ECE700.07: Game Theory with Engineering Applications

Lecture 6: Repeated Games

Seyed Majid Zahedi

Outline

- Finitely and infinitely repeated games w/ and w/o perfect monitoring
- Trigger strategies
- Folk theorems

- Readings:
 - MAS Sec. 6.1, GT Sec. 5.1 and 5.5

Finitely Repeated Games (with Perfect Monitoring)

- In repeated games, stage game G is played by same agents for R rounds
 - Agents discount utilities by discount factor $0 \le \delta \le 1$
 - Game is denoted by $G^R(\delta)$
- At each round, outcomes of all past rounds are observed by all agents
- · Agents' overall utility is sum of discounted utilities at each round
- Given sequence of utilities $u_i^{(1)}, \dots, u_i^{(R)}$

$$u_i = \sum_{r=1}^{n} \delta^{r-1} u_i^{(r)}$$

- In general, strategies at each round could depend on history of play
 - Memory-less (also called *stationary*) strategies are special cases

Example: Finitely-Repeated Prisoners' Dilemma

• Suppose that *Prisoners' Dilemma* is played in R (< ∞) rounds

Prisoner 2 Prisoner 1	Stay Silent	Confess
Stay Silent	(-1, -1)	(-3, 0)
Confess	(0, -3)	(-2, -2)

- What is SPE of this game?
 - We can use backward induction
 - Starting from last round, (C, C) is dominant strategy
 - Regardless of history, (C, C) is dominant strategy at each round
 - There exists unique SPE which is (C, C) at each round

SPE in Finitely Repeated Games

[Theorem]

• If stage game G has unique pure strategy equilibrium s^* , then $G^R(\delta)$ has unique SPE in which $s^{(r)} = s^*$ for all r = 1, ..., R, regardless of history

[Proof]

- By backward induction, at round R, we have $s^{(R)} = s^*$
- Given this, then we have $s^{(R-1)} = s^*$, and continuing inductively, $s^{(r)} = s^*$ for all r = 1, ..., R, regardless of history

Infinitely Repeated Games

- Infinitely repeated play of G with discount factor δ is denoted by $G^{\infty}(\delta)$
- Agents' utility is average of discounted utilities at each round
- For $\delta <$ 1, given sequence of utilities $u_i^{(1)}$, ..., $u_i^{(\infty)}$

$$u_i = (1 - \delta) \sum_{r=1}^{\infty} \delta^{r-1} u_i^{(r)}$$

• For $\delta=1$, given sequence of utilities $u_i^{(1)},\dots,u_i^{(\infty)}$

$$u_i = \lim_{R \to \infty} \frac{\sum_{r=1}^R u_i^{(r)}}{R}$$

Trigger Strategies (TS)

- Agents get punished if they deviate from agreed profile
- In non-forgiving TS (or grim TS), punishment continues forever

$$s_i^{(t)} = \begin{cases} s_i^* & \text{if } s^{(r)} = s^*, \forall r < t \\ s_i^j & \text{if } s_j^{(r)} \neq s_j^*, \exists r < t \end{cases}$$

- Here, s^* is agreed profile, and s_i^j is punishment strategy of i for agent j
- Single deviation by j trigers agent i to switch to s_i^j , forever

Trigger Strategies in Repeated Prisoners' Dilemma

- Suppose both agents use following trigger strategy
 - Play S unless someone has ever played C in past
 - Play C forever if someone has played C in past

Prisoner 2 Prisoner 1	Stay Silent	Confess
Stay Silent	(-1, -1)	(-3, 0)
Confess	(0, -3)	(-2, -2)

- Under what conditions is this SPE?
- We use one-stage deviation principle
- Step I: (S is best response to S)
 - Utility from S: $-(1 \delta)(1 + \delta + \delta^2 + \cdots) = -(1 \delta)/(1 \delta) = -1$
 - Utility from C: $-(1 \delta)(0 + 2\delta + 2\delta^2 + \cdots) = -2\delta(1 \delta)/(1 \delta) = -2\delta$
 - S is better than C if $\delta \geq 1/2$
- Step 2: (C is best response to C)
 - Other agents will always play C, thus C is best response

