ECE700.07: Game Theory with Engineering Applications

Lecture 5: Games in Extensive Form

Seyed Majid Zahedi
UNIVERSITY OF
WATERLOO

Outline

- Perfect information extensive form games
- Subgame perfect equilibrium
- Backward induction
- One-shot deviation principle
- Imperfect information extensive form games
- Readings:
- MAS Sec. 5, GT Sec. 3 (skim through Sec. 3.4 and 3.6), Sec. 4.I , and Sec 4.2

Extensive Form Games

- So far, we have studied strategic form games
- Agents take actions once and simultaneously
- Next, we study extensive form games
- Agents sequentially make decisions in multi-stage games
- Some agents may move simultaneously at some stage
- Extensive form games can be conveniently represented by game trees

Example: Entry Deterrence Game

- Entrant chooses to enter market or stay out
- Incumbent, after observing entrant's action, chooses to accommodate or fight
- Utilities are given by (x, y) at leaves for each action profile (or history)
- x denotes utility of agent 1 (entrant) and y denotes utility of agent 2 (incumbent)

Example: Investment in Duopoly

- Agent I chooses to invest or not invest
- After that, both agents engage in Cournot competition
- If agent I invests, then they engage in Cournot game with $c_{1}=0$ and $c_{2}=2$
- Otherwise, they engage in Cournot game with $c_{1}=c_{2}=2$

Finite Perfect-Information Extensive Form Games

- Formally, each game is tuple $G=\left\langle\mathcal{J},\left(\mathcal{A}_{i}\right)_{i \in \mathcal{J}}, \mathcal{H}, \mathcal{Z}, \alpha,\left(\beta_{i}\right)_{i \in \mathcal{J}}, \rho,\left(u_{i}\right)_{i \in \mathcal{J}}\right\rangle$
- \mathcal{J} is finite set of agents
- \mathcal{A}_{i} is set of actions available to agent i
- \mathcal{H} is set of choice nodes (internal nodes of game tree)
- Z is set of terminal nodes (leaves of game tree)
- $\alpha: \mathcal{H} \mapsto 2^{\mathcal{J}}$ is agent function, which assigns to each choice node set of agents
- $\beta_{\mathrm{i}}: \mathcal{H} \mapsto 2^{\mathcal{A}_{i}}$ is action function, which maps choice nodes to set of actions available to agent i
- $\rho: \mathcal{H} \times \mathcal{A} \mapsto \mathcal{H} \cup Z$ is successor function, which maps choice nodes and action profiles to new choice or terminal node, such that if $\rho\left(h_{1}, a_{1}\right)=\rho\left(h_{2}, a_{2}\right)$, then $h_{1}=h_{2}$ and $a_{1}=a_{2}$
- $u_{i}: Z \mapsto \mathbb{R}$ is utility function, which assigns real-valued utility to agent i at terminal nodes

History in Extensive Form Games

- Let $H^{k}=\left\{h^{k}\right\} \subseteq \mathcal{H} \cup Z$ be set of all possible stage k nodes in game's tree
- $h^{0}=\varnothing$
- $a^{0}=\left(a_{i}^{0}\right)_{i \in \alpha\left(h^{0}\right)}$
- $h^{1}=\left(a^{0}\right)$
- $a^{1}=\left(a_{i}^{1}\right)_{i \in \alpha\left(h^{1}\right)}$
- $h^{2}=\left(a^{0}, a^{1}\right)$
-
- $h^{k}=\left(a^{0}, \ldots, a^{k-1}\right)$
initial history
stage 0 action profile
history after stage 0
stage I action profile
history after stage I
:
history after stage $k-1$
- If number of stages is finite, then game is called finite horizon game
- In perfect information extensive form games, each choice (and terminal) node is associated with unique history and vice versa

Strategies in Extensive Form Games

- Pure strategies for agent i is defined as contingency plan for every choice node that agent i is assigned to

$$
s_{i} \in S_{i}=\prod_{h \in \mathcal{H}: i \in \alpha(h)} \beta_{i(h)}
$$

- Example:
- Agent l's strategies: $s_{1} \in S_{1}=\{C, D\}$

- Agent 2's strategies: $s_{2} \in S_{2}=\{E G, E H, F G, F H\}$
- For strategy profile $s=(C, E G)$, outcome is terminal node $\{C, E\}$

Randomized Strategies in Extensive Form Games

- Mixed strategy: randomizing over pure strategies
- Behavioral strategy: randomizing at each choice node
- Example:
- Give behavioral strategy for agent I

- Give mixed strategy for agent I that is not behavioral strategy
- LL with probability 0.4 and RR with probability 0.6 (why this is not behavioral?)

