SE350: Operating Systems

Lecture 2: OS Concepts

Outline

* Brief history of OS's

* Four fundamental OS concepts
* Thread
* Address space

* Process
* Dual-mode operation/protection

Very Brief History of OS

* Several distinct phases:

* Hardware expensive, humans cheap

* FEniac, ... Multics

“I think there is a world market for

maybe five computers.” — Thomas
Watson, chairman of IBM, | 943

Thomas Watson was often called “the

worlds greatest salesman” by the time
of his death in 1956

Very Brief History of OS

Several distinct phases:
* Hardware expensive, humans cheap
* Eniac, ... Multics
* Hardware cheaper, humans expensive
* PCs, workstations, rise of GUIs

* Hardware very cheap, humans very expensive

* Ubiquitous devices, widespread networking

RANK XEROX

Now you can create
documents with words E
Ld plctures

Very Brief History of OS

* Several distinct phases:
* Hardware expensive, humans cheap
* Eniac, ... Multics
* Hardware cheaper, humans expensive
* PCs, workstations, rise of GUIs

* Hardware very cheap, humans very expensive
» Ubiquitous devices, widespread networking
* Rapid change in hardware leads to changing OS

¢ Batch = multiprogramming = timesharing = GUI = ubiquitous devices

* Gradual migration of features into smaller machines

* Today
* Small OS: 100K lines / Large: 20M lines (10M browser!)
* [00-1000 people-years

OS Archaeology

* Due to high cost of building OS from scratch, most modern OS's have long lineage

e Multics = AT&T Unix = BSD Unix = Ultrix, SunOS, NetBSD,.. .

* Mach (micro-kernel) + BSD = NextStep = XNU = Apple OS X iPhone iOS

e MINIX = Linux = Android, Chrome OS, RedHat, Ubuntu, Fedora, Debian, Suse,. ..

 CP/IM = QDOS = MS-DOS = Windows 3. = NT = 95 = 98 = 2000 =
XP=Vista=/=8= 0= ...

Today: Four Fundamental OS Concepts

Thread

* Single unigue execution context which fully describes program state

* Program counter, registers, execution flags, stack

Address space (with translation)

* Address space which is distinct from machine’s physical memory addresses

Process

* Instance of executing program consisting of address space and |+ threads

Dual-mode operation/protection
* Only "system’ can access certain resources
e OS and hardware are protected from user programs

* User programs are isolated from one another by controlling translation from
program virtual addresses to machine physical addresses

OS Bottom Line: Run Programs

. S Executable
() Edits OUrce ' Compiler Image
f' - - - - Code _ _ _ _ _ _ >
—.i___i.— Data

Instructions

* Load instruction and data segments of
executable file into memory

* Create stack and heap
* “Transfer control to program”
* Provide services to program

* While protecting OS and program

learnworthy.net

OS Starts
Execution

Instructions

[PC

Processor Registers

OxFFF...

AJOWIR|A|

0x000...

Instruction Cycle:
Fetch, Decode, Execute

Memory

t
ALU

Data

Execute 1 1

Registers
‘)

Instructions

Decode
%

|
PC

Instruction fetch

t

Next

1

What Happens During
Program Execution?

Memory

I 1
X P
ALU

i i

Data

Registers
—4

Instructions

Decode

* Execution sequence: ¢
* Fetch instruction at PC | i I

Decode Ni“

Execute (possibly using registers)

Write results to registers/memory
PC « Next(PC)
Repeat

Next instruction or jump to new address ...

Thread (15 OS Concept)

Thread is single unique execution context

* Program counter (PC), registers, execution flags, stack

Thread is executing on processor when It resides in processor's registers

Registers hold root state of thread (the rest is “in memory")

Registers are defined by instruction set architecture (ISA) or by compiler
* Stack pointer (SP) holds address of top of stack

» Other conventions: frame pointer, heap pointer; data

* PC register holds the address of executing instruction in the thread

Address Space (2" OS Concept)

* Address space Is set of accessible addresses and ONFFE.
state associated with them o]
* For 32-bit processor: 232 = ~4 billion addresses
. Heap T
* What happens when you read or write to address! o
* Perhaps nothing
* Perhaps acts like regular memory Instructions
* Perhaps ignores writes
* Perhaps causes I/O operation 0x000...