Remarks

- Cooperation is equilibrium, but so are many other strategy profiles
- If s^* is NE of G, then "each agent plays s_i^* " is SPE of $G^R(\delta)$
 - Future play of other agents is independent of how each agent plays
 - Optimal play is to maximize current utility, i.e., play static best response
- Sets of equilibria for finite and infinite horizon versions can be different
 - Multiplicity of equilibria in repeated prisoner's dilemma only occurs at $R = \infty$
 - For any finite R (thus for $R \to \infty$), repeated prisoners' dilemma has unique SPE

TS in Finitely Repeated Games

- If G has multiple equilibria, then $G^R(\delta)$ does not have unique SPE
- Consider following example

Agent 2 Agent 1	Х	у	z
x	(3, 3)	(0, 4)	(-2, 0)
у	(4, 0)	(1, 1)	(-2, 0)
Z	(0, -2)	(0, -2)	(-1, -1)

- Stage game has two pure NE: (y, y) and (z, z)
- Socially optimal outcome, (x, x), is not equilibrium
- In twice repeated play, we can support (x, x) in first round

TS in Finitely Repeated Games (cont.)

- TS strategy
 - Play x in first round
 - Play y in second round if opponent played x; otherwise, play z
- We can use one-shot deviation principle
 - For simplicity, suppose $\delta = 1$
 - Playing x first and y next leads to utility of 4
 - Playing y first triggers opponent to play z next, which leads to utility 3
 - Deviation is not profitable!

Repetition Can Lead to Bad Outcomes

Consider this game

Agent 2 Agent 1	х	у	z
х	(2, 2)	(2, 1)	(0, 0)
У	(1, 2)	(1, 1)	(-1, 0)
z	(0, 0)	(0, -1)	(-1, -1)

- Strategy x strictly dominates y and z for both agents
- Unique Nash equilibrium of stage game is (x, x)
- If $\delta \ge 1/2$, this game has SPE in which (y, y) is played in every round
- It is supported by slightly more complicated strategy than grim trigger
 - I. Play y in every round unless someone deviates, then go to II
 - II. Play z. If no one deviates go to I. If someone deviates stay in II

Feasible and Individually Rational Utilities

- $V = \text{Convex hull of } \{v \in \mathbb{R}^{|\mathcal{I}|} \mid \text{there exists } s \in S \text{ such that } u(s) = v\}$
 - Utility in repeated game is just a weighted average of utilities in stage game
- Note that $V \neq \{v \in \mathbb{R}^{|\mathcal{I}|} \mid \text{there exists } \sigma \in \Sigma \text{ such that } u(\sigma) = v\}$
- Recall minmax value of agent i

$$\underline{v}_i = \min_{\sigma_{-i}} \max_{s_i} u_i(s_i, \sigma_{-i})$$

Also recall minmax strategy against i

$$m_{-i}^{i} = \arg\min_{\sigma_{-i}} \max_{s_i} u_i(s_i, \sigma_{-i})$$

• Utility vector $v \in \mathbb{R}^{|\mathcal{I}|}$ is strictly individually rational if $v_i > \underline{v_i}$, $\forall i$

Example

- What is minimax value of agent 1?
 - Let q denote probability that agent 2 chooses L

•
$$\underline{v}_1 = \min_{0 \le q \le 1} \max \{1 - 3q, -2 + 3q, 0\} = 0$$

• $m_2^1 \in [$	1/3, 2/3
-----------------	----------

Agent 2 Agent 1	L	R
U	(-2, 2)	(1, -2)
M	(1, -2)	(-2, 2)
D	(0, 1)	(0, 1)

