
SE350: Operating Systems
Lecture 1: Introduction

Outline

• How do things work in SE350?

• Instructional team

• Course mechanics

• Lab project

• What is an operating system?

• What makes designing operating systems challenging?

Teaching Team

Instructor : Seyed Majid Zahedi
zahedi@uwaterloo.ca
Office hours: M 2-3 and F 3:30-4:30 (DC-2524)

Lab instructor: Irene Huang
yqhuang@uwaterloo.ca

Office hours: TBA

http://uwaterloo.ca
http://uwaterloo.ca

SE350 TAs

Ali Hossein Abbasi Abyaneh
a36hosse@uwaterloo.ca

Huanyi Chen
h365chen@uwaterloo.ca

Weitian Xing
w23xing@uwaterloo.ca

http://uwaterloo.ca
http://uwaterloo.ca
http://uwaterloo.ca

Online Resources

• Course website

https://ece.uwaterloo.ca/~smzahedi/crs/se350/

• Course on Piazza

https://piazza.com/uwaterloo.ca/winter2020/se350

https://ece.uwaterloo.ca/~smzahedi/crs/se350/
https://piazza.com/uwaterloo.ca/winter2020/se350

Readings

• Main textbook
Operating Systems: Principles and Practice (2nd Edition)

• Optional references
Operating Systems: Three Easy Pieces (Freely Available)

Operating System Concepts (10th Edition)

http://ospp.cs.washington.edu/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://codex.cs.yale.edu/avi/os-book/OS10/

Evaluation

• Midterm exam: 15%

• Feb 27th, 18:30-20:20 (DC-1351)

• Lab project: 35%

• Final exam: 50%

RTX Project Overview

• What is this project about?
• What are deliverables?
• How to form and leave project groups?
• What lab facilities are provided?
• How to seek help outside lab?

RTX Project

• You will design, implement, and test real-time executive (RTX)
• Basic multiprogramming environment
• Five priority queues and preemption
• Simple memory management
• Message-based Inter-Process Communication (IPC)
• System console I/O (UART 0/1)
• Debugging support (UART 1/0)

• Your RTX operates on Keil MCB1700 Cortex-M3 boards

Four Milestones

• RTX implementations (P1, P2, and P3)
• Optional: combine P2 and P3
• Make your decision by 16:30 on March 13th

• RTX demonstrations (Weeks 5, 10, and 12)
• Week 10 is help session if P2 and P3 are combined

• RTX P4 is final project report (30-40 pages) + code
• Three grace days without penalty

• 10% per day late submission penalty afterwards
• Submissions will not be accepted after three days

• Zero tolerance policy for plagiarism
• We use Moss
• We follow UW Policy 71 for any single incident

https://theory.stanford.edu/~aiken/moss/
https://uwaterloo.ca/secretariat/policies-procedures-guidelines/policy-71

Project Groups

• Forming project groups
• Four members (three is acceptable for special cases)
• Within the same lab section as much as possible
• Use LEARN to signup by 16:30 on Jan. 17th

• Leaving project groups
• One week notice in writing before nearest deadline
• Only one split-up is allowed
• All students involved lose one grace day

• Everyone in the same group gets the same grade

Lab Facilities

• • Five scheduled lab sessions are in weeks 3,5, 8,10 and 12
• M, W, and F (excluding Reading Week)
• Help sessions: Weeks 3 and 8
• Demo sessions: Weeks 5, 10 and 12

• Lab is in E2-2363
• Nexus computers
• Keil MCB1700 LPC1768 (Cortex-M3) boards
• MDK-ARM MDK-Lite ed. V4.60 (32KB code size limit)

• RealView Compilation Tools are included
• Simulator is good for development work outside lab*

• SE350 shares lab with ECE222 sessions which are scheduled
in even weeks (T, W, and Th)

* Simulator may not perfectly match hardware behaviour, so test your code on hardware well before deadlines!

Seeking Help Outside Lab

• Lab Q&A on Piazza discussion forum
• Looking for group partners
• Lab/Project administration
• Keil IDE Q&A
• Project Q&A
• Target response time: one business day
• Do not wait till the last minute to ask questions

• Individual emails
• Only for questions containing confidential information

• Office hours during non-lab weeks
• No office hours during Reading Week and Midterm week

• By appointment

Important Near-Term Task

Signup for project groups by 16:30 on Jan 17th

What is an Operating System?

• Special layer of software that provides applications
access to hardware resources
• Abstract view of complex hardware devices
• Protected access to shared resources
• Security and authentication
• Communication amongst logical entities

Hardware

OS

App1 App3App2

What Do Operating Systems Do?

• Provide abstractions to applications
• File systems
• Processes, threads
• Virtual memory
• Naming system, …

• Manage diverse resources
• Memory, CPU, storage, . . .

• Achieves above by implementing
specific algorithms and techniques
• Scheduling
• Concurrency
• Transactions
• Security, …

System Call
Interface

Portable Operating
System Kernel

Portable
OS Library

Web ServersCompilers Source Code Control

Web Browsers Email

Databases Word Processing

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n SCSI IDE

Graphics Accelerators LCD Screens

What Makes Designing OSs
Exciting and Challenging?

