
SE350: Operating Systems
Lecture 2: OS Concepts

Outline

• Brief history of OS’s
• Four fundamental OS concepts
• Thread
• Address space
• Process
• Dual-mode operation/protection

Very Brief History of OS

• Several distinct phases:
• Hardware expensive, humans cheap

• Eniac, … Multics

Thomas Watson was often called “the
worlds greatest salesman” by the time
of his death in 1956

“I think there is a world market for
maybe five computers.” – Thomas
Watson, chairman of IBM, 1943

Very Brief History of OS

• Several distinct phases:
• Hardware expensive, humans cheap

• Eniac, … Multics
• Hardware cheaper, humans expensive

• PCs, workstations, rise of GUIs
• Hardware very cheap, humans very expensive

• Ubiquitous devices, widespread networking

Very Brief History of OS

• Several distinct phases:
• Hardware expensive, humans cheap

• Eniac, … Multics
• Hardware cheaper, humans expensive

• PCs, workstations, rise of GUIs
• Hardware very cheap, humans very expensive

• Ubiquitous devices, widespread networking

• Rapid change in hardware leads to changing OS
• Batch Þ multiprogramming Þ timesharing Þ GUI Þ ubiquitous devices
• Gradual migration of features into smaller machines

• Today
• Small OS: 100K lines / Large: 20M lines (10M browser!)
• 100-1000 people-years

OS Archaeology

• Due to high cost of building OS from scratch, most modern OS’s have long lineage

• Multics Þ AT&T Unix Þ BSD Unix Þ Ultrix, SunOS, NetBSD,…

• Mach (micro-kernel) + BSD Þ NextStep Þ XNU Þ Apple OS X, iPhone iOS

• MINIX Þ Linux Þ Android, Chrome OS, RedHat, Ubuntu, Fedora, Debian, Suse,…

• CP/M Þ QDOS Þ MS-DOS ÞWindows 3.1 Þ NT Þ 95 Þ 98 Þ 2000 Þ
XP ÞVista Þ 7 Þ 8 Þ 10 Þ …

Today: Four Fundamental OS Concepts

• Thread
• Single unique execution context which fully describes program state
• Program counter, registers, execution flags, stack

• Address space (with translation)
• Address space which is distinct from machine’s physical memory addresses

• Process
• Instance of executing program consisting of address space and 1+ threads

• Dual-mode operation/protection
• Only “system” can access certain resources
• OS and hardware are protected from user programs
• User programs are isolated from one another by controlling translation from

program virtual addresses to machine physical addresses

OS Bottom Line: Run Programs

• Load instruction and data segments of
executable file into memory

• Create stack and heap
• “Transfer control to program”
• Provide services to program
• While protecting OS and program

Heap

Stack

OS Loads

M
em

ory

0x000…

0xFFF…

Instructions

Data

OS
Executable

Image

Data

Instructions

CompilerSource
Code

Edits

Processor Registers
PC

OS Starts
Execution

learnworthy.net

Instruction Cycle:
Fetch, Decode, Execute

PC

Memory

Instructions

Data

Decode

Instruction fetch

ALU

Registers

Execute

Next

What Happens During
Program Execution?

• Execution sequence:
• Fetch instruction at PC
• Decode
• Execute (possibly using registers)
• Write results to registers/memory
• PC ← Next(PC)
• Repeat

PC

Memory

Instructions

Data

Decode

ALU

Registers

Next

Next instruction or jump to new address …

Thread (1st OS Concept)

• Thread is single unique execution context
• Program counter (PC), registers, execution flags, stack

• Thread is executing on processor when it resides in processor’s registers
• Registers hold root state of thread (the rest is “in memory”)
• Registers are defined by instruction set architecture (ISA) or by compiler

• Stack pointer (SP) holds address of top of stack
• Other conventions: frame pointer, heap pointer, data

• PC register holds the address of executing instruction in the thread

Address Space (2nd OS Concept)

• Address space is set of accessible addresses and
state associated with them
• For 32-bit processor: 232 = ~4 billion addresses

