
SE350: Operating Systems
Lecture 6: Synchronization



Outline

• Atomic operations
• Hardware atomicity primitives
• Different implementations of locks



Synchronization Motivation

• When threads concurrently read from or write to shared 
memory, program behavior is undefined
• Two threads write to a variable; which one should win?

• Thread schedule is non-deterministic
• Behavior changes over different runs of the same program

• Compiler and hardware reorder instructions
• Generating efficient code needs control and data dependency analysis
• E.g., store buffer allows next instruction to execute while store is being 

completed



Question: Can This Panic?

// Thread 1

p = someComputation();

pInitialized = true; 

// Thread 2

While (!pInitialized); 

q = someFunc(p);

If (q != someFunc(p))

panic();



Too Much Milk Example

Roommate A Roommate B

12:30 Look in fridge.  Out of milk.

12:35 Leave for store.

12:40 Arrive at store. Look in fridge.  Out of milk.

12:45 Buy milk. Leave for store.

12:50 Arrive home, put milk away. Arrive at store.

12:55 Buy milk.

01:00 Arrive home, put milk away. Oh no!



Atomic Operations

• Operation that always runs to completion or not at all
• Indivisible: it cannot be stopped in the middle and state cannot be 

modified by someone else in the middle
• Fundamental building block: if no atomic operations, then have no way 

for threads to work together

• On most machines, memory references and assignments 
(i.e. loads and stores) of words are atomic
• Many instructions are not atomic

• Double-precision floating point store often not atomic
• VAX and IBM 360 had an instruction to copy whole array



Definitions

• Race condition: output of concurrent program depends on order of 
operations between threads

• Synchronization: using atomic operations to ensure cooperation between 
multiple concurrent threads
• For now, only loads and stores are atomic
• We will see that its hard to build anything useful with only load/store

• Mutual exclusion: ensuring that only one thread does a particular 
operation at a time
• One thread excludes others while doing its task

• Critical section: piece of code that only one thread can execute at once
• Critical section is the result of mutual exclusion
• Critical section and mutual exclusion are two ways of describing same thing



Definitions (cont.)

• Lock: prevent someone from doing something
• Lock before entering critical section, before accessing shared data
• Unlock when leaving, after done accessing shared data
• Wait if locked 

• Important idea: synchronization involves waiting!

• Example: fix milk problem by putting a key on refrigerator
• Lock it and take key if you are going to go buy milk
• Fixes too much: roommate angry if only wants OJ

• Of course, we don’t know how to make a lock yet
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Too Much Milk: Correctness Properties

• Be careful about correctness of your concurrent programs
• Behavior could be non-deterministic
• Impulse is to start coding first, then when it doesn’t work, pull hair out
• Instead, think first, then code
• Always write down behavior first

• What are correctness properties of “too much milk” problem?
• Never more than one person buys
• Someone buys if needed

• In this lecture, we restrict ourselves to only atomic load/store
• We assume instructions are not reordered by compiler/HW



Too Much Milk (Solution #1)

• Use a note
• Leave note before buying (kind of “lock”)
• Remove note after buying (kind of “unlock”)
• Don’t buy if note (wait)

• Would this work if computer program tries it? 
(remember, only memory load/store are atomic)

if (!milk) {

if (!note) {

leave note;

buy milk;

remove note;

}

}



Solution #1 (cont.)

if (!milk) {

if (!note) {

leave note;

buy milk;

remove note;

}

}

if (!milk) {

if (!note) {

leave note;

buy milk;

remove note;

}

}



Try #1 (cont.)

• Conclusion
• Still too much milk but only occasionally!
• Thread can get context switched after checking milk and note but 

before buying milk!

• Solution #1 makes problem worse since it fails intermittently
• Makes it very hard to debug …
• Programs must work despite what thread scheduler does!



Too Much Milk (Solution #1½) 

• Clearly note is not blocking enough
• Let’s try to fix this by placing note first

leave note;

if (!milk) {
if (!note) {

buy milk;
}

}

remove note;

• What happens here?
• Well, with human, probably nothing bad
• With computer: no one ever buys milk



Too Much Milk (Solution #2)

• How about labeled notes?

• Does this work?
• It is still possible that neither of threads buys milk
• This is extremely unlikely, but it’s still possible

// Thread A

leave note A;

if (!note B) {

if (!milk)

buy milk;

}

remove note A;

// Thread B

leave note B;

if (!note A) { 

if (!milk)

buy milk;

}

remove note B;



Problem with Solution #2

• I thought you had the milk! But I thought you had the milk!
• This kind of lockup is called “starvation!”