Opera
ting

 Sy
stem

s ar
e a

t th
e h

ear
t of it

all …

Technology Trends

End of Dennard Scaling
[R. Dennard et al. 1974]

[Moore’s Law 1965]

How do we program these?
Parallelism must be exploited at all levels

Dark Silicon [Esmaeilzadeh et al. 2011]

Multiprocessor melts if all cores
simultaneously run at full capacity

Modern Processors

• Intel Xeon Platinum 9282
• 14nm processor
• 56 cores, 112 threads
• 1.75MB data and ins. L1 cache
• 56MB L2 cache
• 77MB shared L3 cache
• 8B transistors

• AMD EPYC 7H12
• 7nm processor
• 64 cores, 128 threads
• 2MB data and ins. L1 cache
• 32MB L2 cache
• 256MB shared L3 cache
• 4.8B transistors

Intel Haswell E

www.extremetech.com

Memory Hierarchy

Reg.

L1 cache
SRAM

L2 cache
SRAM

L3 cache
SRAM

Main memory
DRAM

Local secondary storage

Remote secondary storage
(e.g., distributed file systems)

Smaller
Faster

Costlier (per byte)

Larger
Slower

Cheaper (per byte)

Numbers Everyone Should Know [Jeff Dean, 2009]

Key stroke ~100 ms

Network, IO, and Memory Bandwidth
Trends

twiki.cern.ch

People to Computer Ratio Trend

years

Computers
Per Person

103:01

01:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

01:01

01:103

Bell’s Law: new computer class per 10 years

Number
crunching, Data
Storage, Massive
Inet Services,
ML, …

Productivity,
Interactive

Streaming
from/to physical
world

Internet of Things!

Early vs Current Operating Systems

• One user/application at a time
• Had complete control of hardware
• OS was runtime library
• Users would stand in line to use the computer

• Batch systems
• Keep CPU busy by having a queue of jobs
• OS would load next job while current one runs
• Users would submit jobs, and wait, and wait, and wait …

• Multiple users on computer at the same time
• Multiprogramming: run multiple programs at same time
• Interactive performance: try to complete everyone’s tasks quickly
• As computers became cheaper, more important to optimize for user

time, not computer time

Complexity

• Applications consisting of…
• … a variety of software modules that …
• … run on a variety of devices (machines) that

• … implement different hardware architectures
• … run competing applications
• … fail in unexpected ways
• … can be under a variety of attacks

• Not feasible to test software for all possible environments and
combinations of components and devices
• Question is not whether there are bugs but how serious are bugs!

Kernel Complexity
Lin

es
 o

f C
od

e
in

Lin
ux

 K
er

ne
l

Kernel Versions

05M

10M

15M

20M

What do OS’s do? (revisited)

• Manage hardware resources for
users and applications
• Convert what hardware gives

into something that application
programmers want
• For any OS component, begin by

asking two questions:
• What is hardware interface?

(physical reality)
• What is application interface?

(virtual machine)

TCP/IP Networking

Virtual Memory

Hardware-Specific Software
and Device Drivers

File System

Scheduling

Graphics Processor

Address TranslationProcessors

Network

Hardware

Users

User-mode

Kernel-mode
Kernel-user Interface

(Abstract virtual machine)

Hardware Abstraction Layer

APP

System
Library

APP

System
Library

APP

System
Library

Disk

Virtual Machines

• Software emulation of abstract machine
• Gives programs illusion that they own entire machine
• Makes it look like hardware has features programs want

• Two types of “Virtual Machines”
• Process VM: supports execution of single program; (e.g. OS, Java)
• System VM: supports execution of entire OS (e.g., VMWare Fusion,

Virtual box, Parallels Desktop, Xen)

Process VMs

• Programming simplicity
• Each process thinks it owns all devices
• Each process thinks it has all memory/CPU time
• Device interfaces more powerful than raw hardware

• Bitmapped display Þ windowing system
• Ethernet card Þ reliable, ordered, networking (TCP/IP)

• Fault isolation
• Processes unable to directly impact other processes
• Bugs cannot crash whole machine

• Protection and Portability
• Java interface safe and stable across many platforms

System Virtual Machines: Layers of OSs

• Useful for OS development
• When OS crashes, restricted to one VM
• Can aid testing programs on other OSs

What is an OS? (revisited)

• Referee
• Resource allocation among users, applications
• Isolation of different users, applications from each other
• Communication between users, applications

• Illusionist
• Each application appears to have entire machine to itself
• Infinite number of processors, (near) infinite amount of

memory, reliable storage, reliable network transport

• Glue
• Libraries, user interface widgets, etc.

What is an OS, … Really?

• Most Likely:
• Memory Management
• I/O Management
• CPU Scheduling
• Communications? (Does Email belong in OS?)
• Multitasking/multiprogramming?

• What about?
• File System?
• Multimedia Support?
• User Interface?

Operating System Definition

• No universally accepted definition
• “Everything vendors ship when you order OS” is

good approximation
• But varies wildly

• “The one program running at all times on computer”
is kernel
• Everything else is either system program (ships with OS)

or application program

Summary

• OS’s provide virtual machine abstraction to handle diverse
hardware
• OS’s simplify application development by providing standard services

• OS’s coordinate resources and protect users from each other
• OS’s can provide array of fault containment, fault tolerance, and fault

recovery

• SE350 combines ideas and concepts from many other areas of
computer science and engineering
• Languages, data structures, hardware, and algorithms

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