• What happens when you read or write to address?
• Perhaps nothing
• Perhaps acts like regular memory
• Perhaps ignores writes
• Perhaps causes I/O operation

• (Memory-mapped I/O)
• Perhaps causes exception (fault)

Heap

Stack

0x000…

Instructions

Data

0xFFF…

Address Space Layout of C Programs

#include <stdio.h>
#include <stdlib.h>

int x;
int y = 15;

int main(int argc, char *argv[]) {

int *values;
int I;

values = (int *)malloc(sizeof(int)*5);

for (i = 0; i < 5; i++)
values[i] = i;

return 0;
}

Binary Code

Initialized Data

Uninitialized Data

Heap

Command line args
and environment vars

Stack

Multiprogramming: Multiple Threads

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc nProc 2 …
Code
Data
Heap

Stack

Time Sharing

• How can we give illusion of multiple processors with single processor?
• Multiplex in time!

• Each virtual “CPU” needs structure to hold
• PC, SP, and rest of registers (integer, floating point, …)

• How do we switch from one vCPU to next?
• Save PC, SP, and registers in current state block
• Load PC, SP, and registers from new state block

• What triggers switch?
• Timer, voluntary yield, I/O, …

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources
• Hardware: single CPU, single DRAM, single I/O devices
• Multiprogramming API: processes think they have exclusive access to

shared resources

• OS should coordinate all activity
• Multiple processes, I/O interrupts, …
• How can it keep all these things straight?

• Basic idea is to use virtual machine abstraction
• Simple machine abstraction for processes
• Multiplex these abstract machines

• Dijkstra did this for the “THE system”
• Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Properties of This Simple
Multiprogramming Technique

• All vCPUs share same non-CPU resources
• I/O devices, memory, …

• Consequence of sharing
• Each thread can access data of every other thread

(good for sharing, bad for protection)
• Threads can share instructions

(good for sharing, bad for protection)
• Can threads overwrite OS functions?

• This (unprotected) model is common in
• Embedded applications
• Windows 3.1/Early Macintosh (switch only with yield)
• Windows 95-ME (switch with both yield and timer)

Protection

• OS must protect itself from user programs
• Reliability: compromising OS generally causes it to crash
• Security: limit scope of what processes can do
• Privacy: limit each process to data it is permitted to access
• Fairness: enforce appropriate share of resources (CPU time, memory, I/O, etc)

• It must protect user programs from one another
• Primary mechanism is to limit translation from program address space to

physical memory space
• Can only touch what is mapped into process address space

• There are additional mechanisms as well
• Privileged instructions, in/out instructions, special registers
• syscall processing, subsystem implementation

• (e.g., file access rights, etc)

Process (3rd OS Concept)

• Process: execution environment with restricted rights
• Address space with one or more threads
• Owns memory (address space)
• Owns file descriptors, file system context, …
• Encapsulates one or more threads sharing process resources

• Why processes?
• Protected from each other!
• OS Protected from them
• Memory protection
• Threads more efficient than processes (later)
• Fundamental tradeoff between protection and efficiency

• Communication easier within a process
• Communication harder between processes

• Application instance consists of one or more processes

Single and Multithreaded Processes

• Threads encapsulate concurrency and are active components
• Address spaces encapsulate protection and are passive part

• Keeps buggy program from trashing system

• Why have multiple threads per address space?
• Processes are expensive to start, switch between, and communicate between

Dual-Mode Operation
(4th OS Concept)

• Hardware provides at least two modes
• Kernel mode (or “supervisor” or “protected”)
• User mode, which is how normal programs are executed

• How can hardware support dual-mode operation?
• A bit of state (user/system mode bit)
• Certain operations/actions only permitted in system/kernel mode

• In user mode they fail or trap
• User to kernel transition sets system mode AND saves user PC

• OS code carefully puts aside user state then performs necessary actions
• Kernel to user transition clears system mode AND restores user PC

• E.g., rfi: return-from-interrupt

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Hardware

Full HW accessLimited HW access

exec

syscall

exit

rtn interrupt

rfi

exception

Simple Memory Protections:
Base and Bound (B&B)

