
SE350: Operating Systems
Lecture 4: Concurrency



Feedback

• Will be available until the end of term
• Will be checked regularly

https://forms.gle/L6oS18zZApNF3ERb8



Outline

• Multi-threaded processes
• Thread data structure and life cycle
• Simple thread API
• Thread implementation



Recall: Traditional UNIX Process

• Process is OS abstraction of what is needed to run single program
• Often called “heavyweight process”

• Processes have two parts
• Sequential program execution stream (active part)

• Code executed as sequential stream of 
execution (i.e., thread)

• Includes state of CPU registers
• Protected resources (passive part)

• Main memory state (contents of Address Space)
• I/O state (i.e. file descriptors)



Process Control Block (PCB)

(Assume single threaded processes for now)

• OS represents each process as process control block (PCB)
• Status (running, ready, blocked, …)
• Registers, SP, … (when not running)
• Process ID (PID), user, executable, priority, …
• Execution time, …
• Memory space, translation tables, …



Recall: Time Sharing

• How can we give illusion of multiple processors with single processor?
• Multiplex in time!

• Each virtual “CPU” needs structure to hold PCBs
• PC, SP, and rest of registers (integer, floating point, …)

• How do we switch from one vCPU to next?
• Save PC, SP, and registers in current PCB
• Load PC, SP, and registers from new PCB

• What triggers switch?
• Timer, voluntary yield, I/O, …
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How Do We Multiplex Processes?

• Current state of process is held in PCB
• This is “snapshot” of execution and protection environment
• Only one PCB active at a time (for single-CPU machines)

• OS decides which process uses CPU time (scheduling)
• Only one process is “running” at a time
• Scheduler gives more time to important processes

• OS divides resources between processes (protection)
• This provides controlled access to non-CPU resources
• Example mechanisms: 

• Memory translation: give each process their own address space
• Kernel/User duality: arbitrary multiplexing of I/O through system calls



Scheduling

• Kernel scheduler decides which processes/threads receive CPU
• There are lots of different scheduling policies providing …

• Fairness or
• Realtime guarantees or
• Latency optimization or …

• Kernel Scheduler maintains data structure containing PCBs

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}



Context Switch:
CPU Switch Between Two Processes

• Code executed in kernel is overhead
• Overhead sets minimum practical switching time
• Less overhead with SMT/hyperthreading, but … contention for resources



Lifecycle of Processes

• As process is executed, its state changes
• New: Process is being created
• Ready: Process is waiting to run
• Running: Instructions are being executed
• Waiting: Process waiting for some event to occur
• Terminated: Process has finished execution



Ready Queue

• PCBs move from queue to queue as they change state
• Decisions about which order to remove from queues are scheduling decisions
• Many algorithms possible (more on this in a few weeks)



Ready Queue And I/O Device Queues

• Process not running Þ PCB is in some scheduler queue
• Separate queue for each device/signal/condition 
• Each queue can have different scheduler policy
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Drawback of Traditional UNIX Process

• Silly example:
main() {

ComputePI(“pi.txt”);

PrintClassList(“class.txt”);

}

• Would program ever print out class list?
• No! ComputePI would never finish!

• Better example:
main() {

ReadLargeFile(“pi.txt”);

RenderUserInterface();

}



Threads Motivation

• OS’s need to handle multiple things at once (MTAO)
• Processes, interrupts, background system maintenance 

• Servers need to handle MTAO
• Multiple connections handled simultaneously

• Parallel programs need to handle MTAO
• To achieve better performance

• Programs with user interfaces often need to handle MTAO
• To achieve user responsiveness while doing computation

• Network and disk programs need to handle MTAO
• To hide network/disk latency



Modern Process with Threads

• Thread: sequential execution stream within process 
(sometimes called “lightweight process”)
• Process still contains single address space
• No protection between threads

• Multithreading: single program made up of different 
concurrent activities (sometimes called multitasking)

• Some states are shared by all threads
• Content of memory (global variables, heap)
• I/O state (file descriptors, network connections, etc.)

• Some states “private” to each thread
• CPU registers (including PC) and stack



A Side Note: 
Memory Footprint of Multiple Threads

• How do we position stacks relative to each other?
• What maximum size should we choose for stacks?

• 8KB for kernel-level stacks in Linux on x86
• Less need for tight space constraint for user-level stacks

• What happens if threads violate this?
• “… program termination and/or corrupted data”

• How might you catch violations?
• Place guard values at top and bottom of each stack
• Check values on every context switch
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Per Thread Descriptor 
(Kernel Supported Threads)

• Each thread has Thread Control Block (TCB)
• Execution State

• CPU registers, program counter (PC), pointer to stack (SP)
• Scheduling info

• State, priority, CPU time
• Various pointers (for implementing scheduling queues)
• Pointer to enclosing process (PCB) – user threads
• … (add stuff as you find a need)

• OS Keeps track of  TCBs in “kernel memory”
• In array, or linked list, or …



Simple Thread API

• thread_create(thread*, func*, args*)

• Create new thread to run func(args)

• thread_yield()

• Relinquish processor voluntarily

• thread_join(thread)

• In parent, wait for the thread to exit, then return

• thread_exit()

• Quit thread and clean up, wake up joiner if any

• pThreads: POSIX standard for thread programming
[POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)]



Thread Lifecycle
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Use of Threads

• Rewrite program with threads (loose syntax)

main() {

thread_t threads[2];

thread_create(&threads[0], &ComputePI, “pi.txt”);

thread_create(&threads[1], &PrintClassList, “class.txt”);

}

• What does thread_create do?
• Creates independent thread
• Behaves as if there are two separate CPUs



Dispatch Loop

• Conceptually, dispatching loop of OS looks as follows

Loop {

RunThread(); 

ChooseNextThread();

SaveStateOfCPU(curTCB);

LoadStateOfCPU(newTCB);

}

• This is infinite loop
• One could argue that this is all that OS does

• Should we ever exit this loop?
• When would that be?