* (Memory-mapped I/O)

Perhaps causes exception (fault)

Address Space Layout of C Programs

Command line args
and environment vars

#include <stdio.h>
taclude <stdlib.h>

Stack

T int main(int argc, char *argv[]) {

[int *values;

Heap <« ~—
(/ L it I N
Uninitialized Data ' '

values = (int *)malloc(sizeof(int)*5);

Initialized Data for (1 = 0; 1 < 5; i1++)
values[i] = i;

Binary Code

return 0;

Multiprogramming: Multiple Threads

Stack *

Heap 4
Proc | cen - Data
N 4 COde

Heap 4
Data

Code

Time Sharing

t | j R

Shared Memory

[
»

Time

* How can we give illusion of multiple processors with single processor?

e Multiplex in time!

Fach virtual “CPU" needs structure to hold

» PC, SR and rest of registers (integer, floating point, ...)

How do we switch from one vCPU to next!
* Save PC, SE and registers in current state block

* Load PC, SP and registers from new state block

What triggers switch?
* Timer, voluntary yield, /O, ...

The Basic Problem of Concurrency

* The basic problem of concurrency involves resources
* Hardware: single CPU, single DRAM, single I/O devices

¢ Multiprogramming APl: processes think they have exclusive access to
shared resources

* OS should coordinate all activity
* Multiple processes, I/O interrupts, ...

* How can it keep all these things straight!

e Basic idea Is to use virtual machine abstraction
* Simple machine abstraction for processes

* Multiplex these abstract machines

* Dijkstra did this for the “THE system”
* Few thousand lines vs | million lines in OS 360 (K bugs)

Properties of This Simple
Multiprogramming Technique

o All vCPUs share same non-CPU resources

* /O devices, memory, ...

* Consequence of sharing

 Fach thread can access data of every other thread
(good for sharing, bad for protection)

e Threads can share instructions
(good for sharing, bad for protection)

e (Can threads overwrite OS functions!?

* This (unprotected) model is common In
* Embedded applications
* Windows 3.1/Early Macintosh (switch only with yield)
* Windows 95-ME (switch with both yield and timer)

Protection

OS must protect itself from user programs
* Reliabllity: compromising OS generally causes it to crash
* Security: limit scope of what processes can do
* Privacy: limit each process to data it is permitted to access

* [airness: enforce appropriate share of resources (CPU time, memory, I/O, etc)

't must protect user programs from one another

Primary mechanism is to limit translation from program address space to
physical memory space

» (Can only touch what is mapped into process address space

There are additional mechanisms as well
* Privileged instructions, infout instructions, special registers

* syscall processing, subsystem implementation

* (e.g,file access rights, etc)

Process (3" OS Concept)

* Process: execution environment with restricted rights
* Address space with one or more threads
* Owns memory (address space)

* Owns file descriptors, file system context, ...

* Encapsulates one or more threads sharing process resources

* Why processes!
* Protected from each other!
OS Protected from them

Memory protection

Threads more efficient than processes (later)

Fundamental tradeoff between protection and efficiency
» Communication easier within a process

* Communication harder between processes

* Application instance consists of one or more processes

Single and Multithreaded Processes

* Threads encapsulate concurrency and are active components

* Address spaces encapsulate protection and are passive part

* Keeps buggy program from trashing system

* Why have multiple threads per address space!

* Processes are expensive to start, switch between, and communicate between

‘ code ‘ ‘ data | ‘ files ‘ ’ code | | data ‘ ‘ files |
‘registers‘ | PC l ‘ stack ‘ |registers| Iregistersl |registers|
’ stack l | stack ‘ ‘ stack |

thread_); | pc ||| PC ||| PC |

NS

single-threaded process multithreaded process

Dual-Mode Operation
(4t" OS Concept)

* Hardware provides at least two modes
* Kernel mode (or“supervisor’ or “protected”)

* User mode, which is how normal programs are executed

* How can hardware support dual-mode operation!?
* A bit of state (user/system mode bit)

 Certain operations/actions only permitted in system/kernel mode
* In user mode they fail or trap
* User to kernel transition sets system mode AND saves user PC
* OS code carefully puts aside user state then performs necessary actions

* Kernel to user transition clears system mode AND restores user PC
* E.g, rfi: return-from-interrupt

User/Kernel (Privileged) Mode

)\ }
| !

Limited HWV access Full HWV access

\

Simple Memory Protections:
Base and Bound (B&B)

OxFFF. ..
Virtual Address Physical Address
0010 Base
S 0x100. . 0x110...
Stack * ! Stack *
Ox001 ... ' OxI101...
Heap 2 E *@-----r ------------------------ > Heap 4
Data e . Data
Code | Code
02000 : Bound 0x100...
St 0x1 10
¥
Raise 0x000...