Code
Data
Heap

Stack

0x000…

0x010…

0x000…

0xFFF…

+

Base

Bound
Code
Data
Heap

Stack

0x100…

0x110…

Virtual Address

0x001… 0x101…

Physical Address

0x100…

0x110…

>

Raise
Exception

Towards Virtual Addresses

• What are upsides of B&B?
• OS protection and program isolation
• Low overhead address translation

• What are downsides of B&B?
• Expandable heap?
• Expandable stack?
• Memory sharing between processes?
• Non-relative addresses – hard to move memory around
• Memory fragmentation

MemoryProcessor

Address Space Translation

• Program operates in address space that is distinct from
physical memory space of machine

0x000…

0xFFF…

Translator

Virtual
Address

Physical
Address

Virtual Address Example

int staticVar = 0; // a static variable

int main() {

staticVar += 1;

usleep(5000000); // sleep for 5 seconds

printf("static address: %x, value: %d\n", &staticVar, staticVar);

}

• What happens if we run two instances of this program at the
same time?
• What if we took the address of a procedure local variable in

two copies of the same program running at the same time?

Putting it All Together:
OS Loads Process (with B&B)

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc 2

0x0000…

0xFFFF…

Base

Bound

uPC

Regs

1sysmode

…
PC

0x1000…

0x1100…
0x3000…

0x3080…

SP

OS Gets Ready to Execute Process
(with B&B)

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc 2

0x0000…

0xFFFF…

Base 0x1000…

0x1100…Bound

0x0001uPC

0x00FF

Regs

1sysmode

…
PC

0x1000…

0x1100…
0x3000…

0x3080…

SP• Privileged Inst: set
special registers

User Code Running (with B&B)

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc 2

0x0000…

0xFFFF…

Base 0x1000…

0x1100…Bound

uPC

0x00FF

Regs

0sysmode

…
0x0001PC

0x1000…

0x1100…
0x3000…

0x3080…

SP

• How does OS
switch between
processes?

• First question: How
to return to OS?

Three Types of Mode Transfer

• Syscall
• Process requests system service, e.g., exit

• Like function call, but outside process

• Process does not have address of system function to call
• Like a Remote Procedure Call (RPC) – for later

• OS marshalls syscall id and args in registers and exec syscall

• Interrupt
• External asynchronous event triggers context switch, e. g., Timer, I/O device

• Independent of user process

• Trap or exception
• Internal synchronous event in process triggers context switch, e.g., protection

violation (segmentation fault), divide by zero, …

• All 3 are UNPROGRAMMED CONTROL TRANSFER
• How do we get address of unprogrammed control transfer?

Interrupt Vector

• Table set up by OS pointing to code to run on different events

Interrupt
Vector Table

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

User to Kernel Switch (with B&B)

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc 2

0x0000…

0xFFFF…

Base 0x1000…

0x1100…Bound

uPC

0x00FF…

…

…

Regs

0sysmode

…
0x00001234PC

0x1000…

0x1100…
0x3000…

0x3080…

SP

Interrupt (with B&B)

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc 2

0x0000…

0xFFFF…

Base 0x1000…

0x1100…Bound

0x00001234uPC

0x00FF…

…

…

Regs

1sysmode

…
IntrpVector[i]PC

0x1000…

0x1100…
0x3000…

0x3080…

SP

• How to save
registers and set
up system stack?

0x1000…

0x1100…

0x00001234

0x00FF…

…

…

…

OS stores copy
of registers in
its memory

Summery:
Four Fundamental OS Concepts

• Thread
• Single unique execution context which fully describes program state
• Program counter, registers, execution flags, stack

• Address space (with translation)
• Address space which is distinct from machine’s physical memory addresses

• Process
• Instance of executing program consisting of address space and 1+ threads

• Dual-mode operation/protection
• Only “system” can access certain resources
• OS and hardware are protected from user programs
• User programs are isolated from one another by controlling translation from

program virtual addresses to machine physical addresses

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

