mixed) integer programs are NP-hard to solve
- Many standard NP-complete problems can be modelled as MILP
- Search type algorithms such as branch and bound
- Standard packages for solving these
- Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXPY, etc.
- LP relaxation of (M)ILP: remove integrality constraints
- Gives upper bound on MILP (~admissible heuristic)

Exercise I in Modeling: Knapsack-type Problem

- We arrive in room full of precious objects
- Can carry only 30 kg out of the room
- Can carry only 20 liters out of the room
- Want to maximize our total value
- Unit of object A: I $6 \mathrm{~kg}, 3$ liters, sells for $\$ 11$ (3 units available)
- Unit of object B: 4kg, 4 liters, sells for $\$ 4$ (4 units available)
- Unit of object C: 6kg, 3 liters, sells for $\$ 9$ (I unit available)
- What should we take?

Exercise II in Modeling: Cell Phones (Set Cover)

- We want to have a working phone in every continent (besides Antarctica) but we want to have as few phones as possible
- Phone A works in NA, SA, Af
- Phone B works in E,Af, As
- Phone C works in NA, Au, E
- Phone D works in SA, As, E
- Phone E works in Af, As, Au
- Phone F works in NA, E

Exercise III in Modeling: Hot-dog Stands

- We have two hot-dog stands to be placed in somewhere along beach
- We know where groups of people who like hot-dogs are
- We also know how far each group is willing to walk
- Where do we put our stands to maximize \#hot-dogs sold? (price is fixed)

Checking for Strict Dominance by Mixed Strategies

- LP for checking if strategy t_{i} is strictly dominated by any mixed strategy
$\max . \epsilon$
s.t.

$$
\begin{array}{ll}
\sum_{s_{i} \in S_{i}} p_{s_{i}} u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(t_{i}, s_{-i}\right)+\epsilon, \quad \forall s_{-i} \in S_{-i} \\
\sum_{s_{i} \in S_{i}} p_{s_{i}}=1 & \\
p_{s_{i}} \geq 0, & \forall s_{i} \in S_{i}
\end{array}
$$

Checking for Weak Dominance by Mixed Strategies

- LP for checking if strategy t_{i} is weakly dominated by any mixed strategy

$$
\begin{array}{lll}
\operatorname{max.} & \sum_{s_{-i} \in S_{-i}}\left(\left(\sum_{s_{i} \in S_{i}} p_{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)\right)-u_{i}\left(t_{i}, s_{-i}\right)\right) & \\
\text { s.t. } & \sum_{s_{i} \in S_{i}} p_{s_{i}} u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(t_{i}, s_{-i}\right), & \forall s_{-i} \in S_{-i} \\
& \sum_{s_{i} \in S_{i}} p_{s_{i}}=1 & \\
& p_{s_{i}} \geq 0, & \forall s_{i} \in S_{i}
\end{array}
$$

Path Dependency of Iterated Dominance

- Iterated weak dominance is path-dependent
- Sequence of eliminations may determine which solution we get (if any)

- Iterated strict dominance is path-independent:
- Elimination process will always terminate at the same point

Two Computational Questions for Iterated Dominance

- I. Can any given strategy be eliminated using iterated dominance?
- 2. Is there some path of elimination by iterated dominance such that only one strategy per player remains?
- For strict dominance (with or without dominance by mixed strategies), both can be solved in polynomial time due to path-independence
- Check if any strategy is dominated, remove it, repeat
- For weak dominance, both questions are NP-hard (even when all utilities are 0 or 1), with or without dominance by mixed strategies [Conitzer, Sandholm 05], and weaker version proved by [Gilboa, Kalai, Zemel 93]

Minimax and Maximin Values

- Maximin strategy for agent i (leading to maximin value for agent i)

$$
\arg \max _{\sigma_{i}} \min _{s_{-i}} u_{i}\left(\sigma_{i}, s_{-i}\right)
$$

- Minimax strategy of other agents (leading to minimax value for agent i)

$$
\arg \min _{\sigma_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, \sigma_{-i}\right)
$$

LP for Calculating Maximin Strategy and Value

$$
\begin{array}{lll}
\text { max. } & u & \\
\text { s.t. } & \sum_{s_{i} \in S_{i}} p_{s_{i}} u_{i}\left(s_{i}, s_{-i}\right) \geq u, \quad \forall s_{-i} \in S_{-i} \\
& \sum_{s_{i} \in S_{i}} p_{s_{i}}=1 & \\
& p_{s_{i}} \geq 0, & \forall s_{i} \in S_{i}
\end{array}
$$

- Objective of this LP, u, is maximin value of agent i
- Given $p_{s_{i}}$, first constraint ensures that u is less than any achievable expected utility for any pure strategies of opponents

Minimax Theorem [von Neumann 1928]

- Each player's NE utility in any finite, two-player, zero-sum game is equal to her maximin value and minimax value

$$
\max _{\sigma_{i}} \min _{s_{-i}} u_{i}\left(\sigma_{i}, s_{-i}\right)=\min _{\sigma_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, \sigma_{-i}\right)
$$

- Minimax theorem does not hold with pure strategies only (example?)

Example

Agent 1	Left	Right
Up	$(20,-20)$	$(0,0)$
Down	$(0,0)$	$(10,-10)$

- What is maximin value of agent I with and without mixed strategies?
- What is minimax value of agent I with and without mixed strategies?
- What is NE of this game?