- What is minimax value of agent 2?
 - Let p and q denote probabilities that agent I chooses U and M, respectively

•
$$\underline{v}_2 = \min_{0 \le p, q \le 1} \max \{p - 3q + 1, -3p + q + 1\} = 0$$

•
$$m_1^2 = (1/2, 1/2, 0)$$

Minmax Utility Lower Bounds

[Theorem]

- If σ^* is NE of G, then $u_i(\sigma^*) \ge \underline{v_i}$
- If σ^* is NE of $G^{\infty}(\delta)$, then $u_i(\sigma^*) \geq \underline{v}_i$

[Proof]

• Agent i can always guarantee herself \underline{v}_i in stage game and also in each round of repeated game, meaning that she can always achieve at least this utility against even most adversarial opponents

Nash Folk Theorem

[Nash Folk Theorem]

• If v is feasible and strictly individually rational, then there exists $\underline{\delta} < 1$, such that for all $\delta > \underline{\delta}$, $G^{\infty}(\delta)$ has NE with utilities v

[Proof]

- Suppose for simplicity that there exists pure strategy profile s^* such that $u_i(s^*) = v_i$ (otherwise, proof is more involved)
- Consider following grim trigger strategy for agent i
 - Play s_i as long as no one deviates
 - If some agent j deviates, then play m_i^j thereafter
 - If i plays s, her utility is v_i

Proof of Nash Folk Theorem

- We can use one-shot deviation principle
- Suppose i deviates from s in round r
- Define $\bar{v}_i = \max_{s_i} u_i(s_i, s_{-i}^*)$
- We have

$$u_i \le (1 - \delta)(v_i + \delta v_i + \dots + \delta^{r-1}v_i + \delta^r \bar{v}_i + \delta^{r+1}\underline{v}_i + \delta^{r+2}\underline{v}_i + \dots)$$

• Following s^* will be optimal if

$$v_i \ge (1 - \delta^r)v_i + \delta^r(1 - \delta)\bar{v}_i + \delta^{r+1}\underline{v}_i$$
$$= v_i - \delta^r(v_i - \bar{v}_i + \delta(\bar{v}_i - \underline{v}_i))$$

• This means, s^* is NE of $G^{\infty}(\delta)$ if

$$\delta \ge \underline{\delta} = \max_{i} \frac{\overline{v}_i - v_i}{\overline{v}_i - \underline{v}_i}$$

Problems with Nash Folk Theorem

- Any utility can be achieved when agents are patient enough
- NE involves non-forgiving TS which may be costly for punishers
- NE may include non-credible threats
- NE may not be subgame perfect
- Example:
 - Unique NE in this game is (D, L)
 - Minmax values are given by $\underline{v}_1 = 0$ and $\underline{v}_2 = 1$
 - Minmax strategy against agent I requires agent 2 to play R
 - R is strictly dominated by L for agent 2

Agent 2 Agent 1	L	R
U	(6, 6)	(0, -100)
D	(7, 1)	(0, -100)

Subgame Perfect Folk Theorem

[Theorem]

- Let s^* be NE of stage game G with utilities v^*
- For any feasible utility v with $v_i > v_i^*$, $\forall i \in \mathcal{I}$, there exists $\underline{\delta} < 1$ such that for all $\delta > \underline{\delta}$, $G^{\infty}(\delta)$ has SPE with utilities v

[Proof]

- Simply construct non-forgiving TS with punishment by static NE
- Punishments are therefore subgame perfect
- For δ sufficiently close to 1, it is better for each agent i to obtain v_i rather than deviate and get v_i^* forever thereafter
- This shows that any utility higher than NE utilities can be sustained as SPE

Repeated Games with Imperfect Monitoring

- At each round, all agents observe some public outcome, which is correlated with stage game actions
- Let $y \in Y$ denote publicly observed outcome
- Each strategy profile s induces probability distribution over y
- Let $\pi(y,s)$ denote probability distribution of y under action profile s
- Public information at round r is $h^{(r)} = (y^{(1)}, ..., y^{(r-1)})$
- Strategy of agent i is sequence of maps $s_i^{(r)}:h^{(r)}\to S_i$

Repeated Games with Imperfect Monitoring (cont.)

