ECE700.07: Game Theory with Engineering Applications

Lecture 5: Games in Extensive Form

Seyed Majid Zahedi

- Perfect information extensive form games
- Subgame perfect equilibrium
- Backward induction
- One-shot deviation principle
- Imperfect information extensive form games

- Readings:
 - MAS Sec. 5, GT Sec. 3 (skim through Sec. 3.4 and 3.6), Sec. 4.1, and Sec 4.2

- So far, we have studied strategic form games
 - Agents take actions once and simultaneously
- Next, we study extensive form games
 - Agents sequentially make decisions in multi-stage games
 - Some agents may move simultaneously at some stage
 - Extensive form games can be conveniently represented by game trees

Example: Entry Deterrence Game

- Entrant chooses to enter market or stay out
- Incumbent, after observing entrant's action, chooses to accommodate or fight
- Utilities are given by (x, y) at leaves for each action profile (or history)
 - x denotes utility of agent 1 (entrant) and y denotes utility of agent 2 (incumbent)

Example: Investment in Duopoly

- Agent I chooses to invest or not invest
- After that, both agents engage in Cournot competition
 - If agent 1 invests, then they engage in Cournot game with $c_1=0$ and $c_2=2$
 - Otherwise, they engage in Cournot game with $c_1=c_2=2$

Finite Perfect-Information Extensive Form Games

- Formally, each game is tuple $G = \langle \mathcal{I}, (\mathcal{A}_i)_{i \in \mathcal{I}}, \mathcal{H}, \mathcal{Z}, \alpha, (\beta_i)_{i \in \mathcal{I}}, \rho, (u_i)_{i \in \mathcal{I}} \rangle$
 - $\mathcal I$ is finite set of agents
 - \mathcal{A}_{i} is set of actions available to agent i
 - \mathcal{H} is set of choice nodes (internal nodes of game tree)
 - \mathcal{Z} is set of terminal nodes (leaves of game tree)
 - $\alpha: \mathcal{H} \mapsto 2^{\mathcal{I}}$ is agent function, which assigns to each choice node set of agents
 - $\beta_i: \mathcal{H} \mapsto 2^{\mathcal{A}_i}$ is action function, which maps choice nodes to set of actions available to agent i
 - $\rho: \mathcal{H} \times \mathcal{A} \mapsto \mathcal{H} \cup \mathcal{Z}$ is successor function, which maps choice nodes and action profiles to new choice or terminal node, such that if $\rho(h_1, a_1) = \rho(h_2, a_2)$, then $h_1 = h_2$ and $a_1 = a_2$
 - $u_i: \mathcal{Z} \mapsto \mathbb{R}$ is utility function, which assigns real-valued utility to agent i at terminal nodes

History in Extensive Form Games

- Let $H^k = \{h^k\} \subseteq \mathcal{H} \cup \mathcal{Z}$ be set of all possible stage k nodes in game's tree
 - $h^0 = \emptyset$
 - $a^0 = \left(a_i^0\right)_{i \in \alpha(h^0)}$
 - $h^1 = (a^0)$
 - $a^1 = (a^1_i)_{i \in \alpha(h^1)}$
 - $h^2 = (a^0, a^1)$
 - •
 - $h^k = (a^0, \dots, a^{k-1})$

initial <mark>history</mark>

stage 0 action profile

history after stage 0

stage I action profile

history after stage

history after stage k-1

- If number of stages is finite, then game is called finite horizon game
- In perfect information extensive form games, each choice (and terminal) node is associated with unique history and <u>vice versa</u>

Strategies in Extensive Form Games

• Pure strategies for agent *i* is defined as contingency plan for every choice node that agent i is assigned to

• Agent 2's strategies: $s_2 \in S_2 = \{EG, EH, FG, FH\}$

• Example:

• For strategy profile s = (C, EG), outcome is terminal node $\{C, E\}$

Randomized Strategies in Extensive Form Games

- Mixed strategy: randomizing over pure strategies
- Behavioral strategy: randomizing at each choice node

- Example:
 - Give behavioral strategy for agent I
 - L with probability 0.2 and L with probability 0.5
 - Give mixed strategy for agent I that is not behavioral strategy
 - LL with probability 0.4 and RR with probability 0.6 (why this is not behavioral?)

