ECE700.07: Game Theory with Engineering Applications

Lecture 4: Computing Solution Concepts of Normal Form Games

Seyed Majid Zahedi

- Brief overview of (mixed integer) linear programs
- Solving for
 - Dominated strategies
 - Minimax and maximin strategies
 - Nash equilibrium
 - Correlated NE
- Readings:
 - MAS Appendix B, and Sec. 4

Linear Program Example: Reproduction of Two Paintings

- Painting 1 sells for \$30
- Painting 2 sells for \$20
- We have 16 units of blue, 8 green, 5 red
- Painting I requires 4 blue, I green, I red
- Painting 2 requires 2 blue, 2 green, 1 red
- max. 3x + 2y
s.t. $4x + 2y \le 16$
 $x + 2y \le 8$
 $x + y \le 5$
 $x \ge 0$
 $y \ge 0$

Solving Linear Program Graphically

Modified LP

max.
$$3x + 2y$$

s.t.
$$4x + 2y \leq (15)$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

- Optimal solution: x = 2.5, y = 2.5
- Objective = 7.5 + 5 = 12.5
- Can we sell half paintings?

Integer Linear Program

max. 3x + 2ys.t. $4x + 2y \le 15$ $x + 2y \le 8$ $x + y \le 5$ $x \in \mathbb{N}_0$ $y \in \mathbb{N}_0$

Mixed Integer Linear Program

max. 3x + 2ys.t. $4x + 2y \le 15$ $x + 2y \le 8$ $x + y \le 5$ $x \ge 0$ $y \in \mathbb{N}_0$

Solving Mixed Linear/Integer Programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods, etc.
- (Mixed) integer programs are NP-hard to solve
 - Many standard NP-complete problems can be modelled as MILP
 - Search type algorithms such as branch and bound
- Standard packages for solving these
 - Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXPY, etc.
- LP relaxation of (M)ILP: remove integrality constraints
 - Gives upper bound on MILP (~admissible heuristic)

Exercise I in Modeling: Knapsack-type Problem

- We arrive in room full of precious objects
- Can carry only 30kg out of the room
- Can carry only 20 liters out of the room
- Want to maximize our total value
- Unit of object A: I 6kg, 3 liters, sells for \$11 (3 units available)
- Unit of object B: 4kg, 4 liters, sells for \$4 (4 units available)
- Unit of object C: 6kg, 3 liters, sells for \$9 (1 unit available)
- What should we take?

Exercise II in Modeling: Cell Phones (Set Cover)

- We want to have a working phone in every continent (besides Antarctica) but we want to have as few phones as possible
- Phone A works in NA, SA, Af
- Phone B works in E, Af, As
- Phone C works in NA, Au, E
- Phone D works in SA, As, E
- Phone E works in Af, As, Au
- Phone F works in NA, E

Exercise III in Modeling: Hot-dog Stands

- We have two hot-dog stands to be placed in somewhere along beach
- We know where groups of people who like hot-dogs are
- We also know how far each group is willing to walk
- Where do we put our stands to maximize #hot-dogs sold? (price is fixed)

Checking for Strict Dominance by Mixed Strategies

• LP for checking if strategy t_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \max & \epsilon \\ \text{s.t.} & \sum_{s_i \in S_i} p_{s_i} u_i(s_i, s_{-i}) \ge u_i(t_i, s_{-i}) + \epsilon, \quad \forall s_{-i} \in S_{-i} \\ & \sum_{s_i \in S_i} p_{s_i} = 1 \\ & p_{s_i} \ge 0, \qquad \qquad \forall s_i \in S_i \end{array}$$

Checking for Weak Dominance by Mixed Strategies

• LP for checking if strategy t_i is weakly dominated by any mixed strategy

$$\begin{array}{ll} \max. & \sum_{s_{-i} \in S_{-i}} \left(\left(\sum_{s_i \in S_i} p_{s_i} u_i(s_i, s_{-i}) \right) - u_i(t_i, s_{-i}) \right) \\ \text{s.t.} & \sum_{s_i \in S_i} p_{s_i} u_i(s_i, s_{-i}) \ge u_i(t_i, s_{-i}), & \forall s_{-i} \in S_{-i} \\ & \sum_{s_i \in S_i} p_{s_i} = 1 \\ & p_{s_i} \ge 0, & \forall s_i \in S_i \end{array}$$

Path Dependency of Iterated Dominance

- Iterated weak dominance is path-dependent
 - Sequence of eliminations may determine which solution we get (if any)

- Iterated strict dominance is path-independent:
 - Elimination process will always terminate at the same point

Two Computational Questions for Iterated Dominance

- I. Can any given strategy be eliminated using iterated dominance?
- 2. Is there some path of elimination by iterated dominance such that only one strategy per player remains?
- For strict dominance (with or without dominance by mixed strategies), both can be solved in polynomial time due to path-independence
 - Check if any strategy is dominated, remove it, repeat
- For weak dominance, both questions are NP-hard (even when all utilities are 0 or 1), with or without dominance by mixed strategies [Conitzer, Sandholm 05], and weaker version proved by [Gilboa, Kalai, Zemel 93]

• Maximin strategy for agent i (leading to maximin value for agent i)

 $rg\max_{\sigma_i}\min_{s_{-i}}u_i(\sigma_i,s_{-i})$

• Minimax strategy of other agents (leading to minimax value for agent *i*)

 $\arg\min_{\sigma_{-i}}\max_{s_i}u_i(s_i,\sigma_{-i})$

LP for Calculating Maximin Strategy and Value

- Objective of this LP, u, is maximin value of agent i
- Given p_{s_i} , first constraint ensures that u is less than any achievable expected utility for any pure strategies of opponents

Minimax Theorem [von Neumann 1928]

• Each player's NE utility in any finite, two-player, zero-sum game is equal to her maximin value and minimax value

$$\max_{\sigma_i} \min_{s_{-i}} u_i(\sigma_i, s_{-i}) = \min_{\sigma_{-i}} \max_{s_i} u_i(s_i, \sigma_{-i})$$

• Minimax theorem does not hold with pure strategies only (example?)