- Each agent's utility depends only on her own action and public outcome
 - ullet Dependence on actions of others is through their effect on distribution of y
- Agent i's realized utility at round r is

$$u_i(s_i^{(r)}, y^{(r)})$$

• Given strategy profile $s^{(r)}$, agent i's expected utility is

$$u_i(s^{(r)}) = \sum_{y \in Y} \pi(y^{(r)}, s^{(r)}) u_i(s_i^{(r)}, y^{(r)})$$

• Agent i's average discounted utility for sequence $\{s^t\}$ is

$$u_i = (1 - \delta) \sum_{r=1}^{\infty} \delta^{r-1} u_i(s^{(r)})$$

Example: Cournot Competition with Noisy Demand

[Green and Porter, Noncooperative Collusion under Imperfect Price Information, 1984]

- Firms set production levels $q_1^{(r)}$, ..., $q_n^{(r)}$ privately at round r
- Firms do not observe each other's output levels
- Market demand is stochastic
- Market price depends on total production and market demand
- Low price could be due to high production or low demand
- Firms utility depends on their own production and market price

Simpler Example: Noisy Prisoner's Dilemma

- \bullet Prisoners don't observe each others actions, they only observe signal y
 - $u_1(S, y) = 1 + y$ $u_1(C, y) = 4 + y$
 - $u_2(S, y) = 1 + y$ $u_2(C, y) = 4 + y$
- Signal y is defined by continuous random variable X with E[X] = 0
 - If s = (S, S), then y = X
 - If s = (S, C) or (C, S), then y = X 2
 - If s = (C, C), then y = X 4
- Normal form stage game is

Prisoner 2 Prisoner 1	Stay Silent	Confess
Stay Silent	(1+X, 1+X)	(-1+X, 2+X)
Confess	(2+X, -1+X)	(X, X)

Trigger-Price Strategy

- Consider following trigger strategy for noisy Prisoner's Dilemma
 - (I) Play (S, S) until $y \le y^*$, then go to (II)
 - (II) Play (C, C) for R rounds, then go back to (I)
- Note that punishment uses NE of stage game
- We can choose y^* and R such that this strategy profile is SPE
- We use one-shot deviation principle
- Deviation in (II) is obviously not beneficial
- In (I), if agents do not deviate, their expected utility is

$$v = (1 - \delta) \Big((1 + 0) + F(y^*) \delta^{(R+1)} v + (1 - F(y^*)) \delta v \Big)$$

$$\Rightarrow v = \frac{1 - \delta}{1 - \delta(1 - \delta) (1 - F(y^*)(1 - \delta^R))}$$

Trigger-Price Strategy (cont.)

• If some agent deviates in (1), then her expected utility is

$$v_d = (1 - \delta) \Big((2 + 0) + F(y^* + 2) \delta^{(R+1)} v + (1 - F(y^* + 2)) \delta v \Big)$$

- Deviation provides immediate utility, but increases probability of entering (II)
- To have SPE, we mush have $v \ge v_d$ which means

$$v \ge \frac{2(1-\delta)}{1-\delta(1-\delta)(1-F(y^*+2)(1-\delta^R))}$$

$$\Rightarrow 2F(y^*+2) - F(y^*) \le \frac{1-\delta(1-\delta)}{\delta(1-\delta)(1-\delta^R)}$$

- Any R and y^* that satisfy this constraint construct SPE
- Best trigger-price strategy could be found if we maximize v subject to this constraint

Questions?

Acknowledgement

- This lecture is a slightly modified version of one prepared by
 - Asu Ozdaglar [MIT 6.254]