Example: Sequential Matching Pennies

- Consider following extensive form version of matching pennies
- How many strategies does agent 2 have?
 - $s_2 \in S_2 = \{HH, HT, TH, TT\}$

• Extensive form games can be represented as normal form games

Agent 2 Agent 1	НН	HT	TT	тн
Heads	(-1, 1)	(-1, 1)	(1, -1)	(1, -1)
Tails	(1, -1)	(-1, 1)	(-1, 1)	(1, -1)

• What will happen in this game?

Example: Entry Deterrence Game

- Consider following extensive form game
- What is equivalent strategic form representation?

Incumbent Entrant	А	F
In	(2, 1)	(0, 0)
Out	(1, 2)	(1, 2)

- Two pure Nash equilibrium: (In, A) and (Out, F)
- Are Nash equilibria of this game reasonable in reality?
 - (Out, F) is sustained by noncredible threat of Entrant

- Suppose that V_G represents set of all nodes in G's game tree
- Subgame G' of G consists of one choice node and all its successors
- Restriction of strategy s to subgame G' is denoted by $s_{G'}$
- Subgame G' can be analyzed as its own game

- Example: sequential matching pennies
 - How many subgame does this game have?
 - Given that game itself is also considered as subgame, there are three subgames

Matrix Representation of Subgames

RR

Subgame Perfect Equilibrium (SPE)

- Profile s^* is SPE of game G if for any subgame G' of G, $s^*_{G'}$ is NE of G'
- Loosely speaking, subgame perfection will remove noncredible threats
 - Noncredible threads are not NE in their subgames
- How to find SPE?
 - One could find all of NE, then eliminate those that are not subgame perfect
 - But there are more economical ways of doing it

Backward Induction for Finite Games

- (1) Start from "last" subgames (choice nodes with all terminal children)
- (2) Find Nash equilibria of those subgames
- (3) Turn those choice nodes to terminal nodes using NE utilities
- (4) Go to (1) until no choice node remains

• [Theorem] Backward induction gives entire set of SPE

SPE of Extensive Form Game and NE of Subgames

- (RR, LL) and (LR, LR) are not subgame perfect equilibria because (*R, **) is not an equilibrium
- (LL, LR) is not subgame perfect because (*L, *R) is not an equilibrium, *R is not a credible threat

Example: Stackleberg Model of Competition

- Consider variant of Cournot game where firm 1 first chooses q_1 , then firm 2 chooses q_2 after observing q_1 (firm 1 is Stackleberg leader)
- Suppose that both firms have marginal cost c and inverse demand function is given by $P(Q) = \alpha \beta Q$, where $Q = q_1 + q_2$, and $\alpha > c$
- Solve for SPE by backward induction starting firm 2's subgame
 - Firm 2 chooses $q_2 = \arg \max_{q \ge 0} (\alpha \beta(q_1 + q) c)q$
 - $q_2 = (\alpha c \beta q_1)/2\beta$
 - Firm I chooses $q_1 = \arg \max_{q \ge 0} (\alpha \beta(q + (\alpha c \beta q)/2\beta) c)q$
 - $q_1 = (\alpha c)/2\beta$
 - $q_2 = (\alpha c)/4\beta$

Example: Ultimatum Game

- Two agents want to split *c* dollars
 - I offers 2 some amount $x \leq c$
 - If 2 accepts, outcome is (c x, x)
 - If 2 rejects, outcome is (0,0)
- What is 2's best response if x > 0?
 - Yes
- What is 2's best response if x = 0?
 - Indifferent between Yes or No
- What are 2's optimal strategies?
 - (a) Yes for all $x \ge 0$
 - (b) Yes if x > 0, No if x = 0

• What is I's optimal strategy for each of 2's optimal strategies?