Example

Agent 2 Agent 1	Left	Right
Up	(20, -20)	(0, 0)
Down	(0, 0)	(10, -10)

- What is maximin value of agent 1 with and without mixed strategies?
- What is minimax value of agent 1 with and without mixed strategies?
- What is NE of this game?

Solving NE of Two-Player, Zero-Sum Games

• Minimax value of agent 1

• Maximin value of agent 1

• NE is expressed as LP, which means equilibria can be computed in polynomial time

Maximin Strategy for General-Sum Games

- Agents could still play minimax strategy in general-sum games
 - I.e., pretend that the opponent is only trying to hurt you
- But this is not rational:

Agent 2 Agent 1	Left	Right
Up	(0, 0)	(3, 1)
Down	(1, 0)	(2, 1)

- If A2 was trying to hurt A1, she would play Left, so A1 should play Down
- In reality, A2 will play Right (strictly dominant), so A1 should play Up

Hardness of Computing NE for General-Sum Games

- Complexity was open for long time
 - ''together with factoring [...] the most important concrete open question on the boundary of P today'' [Papadimitriou STOC'01]
- Sequence of papers showed that computing any NE is PPAD-complete (even in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]
- All known algorithms require exponential time (in worst case)

Hardness of Computing NE for General-Sum Games (cont.)

- What about computing NE with specific property?
 - NE that is not Pareto-dominated
 - NE that maximizes expected social welfare (i.e., sum of all agents' utilities)
 - NE that maximizes expected utility of given agent
 - NE that maximizes expected utility of worst-off player
 - NE in which given pure strategy is played with positive probability
 - NE in which given pure strategy is played with zero probability
 - ...
- All of these are NP-hard (and the optimization questions are inapproximable assuming P != NP), even in 2-player games [Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]

Search-Based Approaches (for Two-Player Games)

- We can use (feasibility) LP, if we know support X_i of each player *i*'s mixed strategy
 - I.e., we know which pure strategies receive positive probability

 $\begin{array}{ll} \text{find} & (u_1, u_2) \\ \text{s.t.} & p_{s_i} \ge 0, & \forall i, s_i \in S_i \\ & \sum_{s_i \in S_i} p_{s_i} = 1, & \forall i \\ & p_{s_i} = 0, & \forall i, s_i \in S_i / X_i \\ & \sum_{s_{-i} \in S_{-i}} p_{s_{-i}} u_i(s_i, s_{-i}) = u_i, & \forall i, s_i \in X_i \\ & \sum_{s_{-i} \in S_{-i}} p_{s_{-i}} u_i(s_i, s_{-i}) \le u_i, & \forall i, s_i \in S_i / X_i \\ & \sum_{s_{-i} \in S_{-i}} p_{s_{-i}} u_i(s_i, s_{-i}) \le u_i, & \forall i, s_i \in S_i / X_i \end{array}$

• Thus, we can search over possible supports, which is basic idea underlying methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]

Solving for NE using MILP (for Two-Player Games) [Sandholm, Gilpin, Conitzer AAAI05]

max. whatever you like (e.g., social welfare)

s.t. $p_{s_i} \ge 0,$ $\forall i, s_i \in S_i$ $\sum_{s_i \in S_i} p_{s_i} = 1,$ $\forall i$

$$\sum_{s_{-i}\in S_{-i}} p_{s_{-i}} u_i(s_i, s_{-i}) = u_{s_i}, \qquad \forall i, s_i \in S_i$$

$$u_{s_i} \le u_i, \qquad \quad \forall i, s_i \in S_i$$

$$p_{s_i} \le b_{s_i}, \qquad \forall i, s_i \in S_i \\ u_i - u_{s_i} \le M(1 - b_{s_i}), \qquad \forall i, s_i \in S_i$$

- $u_i u_{s_i} \le M(1 b_{s_i}), \qquad \forall i, s_i \in S_i \\ b_{s_i} \in \{0, 1\}, \qquad \forall i, s_i \in S_i$
- b_{s_i} is binary variable indicating if s_i is in support of *i*'s mixed strategy, and *M* is large number

Solving for Correlated Equilibrium using LP (N-Player Games!)

• Variables are now p_s where s is profile of pure strategies (i.e., outcome)

 $\begin{array}{ll} \text{max.} & \text{whatever you like (e.g., social welfare)} \\ \text{s.t.} & \sum_{s_{-i} \in S_{-i}} p_s u_i(s) \geq \sum_{s_{-i} \in S_{-i}} p_s u_i(t_i, s_{-i}) & \forall i, s_i \in S_i, t_i \in S_i \\ & \sum_{s \in S} p_s = 1 \\ & p_s \geq 0, & \forall s \in S \end{array}$

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
 - Vincent Conitzer [Duke CPS 590.4]