Example: Sequential Matching Pennies

- Consider following extensive form version of matching pennies
- How many strategies does agent 2 have?
- $s_{2} \in S_{2}=\{H H, H T, T H, T T\}$

- Extensive form games can be represented as normal form games

Agent Agent 2 2	HH	HT	TT	TH
Heads	$(-1,1)$	$(-1,1)$	$(1,-1)$	$(1,-1)$
Tails	$(1,-1)$	$(-1,1)$	$(-1,1)$	$(1,-1)$

-What will happen in this game?

Example: Entry Deterrence Game

- Consider following extensive form game
-What is equivalent strategic form representation?

Entrant ${ }^{\text {Incumbent }}$	A	F
In	$(2,1)$	$(0,0)$
Out	$(1,2)$	$(1,2)$

- Two pure Nash equilibrium: (In, A) and (Out, F)
- Are Nash equilibria of this game reasonable in reality?
- (Out, F) is sustained by noncredible threat of Entrant

Subgames

- Suppose that V_{G} represents set of all nodes in G^{\prime} 's game tree
- Subgame G^{\prime} of G consists of one choice node and all its successors
- Restriction of strategy s to subgame G^{\prime} is denoted by $s_{G^{\prime}}$
- Subgame G^{\prime} can be analyzed as its own game
- Example: sequential matching pennies

- How many subgame does this game have?
- Given that game itself is also considered as subgame, there are three subgames

Matrix Representation of Subgames

Agent 1 Agent 2	LL	LR	RL	RR
LL	2,4	2,4	5,3	5,3
LR	2,4	2,4	5,3	5,3
RL	3,2	1,0	3,2	1,0
RR	3,2	0,1	3,2	0,1

Agent 1 $^{\text {Agent 2 }}$	${ }^{*} \mathrm{~L}$	${ }^{*} \mathrm{R}$
${ }^{*} \mathrm{~L}$	3,2	1,0
${ }^{*} R$	3,2	0,1

Agent 1 $^{\text {Agent 2 }}$	${ }^{* *}$
${ }^{*} \mathrm{~L}$	1,0
${ }^{*} \mathrm{R}$	0,1

Subgame Perfect Equilibrium (SPE)

- Profile s^{*} is SPE of game G if for any subgame G^{\prime} of $G, s_{G^{\prime}}^{*}$ is NE of G^{\prime}
- Loosely speaking, subgame perfection will remove noncredible threats
- Noncredible threads are not NE in their subgames
- How to find SPE?
- One could find all of NE, then eliminate those that are not subgame perfect
- But there are more economical ways of doing it

Backward Induction for Finite Games

- (I) Start from "last" subgames (choice nodes with all terminal children)
- (2) Find Nash equilibria of those subgames
- (3) Turn those choice nodes to terminal nodes using NE utilities
- (4) Go to (I) until no choice node remains
- [Theorem] Backward induction gives entire set of SPE

SPE of Extensive Form Game and NE of Subgames

- ($R R, L L$) and ($L R, L R$) are not subgame perfect equilibria because $\left(* R\right.$, ${ }^{* *}$) is not an equilibrium
- (LL, LR) is not subgame perfect because $(* L, * R)$ is not an equilibrium, *R is not a credible threat

Example: Stackleberg Model of Competition

- Consider variant of Cournot game where firm I first chooses q_{1}, then firm 2 chooses q_{2} after observing q_{1} (firm I is Stackleberg leader)
- Suppose that both firms have marginal cost c and inverse demand function is given by $P(Q)=\alpha-\beta Q$, where $Q=q_{1}+q_{2}$, and $\alpha>c$
- Solve for SPE by backward induction starting firm 2's subgame
- Firm 2 chooses $q_{2}=\arg \max _{q \geq 0}\left(\alpha-\beta\left(q_{1}+q\right)-c\right) q$
- $q_{2}=\left(\alpha-c-\beta q_{1}\right) / 2 \beta$
- Firm I chooses $q_{1}=\arg \max _{q \geq 0}(\alpha-\beta(q+(\alpha-c-\beta q) / 2 \beta)-c) q$
- $q_{1}=(\alpha-c) / 2 \beta$
- $q_{2}=(\alpha-c) / 4 \beta$

Example: Ultimatum Game

- Two agents want to split c dollars
- | offers 2 some amount $x \leq c$
- If 2 accepts, outcome is $(c-x, x)$
- If 2 rejects, outcome is $(0,0)$
- What is 2's best response if $x>0$?
- Yes
- What is 2's best response if $x=0$?
- Indifferent between Yes or No
- What are 2's optimal strategies?