- For (a), I's optimal strategy is to offer x = 0
- For (b),
 - If agent 1 offers x = 0, then her utility is 0
 - If she wants to offer any x > 0, then she must offer $\arg \max_{x>0} (c x)$
 - This optimization does not have any optimal solution!
 - No offer of agent 1 is optimal!
- Unique SPE of ultimatum game is:

"Agent 1 offers 0, and agent 2 accepts all offers"

Modified Ultimatum Game

- If *c* is in multiples of cent, what are 2's optimal strategies?
 - (a) Yes for all $x \ge 0$
 - (b) Yes if x > 0, No if x = 0
- What are I's optimal strategies for each of 2's?
 - For (a), offer x = 0
 - For (b), offer x = 1 cent
- What are SPE of modified ultimatum game?
 - Agent I offers 0, and agent 2 accepts all offers
 - Agent 1 offers 1 cent, and agent 2 accept all offers except $\mathbf{0}$
- Show that for every $\bar{x} \in [0, c]$, there exists NE in which 1 offers \bar{x}
 - What is agent 2's optimal strategy?

limitation of Backward Induction

- If there are ties, how they are broken affects what happens up in tree
 - There could be too many equilibria

Example: Bargaining Game

- Two agents want to split c = 1 dollar
- First, I makes her offer
- Then, 2 decides to accept or reject
- If 2 rejects, then 2 makes new offer
- Then, I decides to accept or reject
- Let $x = (x_1, x_2)$ with $x_1 + x_2 = 1$ denote allocations in 1st round
- Let $y = (y_1, y_2)$ with $y_1 + y_2 = 1$ denote allocations in 2nd round

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
 - Agent 2 offers 0, and agent 1 accepts all offers
- What is 2's optimal strategy in her round I's subgame?
 - (a) If $x_2 \leq 1$, reject
 - (b) If $x_2 = 1$, accept, and reject otherwise
- What are I's optimal strategies in round I for each of 2's?
 - For both (a) and (b), agent I is indifferent between all strategies
 - Agent I's weakly dominant strategy is to offer $x_2 = 1$
- How many SPE does this game have?
 - Infinitely many! In all SPE, agent 2 gets everything
 - Last mover's advantage: In every SPE, agent who makes offer in last round obtains everything

Example: Discounted Bargaining Game

- Suppose utilities are discounted every round by discount factor, $0<\delta_i<1$
- What is unique SPE of (1)?
 - 2 offers $y_1 = 0$ and 1 accepts all offers
- What are optimal strategies in (2)?
 - (a) Yes if $x_2 \geq \delta_2$, No otherwise
 - (b) Yes if $x_2 > \delta_2$, No otherwise
- What are optimal strategies in (3)?
 - For (a), offer $x_2 = \delta_2$
 - For (b), there is no optimal strategy

Unique SPE of Discounted Bargaining Game

- What are SPE strategies?
 - Agent I's proposes $(1 \delta_2, \delta_2)$
 - Agent 2 only accepts proposals with $x_2 \ge \delta_2$
 - Agent 2 proposes (0,1) after any history in which I's proposal is rejected
 - Agent I accepts all proposals of Agent 2
- What is SPE outcome of game?
 - Agent | proposes $(1 \delta_2, \delta_2)$
 - Agent 2 accepts
 - Resulting utilities are $(1 \delta_2, \delta_2)$
- Desirability of earlier agreement yields positive utility for agent I

Stahl's Bargaining Model (for Finite Horizon Games)

 $(1 - \delta_2)$

- 2 rounds:
- 3 rounds:
- 4 rounds:
- 5 rounds:
- 2k rounds:

 $(1 - \delta_2)(1 + \delta_1 \delta_2) + \delta_1 \delta_2$ $(1 - \delta_2) \left(\frac{1 - (\delta_1 \delta_2)^k}{1 - \delta_1 \delta_2}\right)$