Solving NE of Two-Player, Zero-Sum Games

- Minimax value of agent |

$$
\begin{array}{lll}
\min . & u_{1} & \\
\text { s.t. } & \sum_{s_{2} \in S_{2}} p_{s_{2}} u_{1}\left(s_{1}, s_{2}\right) \leq u_{1} & \forall s_{1} \in S_{1} \\
& \sum_{s_{2} \in S_{2}} p_{s_{2}}=1 & \\
& p_{s_{2}} \geq 0, & \forall s_{2} \in S_{2}
\end{array}
$$

- Maximin value of agent I

$$
\begin{array}{lll}
\text { max. } & u_{1} & \\
\text { s.t. } & \sum_{s_{1} \in S_{1}} p_{s_{1}} u_{1}\left(s_{1}, s_{2}\right) \geq u_{1} & \forall s_{2} \in S_{2} \\
& \sum_{s_{1} \in S_{1}} p_{s_{1}}=1 & \\
& p_{s_{1}} \geq 0, & \forall s_{1} \in S_{1}
\end{array}
$$

- NE is expressed as LP, which means equilibria can be computed in polynomial time

Maximin Strategy for General-Sum Games

- Agents could still play minimax strategy in general-sum games
- I.e., pretend that the opponent is only trying to hurt you
- But this is not rational:

Agent 2 Agent 1	Left	Right
Up	$(0,0)$	$(3,1)$
Down	$(1,0)$	$(2,1)$

- If A2 was trying to hurt AI , she would play Left, so AI should play Down
- In reality, A2 will play Right (strictly dominant), so AI should play Up

Hardness of Computing NE for General-Sum Games

- Complexity was open for long time
- "together with factoring [...] the most important concrete open question on the boundary of P today" [Papadimitriou STOC'OI]
- Sequence of papers showed that computing any NE is PPAD-complete (even in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]
- All known algorithms require exponential time (in worst case)

Hardness of Computing NE for General-Sum Games (cont.)

- What about computing NE with specific property?
- NE that is not Pareto-dominated
- NE that maximizes expected social welfare (i.e., sum of all agents' utilities)
- NE that maximizes expected utility of given agent
- NE that maximizes expected utility of worst-off player
- NE in which given pure strategy is played with positive probability
- NE in which given pure strategy is played with zero probability
- ...
- All of these are NP-hard (and the optimization questions are inapproximable assuming P != NP), even in 2-player games [Gilboa, Zemel 89; Conitzer \& Sandholm IJCAl-03/GEB-08]

Search-Based Approaches (for Two-Player Games)

- We can use (feasibility) LP, if we know support X_{i} of each player i 's mixed strategy - I.e., we know which pure strategies receive positive probability

$$
\begin{array}{lrr}
\text { find } & \left(u_{1}, u_{2}\right) & \\
\text { s.t. } & p_{s_{i}} \geq 0, & \forall i, s_{i} \in S_{i} \\
& \sum_{s_{i} \in S_{i}} p_{s_{i}}=1, & \forall i \\
& p_{s_{i}}=0, & \forall i, s_{i} \in S_{i} / X_{i} \\
& \sum_{s_{-i} \in S_{-i}} p_{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=u_{i}, & \forall i, s_{i} \in X_{i} \\
& \sum_{s_{-i} \in S_{-i}} p_{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right) \leq u_{i}, & \forall i, s_{i} \in S_{i} / X_{i}
\end{array}
$$

- Thus, we can search over possible supports, which is basic idea underlying methods in [Dickhaut \& Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]

Solving for NE using MILP (for Two-Player Games)

[Sandholm, Gilpin, Conitzer AAAI05]

$$
\begin{array}{llr}
\text { max. } & \text { whatever you like (e.g., social welfare) } & \\
\text { s.t. } & p_{s_{i}} \geq 0, & \forall i, s_{i} \in S_{i} \\
& \sum_{s_{i} \in S_{i}} p_{s_{i}}=1, & \forall i \\
& \sum_{s_{-i} \in S_{-i}} p_{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=u_{s_{i}}, & \forall i, s_{i} \in S_{i} \\
& u_{s_{i}} \leq u_{i}, & \forall i, s_{i} \in S_{i} \\
& p_{s_{i}} \leq b_{s_{i}}, & \forall i, s_{i} \in S_{i} \\
& u_{i}-u_{s_{i}} \leq M\left(1-b_{s_{i}}\right), & \forall i, s_{i} \in S_{i} \\
b_{s_{i}} \in\{0,1\}, & \forall i, s_{i} \in S_{i}
\end{array}
$$

- $b_{s_{i}}$ is binary variable indicating if s_{i} is in support of i 's mixed strategy, and M is large number

Solving for Correlated Equilibrium using LP (N-Player Games!)

- Variables are now p_{s} where s is profile of pure strategies (i.e., outcome)

$$
\begin{array}{llr}
\text { max. } & \text { whatever you like (e.g., social welfare) } \\
\text { s.t. } & \sum_{s_{-i} \in S_{-i}} p_{s} u_{i}(s) \geq \sum_{s_{-i} \in S_{-i}} p_{s} u_{i}\left(t_{i}, s_{-i}\right) \quad \forall i, s_{i} \in S_{i}, t_{i} \in S_{i} \\
& \sum_{s \in S} p_{s}=1 & \\
& p_{s} \geq 0, & \forall s \in S
\end{array}
$$

Questions?

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
- Vincent Conitzer [Duke CPS 590.4]