Running Threads

• What does LoadStateOfCPU() do?
• Loads thread’s state (registers, PC, stack pointer) into CPU
• Loads environment (virtual memory space, etc.)

• What does RunThread() do?
• Jump to PC

• How does dispatcher get control back?
• Internal events: thread returns control voluntarily
• External events: thread gets preempted



Internal Events

• Blocking on I/O
• Requesting I/O implicitly yields CPU

• Waiting on “signal” from other thread
• Thread asks to wait and thus yields CPU

• Thread executes thread_yield()
• Thread volunteers to give up CPU

ComputePI() {

while(TRUE) {

ComputeNextDigit();

thread_yield();

}

}



Stack for Yielding Thread

run_new_thread() {

newTCB = PickNewThread();

switch(curTCB, newTCB);

thread_house_keeping(); /* Do any cleanup */

}

thread_yield
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How Do Stacks Look Like?

• Suppose we have 2 threads

A() {

B();

}

B() {

while(TRUE) {

thread_yield();

}

}

thread_yield

B

run_new_thread

switch

A
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run_new_thread() {

newThread = PickNewThread();

switch(curTCB, newTCB);

thread_house_keeping(); /* Do any cleanup */

}

thread_yield

B

run_new_thread

switch

A



Saving/Restoring State: Context Switch

// We enter as curTCB, but we return as newTCB

// Returns with newTCB’s registers and stack

switch(curTCB, newTCB) {

pushad; // Push regs onto kernel stack for curTCB

curTCB->sp = sp; // Save curTCB’s stack pointer

sp = newTCB->sp;  // Switch to newTCB’s stack

popad; // Pop regs from kernel stack for newTCB

return();

}

Where does this return to?



Switch Details

• What if you make mistakes in implementing switch?
• Suppose you forget to save/restore register 32
• Get intermittent failures depending on when context switch occurred 

and whether new thread uses register 32
• System will give wrong result without warning

• Can you devise exhaustive test to test switch code?
• No! Too many combinations and inter-leavings



Creating New Threads

• Implementation
• Sanity check arguments and copy them to kernel memory
• Enter Kernel-mode and sanity check arguments again
• Allocate new stack and TCB
• Initialize TCB
• Place new TCB on ready list (runnable)

• How do we initialize TCB and stack?
• newTCB->sp points to newly allocated stack
• newTCB->pc points to OS routine thread_root()
• Push func and args pointers into stack
• Call dummy_switch_frame(newTCB) (more on this soon)



How Does thread_root() Look Like?

thread_root(func*, args*) {

DoStartupHousekeeping();

UserModeSwitch();  // enter user mode */

Call func(args);

thread_finish();

}

• Startup Housekeeping 
• Includes things like recording start time of thread
• Other statistics

• Stack will grow and shrink with execution of thread
• Final return from thread returns into thread_root() which calls 
thread_finish() which wakes up sleeping threads
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Putting it All Together

• Eventually, run_new_thread will select newly created TCB and 
return into beginning of thread_root
• This really starts the new thread
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A Subtlety: 
dummy_switch_frame(newTCB)

• Newly created thread will run after OS runs switch
• Kernel stack of new thread should be the same as others
• Recall:

switch(curTCB, newTCB) {

pushad;

curTCB->sp = sp;

sp = newTCB->sp;

popad;

return();

}

dummy_switch_frame(newTCB) {

*(newTCB->sp) = thread_root;

newTCB->sp--;

newTCB->sp -= SizeOfPopad;

}



What Happens When Threads 
Blocks on I/O?

• User code invokes system call
• Read operation is initiated
• OS runs new thread or switches to ready thread
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Recall: Running Threads

• What does LoadStateOfCPU() do?
• Loads thread’s state (registers, PC, stack pointer) into CPU
• Loads environment (virtual memory space, etc.)

• What does RunThread() do?
• Jump to PC

• How does dispatcher get control back?
• Internal events: thread returns control voluntarily
• External events: thread gets preempted



External Events

• What happens if thread never does any I/O, never waits, and never yields?

• Could ComputePI grab all resources and never release processor?
• Must find way that dispatcher can regain control!

• OS utilizes external events

• Interrupts are signals from hardware or software that stop running 
code and transfer control to kernel
• E.g., timer is like alarm clock that goes off every some milliseconds

• Interrupts are hardware-invoked context switch
• Interrupt handlers are not threads

• No separate step to choose what to run next
• Always run the interrupt handler immediately



Timer Interrupt to Return Control

• Solution to our dispatcher problem
• Use the timer interrupt to force scheduling decisions

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine
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Some Numbers

• Many process are multi-threaded, so thread context switches 
may be either within-process or across-processes



Some Numbers (cont.)

• Frequency of performing context switches is ~10-100ms
• Context switch time in Linux is ~3-4 us (Intel i7 & Xeon E5)

• Thread switching faster than process switching (~100 ns)

• Switching across cores is ~2x more expensive than within-core
• Context switch time increases sharply with size of working set*

• Can increase ~100x or more 

• Moral: overhead of context switching depends mostly on cache limits and 
process or thread’s hunger for memory 

* Working set is subset of memory used by process in time window



Questions?

globaldigitalcitizen.org
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