 $(1-\delta_2)(1+\delta_1\delta_2)$

 $(1-\delta_2)+\delta_1\delta_2$

• 2k+1 rounds:

 $(1-\delta_2)\left(\frac{1-(\delta_1\delta_2)^k}{1-\delta_1\delta_2}\right) + (\delta_1\delta_2)^k$

• Taking limit as $k \to \infty$, we see that agent 1 gets $x_1^* = \frac{1-\delta_2}{1-\delta_1\delta_2}$ at SPE

Rubinstein's Infinite Horizon Bargaining Model

- Suppose agent can alternate offers forever
- There are two types of outcome to consider
 - At round t, one agent accepts her offer $(x^1, No, x^2, No, ..., x^t, Yes)$
 - Every offer gets rejected: $(x^1, No, x^2, No, ..., x^k, No, ...)$
- This is not finite horizon game, backward induction cannot be used
- We need different method to verify any SPE

One-Shot Deviation Principle

• One-shot deviation from strategy *s* means deviating from *s* in single stage and conforming to it thereafter

• Strategy profile *s*^{*} is SPE if and only if there exists no profitable oneshot deviation for each subgame and every agent

• This follows from principle of optimality of dynamic programming

SPE for Rubinstein's Model

- Recall that in Stahl's model, for $k \to \infty$, $x_1^* = \frac{1-\delta_2}{1-\delta_1\delta_2}$
- Is following strategy profile s^* SPE?
 - Agent I proposes x^* and accepts y if and only if $y \ge y_1^*$
 - Agent 2 proposes y^* and accepts x if and only if $x \ge x_2^*$

•
$$x^* = (x_1^*, x_2^*), \ x_1^* = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}, \ x_2^* = \frac{\delta_2(1 - \delta_1)}{1 - \delta_1 \delta_2}$$

• $y^* = (y_1^*, y_2^*), \ y_1^* = \frac{\delta_1(1 - \delta_2)}{1 - \delta_1 \delta_2}, \ y_2^* = \frac{1 - \delta_1}{1 - \delta_1 \delta_2}$

One-Shot Deviation Principle for Rubinstein's Model

- First note that this game has two types of subgames
 - (1) first move is offer
 - (2) first move is response to offer
- For (1), suppose offer is made by agent 1
 - If agent | adopts s^* , agent 2 accepts, agent | gets x_1^*
 - If agent | offers > x_2^* , agent 2 accepts, and agent | gets $x_1 < x_1^*$
 - If agent | offers $< x_2^*$, agent 2 rejects and offers y_1^* , agent | accepts and gets $\delta_1 y_1^* < x_1^*$
- For (2), suppose agent 1 is responding to offer $y_1 \ge y_1^*$
 - If agent 1 adopts s^* , she accepts and gets y_1
 - If agent 1 rejects and offers x_2^* in next round, agent 2 accepts, agent 1 gets $\delta_1 x_1^* = y_1^* \le y_1$
- For (2), suppose agent 1 is responding to offer $y_1 < y_1^*$
 - If agent 1 adopts s^* , she rejects and offers x_2^* in next round, agent 2 accepts, agent 1 gets $\delta_1 x_1^* = y_1^* > y_1$
 - If agent 1 accepts, she gets $y_1 < y_1^*$
- Hence s^* is SPE (in fact unique SPE, check GT, Section 4.4.2 to verify)

Rubinstein's Model for Symmetric Agents

- Suppose that $\delta_1 = \delta_2$
 - If agent I moves first, division is $\left(\frac{1}{1+\delta}, \frac{\delta}{1+\delta}\right)$
 - If agent 2 moves first, division is $\left(\frac{\delta}{1+\delta}, \frac{1}{1+\delta}\right)$
- First mover's advantage is related to impatience of agents
 - If $\delta \to 1$, FMA disappears and outcome tends to $\left(\frac{1}{2}, \frac{1}{2}\right)$
 - If $\delta \rightarrow 0$, FMA dominates and outcome tends to (1,0)