- (a) Yes for all $x \geq 0$
- (b) Yes if $x>0$, No if $x=0$

SPE of Ultimatum Game

-What is I's optimal strategy for each of 2's optimal strategies?

- For (a), I's optimal strategy is to offer $x=0$
- For (b),
- If agent I offers $x=0$, then her utility is 0
- If she wants to offer any $x>0$, then she must offer $\arg \max _{x>0}(c-x)$
- This optimization does not have any optimal solution!
- No offer of agent I is optimal!
- Unique SPE of ultimatum game is:

"Agent I offers 0 , and agent 2 accepts all offers"

Modified Ultimatum Game

- If c is in multiples of cent, what are 2's optimal strategies?
- (a) Yes for all $x \geq 0$
- (b) Yes if $x>0$, No if $x=0$
- What are I's optimal strategies for each of 2's?
- For (a), offer $x=0$
- For (b), offer $x=1$ cent
- What are SPE of modified ultimatum game?
- Agent I offers 0 , and agent 2 accepts all offers
- Agent I offers 1 cent, and agent 2 accept all offers except 0
- Show that for every $\bar{x} \in[0, c]$, there exists $N E$ in which I offers \bar{x}
- What is agent 2's optimal strategy?

limitation of Backward Induction

- If there are ties, how they are broken affects what happens up in tree
- There could be too many equilibria

Example: Bargaining Game

- Two agents want to split $c=1$ dollar
- First, I makes her offer
- Then, 2 decides to accept or reject
- If 2 rejects, then 2 makes new offer
- Then, I decides to accept or reject
- Let $x=\left(x_{1}, x_{2}\right)$ with $x_{1}+x_{2}=1$ denote allocations in Ist round
- Let $y=\left(y_{1}, y_{2}\right)$ with $y_{1}+y_{2}=1$ denote allocations in 2nd round

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- Agent 2 offers 0 , and agent I accepts all offers
- What is 2's optimal strategy in her round I's subgame?
- (a) If $x_{2} \leq 1$, reject
- (b) If $x_{2}=1$, accept, and reject otherwise
- What are I's optimal strategies in round I for each of 2's?
- For both (a) and (b), agent I is indifferent between all strategies
- Agent I's weakly dominant strategy is to offer $x_{2}=1$
- How many SPE does this game have?
- Infinitely many! In all SPE, agent 2 gets everything
- Last mover's advantage: In every SPE, agent who makes offer in last round obtains everything

Example: Discounted Bargaining Game

- Suppose utilities are discounted every round by discount factor, $0<\delta_{i}<1$
- What is unique SPE of (I) ?
- 2 offers $y_{1}=0$ and I accepts all offers
-What are optimal strategies in (2)?
- (a) Yes if $x_{2} \geq \delta_{2}$, No otherwise
- (b) Yes if $x_{2}>\delta_{2}$, No otherwise
-What are optimal strategies in (3)?
- For (a), offer $x_{2}=\delta_{2}$
- For (b), there is no optimal strategy

Unique SPE of Discounted Bargaining Game

- What are SPE strategies?
- Agent I's proposes ($1-\delta_{2}, \delta_{2}$)
- Agent 2 only accepts proposals with $x_{2} \geq \delta_{2}$
- Agent 2 proposes $(0,1)$ after any history in which l's proposal is rejected
- Agent I accepts all proposals of Agent 2
- What is SPE outcome of game?
- Agent I proposes $\left(1-\delta_{2}, \delta_{2}\right)$
- Agent 2 accepts
- Resulting utilities are $\left(1-\delta_{2}, \delta_{2}\right)$
- Desirability of earlier agreement yields positive utility for agent I

Stahl's Bargaining Model (for Finite Horizon Games)

- 2 rounds:

$$
\left(1-\delta_{2}\right)
$$

- 3 rounds:

$$
\begin{aligned}
& \left(1-\delta_{2}\right)+\delta_{1} \delta_{2} \\
& \left(1-\delta_{2}\right)\left(1+\delta_{1} \delta_{2}\right)
\end{aligned}
$$

