
SE350: Operating Systems
Lecture 4: Concurrency

Feedback

• Will be available until the end of term
• Will be checked regularly

https://forms.gle/L6oS18zZApNF3ERb8

Outline

• Multi-threaded processes
• Thread data structure and life cycle
• Simple thread API
• Thread implementation

Recall: Traditional UNIX Process

• Process is OS abstraction of what is needed to run single program
• Often called “heavyweight process”

• Processes have two parts
• Sequential program execution stream (active part)

• Code executed as sequential stream of
execution (i.e., thread)

• Includes state of CPU registers
• Protected resources (passive part)

• Main memory state (contents of Address Space)
• I/O state (i.e. file descriptors)

Process Control Block (PCB)

(Assume single threaded processes for now)

• OS represents each process as process control block (PCB)
• Status (running, ready, blocked, …)
• Registers, SP, … (when not running)
• Process ID (PID), user, executable, priority, …
• Execution time, …
• Memory space, translation tables, …

Recall: Time Sharing

• How can we give illusion of multiple processors with single processor?
• Multiplex in time!

• Each virtual “CPU” needs structure to hold PCBs
• PC, SP, and rest of registers (integer, floating point, …)

• How do we switch from one vCPU to next?
• Save PC, SP, and registers in current PCB
• Load PC, SP, and registers from new PCB

• What triggers switch?
• Timer, voluntary yield, I/O, …

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

How Do We Multiplex Processes?

• Current state of process is held in PCB
• This is “snapshot” of execution and protection environment
• Only one PCB active at a time (for single-CPU machines)

• OS decides which process uses CPU time (scheduling)
• Only one process is “running” at a time
• Scheduler gives more time to important processes

• OS divides resources between processes (protection)
• This provides controlled access to non-CPU resources
• Example mechanisms:

• Memory translation: give each process their own address space
• Kernel/User duality: arbitrary multiplexing of I/O through system calls

Scheduling

• Kernel scheduler decides which processes/threads receive CPU
• There are lots of different scheduling policies providing …

• Fairness or
• Realtime guarantees or
• Latency optimization or …

• Kernel Scheduler maintains data structure containing PCBs

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

Context Switch:
CPU Switch Between Two Processes

• Code executed in kernel is overhead
• Overhead sets minimum practical switching time
• Less overhead with SMT/hyperthreading, but … contention for resources

Lifecycle of Processes

• As process is executed, its state changes
• New: Process is being created
• Ready: Process is waiting to run
• Running: Instructions are being executed
• Waiting: Process waiting for some event to occur
• Terminated: Process has finished execution

Ready Queue

• PCBs move from queue to queue as they change state
• Decisions about which order to remove from queues are scheduling decisions
• Many algorithms possible (more on this in a few weeks)

Ready Queue And I/O Device Queues

• Process not running Þ PCB is in some scheduler queue
• Separate queue for each device/signal/condition
• Each queue can have different scheduler policy

Other State
PCB9

Link
Registers

Other State
PCB6

Link
Registers

Other State
PCB16

Link
Registers

Other State
PCB8

Link
Registers

Other State
PCB2

Link
Registers

Other State
PCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

USB
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Drawback of Traditional UNIX Process

• Silly example:
main() {

ComputePI(“pi.txt”);

PrintClassList(“class.txt”);

}

• Would program ever print out class list?
• No! ComputePI would never finish!

• Better example:
main() {

ReadLargeFile(“pi.txt”);

RenderUserInterface();

}

Threads Motivation

• OS’s need to handle multiple things at once (MTAO)
• Processes, interrupts, background system maintenance

• Servers need to handle MTAO
• Multiple connections handled simultaneously

• Parallel programs need to handle MTAO
• To achieve better performance

• Programs with user interfaces often need to handle MTAO
• To achieve user responsiveness while doing computation

• Network and disk programs need to handle MTAO
• To hide network/disk latency

Modern Process with Threads

• Thread: sequential execution stream within process
(sometimes called “lightweight process”)
• Process still contains single address space
• No protection between threads

• Multithreading: single program made up of different
concurrent activities (sometimes called multitasking)

• Some states are shared by all threads
• Content of memory (global variables, heap)
• I/O state (file descriptors, network connections, etc.)