Imperfect Information Extensive Form Games

- In perfect information games, agents know choice nodes they are in
 - Agents know all prior actions
 - Recall that in such games choice nodes are equal to histories that led to them
- Agents may have partial or no knowledge of actions taken by others
- Agents may also have imperfect recall of actions taken by themselves

Example: Imperfect Information Sequential Matching Pennies

- Agent I takes action
- Agent 2 does not see agent I's action
- Agent 2 takes action, and outcome is revealed

- Information set is collection of choice nodes that cannot be distinguished by agents whose turn it is
- Set of agents and their actions at each choice node in information set has to be the same, otherwise, agents could distinguish between nodes

Finite Imperfect-Information Extensive Form Games

- Formally, each game is tuple $G = \langle \mathcal{I}, (\mathcal{A}_i)_{i \in \mathcal{I}}, \mathcal{H}, \mathcal{Z}, \alpha, (\beta_i)_{i \in \mathcal{I}}, \rho, (u_i)_{i \in \mathcal{I}}, I \rangle$
 - $\langle \mathcal{I}, (\mathcal{A}_i)_{i \in \mathcal{I}}, \mathcal{H}, \mathcal{Z}, \alpha, (\beta_i)_{i \in \mathcal{I}}, \rho, (u_i)_{i \in \mathcal{I}} \rangle$ is perfect information, extensive form game
 - $I = (I_1, ..., I_n)$, where $I_j = \{h_{j,1}, ..., h_{j,k_j}\}$, is partition of \mathcal{H} such that if $h, h' \in I_j$, then $\alpha(h) = \alpha(h')$, and for all $i \in \alpha(h)$, $\beta_i(h) = \beta_i(h')$

Example: Poker-Like Game

- What are agent I's strategies?
 - {*RR*, *RC*, *CR*, *CC*}
- What are agent 2's strategies?
 - {*CC*, *CF*, *FC*, *FF*}
- How can we find NE of this game?
 - Model game as normal form zero-sum game
 - Each cell represents expected utilities (nature's coin toss)
 - Eliminated (weakly) dominated strategies
 - Solve for (mixed strategy) NE

Example: Kune Poker

https://justinsermeno.com/posts/cfr/

Imperfect Recall, Mixed vs Behavioral Strategies

- Consider mixed strategies
 - What is NE of this game?
 - (R,D) with outcome utilities (2,2)
- Consider behavioral strategies
 - What is I's expected utility if she does (p, 1-p)
 - $p^2 + 100p(1-p) + 2(1-p)$
 - What is I's best response?

•
$$p = \frac{98}{198}$$

• What is NE of this game?

•
$$\left(\left(\frac{98}{198}, \frac{100}{198}\right), (0,1)\right)$$

Solving Extensive Form Games: Perfect vs Imperfect Information

- In perfect information games, optimal strategy for each subgame can be determined by that subgame alone (how backward induction works!)
 - We can forget how we got here
 - We can ignore rest of game

- In imperfect information games, this is not necessarily true
 - We cannot forget about path to current node
 - We cannot ignore other subgames

- Is always accommodating good strategy?
 - No, leads to utility of -2.5 for incumbent
- Is always fighting good strategy?
 - No, leads to utility of -1.5 for incumbent
- What should incumbent do?
 - A with 3/8 probability and F with 5/8
- What if we swap 2 and -2?
 - A with 7/8 probability and F with 1/8

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent I plays R
 - (R, RR) is NE and SPE
- But, why should 2 play R after 1 plays L/M?
 - This is noncredible threat
- There are more sophisticated equilibrium refinements that rule this out

Acknowledgement

- This lecture is a slightly modified version of ones prepared by
 - Asu Ozdaglar [<u>MIT 6.254</u>]
 - Vincent Conitzer [Duke CPS 590.4]