- 4 rounds:
- 5 rounds:

$$
\left(1-\delta_{2}\right)\left(1+\delta_{1} \delta_{2}\right)+\delta_{1} \delta_{2}
$$

- $2 k$ rounds:
$\left(1-\delta_{2}\right)\left(\frac{1-\left(\delta_{1} \delta_{2}\right)^{k}}{1-\delta_{1} \delta_{2}}\right)$
- $2 k+$ | rounds:

$$
\left(1-\delta_{2}\right)\left(\frac{1-\left(\delta_{1} \delta_{2}\right)^{k}}{1-\delta_{1} \delta_{2}}\right)+\left(\delta_{1} \delta_{2}\right)^{k}
$$

- Taking limit as $k \rightarrow \infty$, we see that agent I gets $x_{1}^{*}=\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}$ at SPE

Rubinstein's Infinite Horizon Bargaining Model

- Suppose agent can alternate offers forever
- There are two types of outcome to consider
- At round t, one agent accepts her offer ($\left.x^{1}, \mathrm{No}, x^{2}, \mathrm{No}, \ldots, x^{t}, \mathrm{Yes}\right)$
- Every offer gets rejected: ($x^{1}, \mathrm{No}, x^{2}, \mathrm{No}, \ldots, x^{k}$, No,...$)$
- This is not finite horizon game, backward induction cannot be used
- We need different method to verify any SPE

One-Shot Deviation Principle

- One-shot deviation from strategy s means deviating from s in single stage and conforming to it thereafter
- Strategy profile s^{*} is SPE if and only if there exists no profitable oneshot deviation for each subgame and every agent
- This follows from principle of optimality of dynamic programming

SPE for Rubinstein's Model

- Recall that in Stahl's model, for $k \rightarrow \infty, x_{1}^{*}=\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}$
- Is following strategy profile s^{*} SPE?
- Agent I proposes x^{*} and accepts y if and only if $y \geq y_{1}^{*}$
- Agent 2 proposes y^{*} and accepts x if and only if $x \geq x_{2}^{*}$
- $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right), x_{1}^{*}=\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}, \quad x_{2}^{*}=\frac{\delta_{2}\left(1-\delta_{1}\right)}{1-\delta_{1} \delta_{2}}$
- $y^{*}=\left(y_{1}^{*}, y_{2}^{*}\right), y_{1}^{*}=\frac{\delta_{1}\left(1-\delta_{2}\right)}{1-\delta_{1} \delta_{2}}, \quad y_{2}^{*}=\frac{1-\delta_{1}}{1-\delta_{1} \delta_{2}}$

One-Shot Deviation Principle for Rubinstein's Model

- First note that this game has two types of subgames
- (I) first move is offer
- (2) first move is response to offer
- For (I), suppose offer is made by agent I
- If agent I adopts s^{*}, agent 2 accepts, agent I gets x_{1}^{*}
- If agent I offers $>x_{2}^{*}$, agent 2 accepts, and agent I gets $x_{1}<x_{1}^{*}$
- If agent I offers $<x_{2}^{*}$, agent 2 rejects and offers y_{1}^{*}, agent I accepts and gets $\delta_{1} y_{1}^{*}<x_{1}^{*}$
- For (2), suppose agent I is responding to offer $y_{1} \geq y_{1}^{*}$
- If agent I adopts s^{*}, she accepts and gets y_{1}
- If agent I rejects and offers x_{2}^{*} in next round, agent 2 accepts, agent I gets $\delta_{1} x_{1}^{*}=y_{1}^{*} \leq y_{1}$
- For (2), suppose agent I is responding to offer $y_{1}<y_{1}^{*}$
- If agent I adopts s^{*}, she rejects and offers x_{2}^{*} in next round, agent 2 accepts, agent I gets $\delta_{1} x_{1}^{*}=y_{1}^{*}>y_{1}$
- If agent I accepts, she gets $y_{1}<y_{1}^{*}$
- Hence s^{*} is SPE (in fact unique SPE, check GT, Section 4.4.2 to verify)

Rubinstein's Model for Symmetric Agents

- Suppose that $\delta_{1}=\delta_{2}$
- If agent I moves first, division is $\left(\frac{1}{1+\delta}, \frac{\delta}{1+\delta}\right)$
- If agent 2 moves first, division is $\left(\frac{\delta}{1+\delta}, \frac{1}{1+\delta}\right)$
- First mover's advantage is related to impatience of agents
- If $\delta \rightarrow 1, \mathrm{FMA}$ disappears and outcome tends to $\left(\frac{1}{2}, \frac{1}{2}\right)$
- If $\delta \rightarrow 0$, FMA dominates and outcome tends to $(1,0)$