• Some states “private” to each thread
• CPU registers (including PC) and stack

A Side Note:
Memory Footprint of Multiple Threads

• How do we position stacks relative to each other?
• What maximum size should we choose for stacks?

• 8KB for kernel-level stacks in Linux on x86
• Less need for tight space constraint for user-level stacks

• What happens if threads violate this?
• “… program termination and/or corrupted data”

• How might you catch violations?
• Place guard values at top and bottom of each stack
• Check values on every context switch

Code
Global Data

Heap

Stack 1

Stack 2

Address Space

Per Thread Descriptor
(Kernel Supported Threads)

• Each thread has Thread Control Block (TCB)
• Execution State

• CPU registers, program counter (PC), pointer to stack (SP)
• Scheduling info

• State, priority, CPU time
• Various pointers (for implementing scheduling queues)
• Pointer to enclosing process (PCB) – user threads
• … (add stuff as you find a need)

• OS Keeps track of TCBs in “kernel memory”
• In array, or linked list, or …

Simple Thread API

• thread_create(thread*, func*, args*)

• Create new thread to run func(args)

• thread_yield()

• Relinquish processor voluntarily

• thread_join(thread)

• In parent, wait for the thread to exit, then return

• thread_exit()

• Quit thread and clean up, wake up joiner if any

• pThreads: POSIX standard for thread programming
[POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)]

Thread Lifecycle

Init Ready Running Finished

Waiting

thread_create()

Thread Creation

thread_yield()

Thread Yield/Scheduler
Suspends Thread

Scheduler
Resumes Thread

thread_exit()

Thread Exit

thread_join()

Thread Waits for Event
thread_signal()

Thread Waits for Event

Use of Threads

• Rewrite program with threads (loose syntax)

main() {

thread_t threads[2];

thread_create(&threads[0], &ComputePI, “pi.txt”);

thread_create(&threads[1], &PrintClassList, “class.txt”);

}

• What does thread_create do?
• Creates independent thread
• Behaves as if there are two separate CPUs

Dispatch Loop

• Conceptually, dispatching loop of OS looks as follows

Loop {

RunThread();

ChooseNextThread();

SaveStateOfCPU(curTCB);

LoadStateOfCPU(newTCB);

}

• This is infinite loop
• One could argue that this is all that OS does

• Should we ever exit this loop?
• When would that be?

Running Threads

• What does LoadStateOfCPU() do?
• Loads thread’s state (registers, PC, stack pointer) into CPU
• Loads environment (virtual memory space, etc.)

• What does RunThread() do?
• Jump to PC

• How does dispatcher get control back?
• Internal events: thread returns control voluntarily
• External events: thread gets preempted

Internal Events

• Blocking on I/O
• Requesting I/O implicitly yields CPU

• Waiting on “signal” from other thread
• Thread asks to wait and thus yields CPU

• Thread executes thread_yield()
• Thread volunteers to give up CPU

ComputePI() {

while(TRUE) {

ComputeNextDigit();

thread_yield();

}

}

Stack for Yielding Thread

run_new_thread() {

newTCB = PickNewThread();

switch(curTCB, newTCB);

thread_house_keeping(); /* Do any cleanup */

}

thread_yield

ComputePI Stacks grow
thrun_new_threadTr
ap

 to
 O

S

switch

Thread
Stack

Kernel
Stack

How Do Stacks Look Like?

• Suppose we have 2 threads

A() {

B();

}

B() {

while(TRUE) {

thread_yield();

}

}

thread_yield

B

run_new_thread

switch

A

Thread 2Thread 1

run_new_thread() {

newThread = PickNewThread();

switch(curTCB, newTCB);

thread_house_keeping(); /* Do any cleanup */

}

thread_yield

B

run_new_thread

switch

A

Saving/Restoring State: Context Switch

// We enter as curTCB, but we return as newTCB

// Returns with newTCB’s registers and stack

switch(curTCB, newTCB) {

pushad; // Push regs onto kernel stack for curTCB

curTCB->sp = sp; // Save curTCB’s stack pointer

sp = newTCB->sp; // Switch to newTCB’s stack

popad; // Pop regs from kernel stack for newTCB

return();

}

Where does this return to?

