

1. Best response, NE, and $\operatorname{SPE}(20$ points). Consider a normal-form game with two agents $N=\{1,2\}$. Action of agent i is denoted by $a_{i} \in[0, \infty)$. Utilities are $u_{1}\left(A_{1}, A_{2}\right)=2 \ln \left(a_{1}+a_{2}\right)-a_{1}$, and $u_{2}\left(a_{1}, a_{2}\right)=$ $\ln \left(a_{1}+a_{2}\right)-a_{2}$.
a. Find best response correspondence for agent 1 (5 points).

a. Find a pure strategy Nash equilibria of the game (5 points).

b. Suppose that agents play this game sequentially. First, assume that agent 1 takes an action, agent 2 observes agent 1's action and then, takes an action. Find subgame perfect equilibria of this new game (5 points).

c. Repeat b assuming that agent 2 takes an action first, and agent 1 takes an action after observing agent 2's decision (5 points).
\square
2. Minmax and maxmin (20 points). Consider the following game.

		Agent 2	
		Left	Right
	Ugent 1	Up	$20,-20$
	Down	$-5,0$	
		10,0	$5,-10$

a. What is the minmax value of agent 1? Show your work (10 points).
Maxmin: \square
Minmax: \square
b. What is the maxmin value of agent 1 with pure strategies only (i.e., $\max _{a_{1} \in A_{1}} \min _{a_{2} \in A_{2}} u_{1}\left(a_{1}, a_{2}\right)$, where A_{i} is the set of agent i 's pure strategies)? Show your work (5 points).
\square
c. Let S_{i} be the set of agent i 's mixed strategies. Does the following equality always hold in any finite, 2 -player, general-sum game? Why (5 points)?

$$
\max _{s_{1}} \min _{a_{2}} u_{1}\left(s_{1}, a_{2}\right)=\max _{s_{1}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)
$$

\square
3. Correlated equilibrium (20 points) Consider the following game and the distribution π on its outcomes.

	A	B	C
A	1, 1	$-1,-1$	0, 0
	35\%	0%	0%
B	-1, -1	1,1	0, 0
	0%	35\%	0\%
C	0, 0	0, 0	-1.5, -1.5
	0%	0\%	30%

a. Is π a coarse correlated equilibrium of the game? Why (10 points)?
\square
b. Is π a correlated equilibrium of the game? Why (10 points)
\square
4. Fictitious play (10 points) Consider the following game.

If both agents run the fictitious play algorithm to play this game repeatedly. Suppose that $\eta_{1}^{1}=(1,1)$ and $\eta_{2}^{1}=(1,2)$. Suppose that agent 1 takes U if both U and D have the same expected utility. Similarly, assume that agent 2 takes L if both L and R have the same expected utility. What outcome happens at round 3 of the game? Show your work.
\square
5. BNE (16 points). Consider a game with two agents. For agent $1, A_{1}=\{U, D\}$, and for agent 2, $A_{2}=\{L, R\}$. Agent 2 has a single type, but agent 1's types is H with probability 0.6 and L with probability 0.4 (these are common priors). Depending on agent 1's type, the game has the following two forms:

a. Complete the following table with the ex-ante expected utilities for both

Agent 2

b. Consider the following mixed strategy profile s. Agent 2 mixes between L and R with equal probabilities. Agent 1 mixes between U and D with equal probabilities if $\theta_{1}=H$ and takes U with probability 1 if $\theta_{1}=L$. Calculate interim expected utility of agent 1 for each of agent 1's types (8 points).

$$
E U_{1}(s, H): \square E U_{1}(s, L): \square
$$

6. Stochastic Games (14 points). Consider the following two-player, zero-sum, stochastic game (only utility of agent 1 is shown).

Suppose that $V_{0}\left(s_{1}\right)=V_{0}\left(s_{2}\right)=1$, and $\delta=0.5$. Compute the matrix game $G\left(s_{1}, V_{0}\right)$ and the value $V_{1}\left(s_{1}\right)$ for agent 1 according to the Shapley Algorithm.

$V_{1}\left(s_{1}\right): \square$