Imperfect Information Extensive Form Games

- In perfect information games, agents know choice nodes they are in
- Agents know all prior actions
- Recall that in such games choice nodes are equal to histories that led to them
- Agents may have partial or no knowledge of actions taken by others
- Agents may also have imperfect recall of actions taken by themselves

Example: Imperfect Information Sequential Matching Pennies

- Agent I takes action
- Agent 2 does not see agent I's action
- Agent 2 takes action, and outcome is revealed

- Information set is collection of choice nodes that cannot be distinguished by agents whose turn it is
- Set of agents and their actions at each choice node in information set has to be the same, otherwise, agents could distinguish between nodes

Finite Imperfect-Information Extensive Form Games

- Formally, each game is tuple $G=\left\langle\mathcal{J},\left(\mathcal{A}_{i}\right)_{i \in \mathcal{J}}, \mathcal{H}, \mathcal{Z}, \alpha,\left(\beta_{i}\right)_{i \in \mathcal{J}}, \rho,\left(u_{i}\right)_{i \in \mathcal{J}}, I\right\rangle$
- $\left\langle\mathcal{J},\left(\mathcal{A}_{i}\right)_{i \in \mathcal{J}}, \mathcal{H}, \mathcal{Z}, \alpha,\left(\beta_{i}\right)_{i \in \mathcal{J}}, \rho,\left(u_{i}\right)_{i \in \mathcal{J}}\right\rangle$ is perfect information, extensive form game
- $I=\left(I_{1}, \ldots, I_{n}\right)$, where $I_{j}=\left\{h_{j, 1}, \ldots, h_{j, k_{j}}\right\}$, is partition of \mathcal{H} such that if $h, h^{\prime} \in I_{j}$, then $\alpha(h)=\alpha\left(h^{\prime}\right)$, and for all $i \in \alpha(h), \beta_{i}(h)=\beta_{i}\left(h^{\prime}\right)$

Example: Poker-Like Game

- What are agent I's strategies?
- $\{R R, R C, C R, C C\}$
- What are agent 2's strategies?
- $\{C C, C F, F C, F F\}$
- How can we find NE of this game?
- Model game as normal form zero-sum game
- Each cell represents expected utilities (nature's coin toss)

- Eliminated (weakly) dominated strategies
- Solve for (mixed strategy) NE

	$\text { Agent } 2$	CC		FC	$\mathrm{FF}^{\mathrm{FF}}$
1/3	RR	0, 0	0,0	1, -1	1, -1
2/3	RC	0.5, -0.5	1.51 .5	0, 0	11
	CR	-0.5,0.5	$0 \cdot 5,0$	1.1	1, -1
	CC	0.0		0.0	$1,-1$

Example: Kune Poker

Imperfect Recall, Mixed vs Behavioral Strategies

- Consider mixed strategies
- What is NE of this game?
- (R, D) with outcome utilities $(2,2)$
- Consider behavioral strategies
- What is I's expected utility if she does $(p, 1-p)$
- $p^{2}+100 p(1-p)+2(1-p)$

-What is I's best response?
- $p=\frac{98}{198}$
- What is NE of this game?
- $\left(\left(\frac{98}{198}, \frac{100}{198}\right),(0,1)\right)$

Solving Extensive Form Games: Perfect vs Imperfect Information

- In perfect information games, optimal strategy for each subgame can be determined by that subgame alone (how backward induction works!)
- We can forget how we got here
- We can ignore rest of game

- In imperfect information games, this is not necessarily true
- We cannot forget about path to current node
- We cannot ignore other subgames

Example

- Is always accommodating good strategy?
- No, leads to utility of -2.5 for incumbent
- Is always fighting good strategy?
- No, leads to utility of -1.5 for incumbent
- What should incumbent do?
- A with $3 / 8$ probability and F with 5/8
- What if we swap 2 and -2 ?
- A with 7/8 probability and F with I/8

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent I plays R
- ($R, R R$) is NE and SPE
- But, why should 2 play R after I plays L/M?
- This is noncredible threat
- There are more sophisticated equilibrium refinements that rule this out

Questions?

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]