Exception

Towards Virtual Addresses

* What are upsides of B&B!

* OS protection and program isolation
* [ow overhead address translation

* What are downsides of B&B!?
* Expandable heap!?

Expandable stack?

Memory sharing between processes?

Non-relative addresses — hard to move memory around

Memory fragmentation

Address Space Translation

* Program operates in address space that is distinct from

physical memory space of machine

Processor

Virtual
Address

Translator

OxFFF. ..

Physical
Address

Memory

0x000...

Virtual Address Example

int staticVar = 0; // a static variable
int main() {

staticVar += 1;

usleep(5000000); /] sleep for 5 seconds

printf("static address: %x, value: %d\n", &staticVar, staticVar);

* What happens if we run two instances of this program at the
same time!

* What if we took the address of a procedure local variable in
two copies of the same program running at the same time?

Putting it All Together:

OS Loads Process (with B&B)

OS

sysmode | |

Base
Bound
SP
uPC
PC

Regs

Stack

Heap

Data

Code

Stack

Heap

Data

Code

OxFFFF. ..

0x3080...

0x3000...
Ox1100...

Ox1000...
0x0000...

OS Gets Ready to Execute Process

(with B&B)

OS

* Privileged Inst: set
special registers

sysmode
Base
Bound
SP

uPC

PC

Regs

Stack

Heap

Data

0x1000...

Ox!1100...

Ox00FF

Code

0x000|

A 4

Stack

Heap

Data

Code

OxFFFF. ..

0x3080...

0x3000...
Ox1100...

Ox1000...
0x0000...

User Code Running (with B&B)

Proc 2

OS
sysmode
Base
. HQW does OS Bound
switch between -
processes!

. . uPC

* First question: How
to return to OS? PC
Regs

0

0x1000...

Ox!1100...

Ox00FF

Stack

Heap

Data

Code

0x000|

[
»

=

[sk]
L Sack v

OxFFFF. ..

0x3080...

0x3000...
Ox1100...

0x1000...
0x0000...

Three Types of Mode Transfer

Syscall
* Process requests system service, e.g,, exit
* Like function call, but outside process

* Process does not have address of system function to call
* Like a Remote Procedure Call (RPC) — for later

* OS marshalls syscall id and args in registers and exec syscall

Interrupt

* External asynchronous event triggers context switch, e. g, Timer, [/O device

* Independent of user process

Trap or exception

* Internal synchronous event in process triggers context switch, e.g., protection
violation (segmentation fault), divide by zero, ...

All 3 are UNPROGRAMMED CONTROL TRANSFER

How do we get address of unprogrammed control transfer?

Interrupt Vector

* Table set up by OS pointing to code to run on different events

Processor

Interrupt

Register Vector Table

T S hand|eTimer|nterrupt() {

}

cieeeeneeeneeeeeeeeed handleDivide ByZe ro () {
}

}

User to Kernel Switch (with B&B)

Proc 2

OS

sysmode
Base
Bound
SP

uPC

PC

Regs

0

0x1000...

Ox!1100...

OxOOFF. ..

Stack *
Heap 4
Data
Code

0x0000 1234

[
»

[sk]
L Sack v

==

OxFFFF. ..

0x3080...

0x3000...
Ox1100...

0x1000...
0x0000...

Interrupt (with B&B)

Proc 2
L

OS

* How to save
registers and set
up system stack?

sysmode
Base
Bound
SP

uPC

PC

Regs

[Coxioco-.
[Toxtioo...
[Coxoorr..
[Co00001234

I

OS stores copy
of registers in

| Its memory

Stack *
Heap 4
Data

> Code

0x1000...

OxI100...

OxOOFF...

y

0x0000 1234

IntrpVectori]

'l Stack ¢ |
Heap
| Code |

OxFFFF. ..

0x3080...

0x3000...
Ox1100...

0x1000...
0x0000...

Summery:
Four Fundamental OS Concepts

Thread

* Single unigue execution context which fully describes program state

* Program counter, registers, execution flags, stack

Address space (with translation)

* Address space which is distinct from machine’s physical memory addresses

Process

* Instance of executing program consisting of address space and |+ threads

Dual-mode operation/protection
* Only "system’ can access certain resources
e OS and hardware are protected from user programs

* User programs are isolated from one another by controlling translation from
program virtual addresses to machine physical addresses

Questions!?

>
|

%
A

4\\

|

Acknowledgment

* Slides by courtesy of Anderson, Culler; Stoica,
Silberschatz, Joseph, and Canny