Switch Details

• What if you make mistakes in implementing switch?
• Suppose you forget to save/restore register 32
• Get intermittent failures depending on when context switch occurred

and whether new thread uses register 32
• System will give wrong result without warning

• Can you devise exhaustive test to test switch code?
• No! Too many combinations and inter-leavings

Creating New Threads

• Implementation
• Sanity check arguments and copy them to kernel memory
• Enter Kernel-mode and sanity check arguments again
• Allocate new stack and TCB
• Initialize TCB
• Place new TCB on ready list (runnable)

• How do we initialize TCB and stack?
• newTCB->sp points to newly allocated stack
• newTCB->pc points to OS routine thread_root()
• Push func and args pointers into stack
• Call dummy_switch_frame(newTCB) (more on this soon)

How Does thread_root() Look Like?

thread_root(func*, args*) {

DoStartupHousekeeping();

UserModeSwitch(); // enter user mode */

Call func(args);

thread_finish();

}

• Startup Housekeeping
• Includes things like recording start time of thread
• Other statistics

• Stack will grow and shrink with execution of thread
• Final return from thread returns into thread_root() which calls
thread_finish() which wakes up sleeping threads

func(args)

thread_rootSw
itc

h
M

od
e Thread

Stack

Kernel
Stack

Putting it All Together

• Eventually, run_new_thread will select newly created TCB and
return into beginning of thread_root
• This really starts the new thread

thread_yield

B

run_new_thread

switch

A

Thread 2Thread 1

thread_yield

B

run_new_thread

switch

A

thread_root thread_root

A Subtlety:
dummy_switch_frame(newTCB)

• Newly created thread will run after OS runs switch
• Kernel stack of new thread should be the same as others
• Recall:

switch(curTCB, newTCB) {

pushad;

curTCB->sp = sp;

sp = newTCB->sp;

popad;

return();

}

dummy_switch_frame(newTCB) {

*(newTCB->sp) = thread_root;

newTCB->sp--;

newTCB->sp -= SizeOfPopad;

}

What Happens When Threads
Blocks on I/O?

• User code invokes system call
• Read operation is initiated
• OS runs new thread or switches to ready thread

read

CopyFile

Stacks grow
thkernel_readTr

ap
 to

 O
S

run_new_thread

Thread
Stack

Kernel
Stack

switch

Recall: Running Threads

• What does LoadStateOfCPU() do?
• Loads thread’s state (registers, PC, stack pointer) into CPU
• Loads environment (virtual memory space, etc.)

• What does RunThread() do?
• Jump to PC

• How does dispatcher get control back?
• Internal events: thread returns control voluntarily
• External events: thread gets preempted

External Events

• What happens if thread never does any I/O, never waits, and never yields?

• Could ComputePI grab all resources and never release processor?
• Must find way that dispatcher can regain control!

• OS utilizes external events

• Interrupts are signals from hardware or software that stop running
code and transfer control to kernel
• E.g., timer is like alarm clock that goes off every some milliseconds

• Interrupts are hardware-invoked context switch
• Interrupt handlers are not threads

• No separate step to choose what to run next
• Always run the interrupt handler immediately

Timer Interrupt to Return Control

• Solution to our dispatcher problem
• Use the timer interrupt to force scheduling decisions

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

Stacks grow
th

TimerInterruptIn
te

rr
up

t
run_new_thread

Thread
Stack

Kernel
Stack

switch

Some Numbers

• Many process are multi-threaded, so thread context switches
may be either within-process or across-processes

Some Numbers (cont.)

• Frequency of performing context switches is ~10-100ms
• Context switch time in Linux is ~3-4 us (Intel i7 & Xeon E5)

• Thread switching faster than process switching (~100 ns)

• Switching across cores is ~2x more expensive than within-core
• Context switch time increases sharply with size of working set*

• Can increase ~100x or more

• Moral: overhead of context switching depends mostly on cache limits and
process or thread’s hunger for memory

* Working set is subset of memory used by process in time window

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