Too Much Milk (Solution #3)

• Does this work? 
• Yes! It can be guaranteed that it is safe to buy, or others will buy:

it is ok to quit
• At (X)

• If no note from B, safe for A to buy 
• Otherwise, wait to find out what will happen

• At (Y)
• If no note from A, safe for B to buy
• Otherwise, A is either buying or waiting for B to quit

// Thread A

leave note A;

while (note B) // (X)

do nothing; 

if (!milk)

buy milk;

remove note A;

// Thread B

leave note B;

if (!note A) { // (Y)

if (!milk)

buy milk;

}

remove note B;



Case I.a

• A leaves note A before B checks

// Thread A

leave note A;

while (note B) // (X)

do nothing; 

if (!milk)

buy milk;

remove note A;

// Thread B

leave note B;

if (!note A) { // (Y)

if (!milk)

buy milk;

}

remove note B;

If A checks note B before B leaves 
the note, then A goes ahead and 

buys milk



Case I.b

• A leaves note before B checks

If A checks note B after B leaves the 
note, then A waits to see what 

happens

// Thread A

leave note A;

while (note B) // (X)

do nothing; 

if (!milk)

buy milk;

remove note A;

// Thread B

leave note B;

if (!note A) { // (Y)

if (!milk)

buy milk;

}

remove note B;



Case I.b (cont.)

• A leaves note before B checks

// Thread A

leave note A;

while (note B) // (X)

do nothing; 

if (!milk)

buy milk;

remove note A;

// Thread B

leave note B;

if (!note A) { // (Y)

if (!milk)

buy milk;

}

remove note B;

B will not buy milk!



Case 2

• B checks note A before A leaves it

// Thread B

leave note B;

if (!note A) { // (Y)

if (!milk)

buy milk;

}

remove note B;

// Thread A

leave note A;

while (note B) // (X)

do nothing; 

if (!milk)

buy milk;

remove note A;



Solution #3: Discussion

• Our solution protects single critical section for each thread
if (!milk) {

buy milk;
}

• Solution #3 works, but it’s very unsatisfactory
• Way too complex – even for this simple example

• It’s hard to convince yourself that this really works
• Reasoning is even harder when modern compilers/hardware reorder instructions

• A’s code is different from B’s – what if there are lots of threads?
• Code would have to be slightly different for each thread (see Peterson’s algorithm)

• A is busy-waiting – while A is waiting, it is consuming CPU time

• There’s a better way
• Have hardware provide higher-level primitives other than atomic load/store
• Build even higher-level programming abstractions on this hardware support



Too Much Milk (Solution #4)

• Suppose we have some sort of implementation of a lock
• lock.Acquire() – wait until lock is free, then grab
• lock.Release() – Unlock, waking up anyone waiting
• These must be atomic operations – if two threads are waiting for the lock and 

both see it’s free, only one succeeds to grab the lock

• Then, our “too much milk” problem is easy to solve
milklock.Acquire();

if (nomilk)

buy milk;

milklock.Release();

• Code between Acquire() and Release() is called critical section
• This could be even simpler : what if we are out of ice cream instead of milk

• Skip the test since you always need more ice cream ;-) 



Load/Store    Disable Interrupts   Test&Set Compare&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs

Hardware

Higher-level 
API

Programs

Where Are We Going with 
Synchronization?

• We will see how we can implement various higher-level 
synchronization primitives using atomic operations
• Everything is quite painful if load/store are the only atomic primitives
• Hardware needs to provide more primitives useful at user-level



How to Implement Locks?

• Locks are used to prevent someone from doing something
• Lock before entering critical section and before accessing shared data
• Unlock when leaving, after accessing shared data
• Wait if locked

• Important idea: synchronization involves waiting
• Busy-waiting is wasteful (should sleep if waiting for a long time)

• With only atomic load/store we get solutions like “Solution #3”
• Too complex and error prone

• Is hardware lock instruction good idea?
• What about putting threads to sleep?

• How does hardware interact with OS scheduler?
• What about complexity?

• Adding each extra feature makes HW more complex and slower



Naïve Implementation of Locks

• Goal: building multi-instruction atomic operations
• Recall: dispatcher gets control in two ways

• Internal: thread does something to relinquish CPU
• External: interrupts cause dispatcher to take CPU

• On uniprocessors, we can avoid context-switching by
• Avoiding internal events (virtual memory is tricky, more on this later)
• Preventing external events by disabling interrupts

• Consequently, naïve implementation of locks in uniprocessors

Acquire { disable interrupts; }

Release { enable interrupts; }



Problems with 
Naïve Implementation of Locks

• OS cannot let users use this!
Acquire();
while(TRUE) {;}

• In real-time systems, there is no guarantees on timing! 
• Critical sections might be arbitrarily long
• What happens with I/O or other important events?

• “Reactor about to meltdown. Help?”



Better Implementation of Locks

• Key idea: maintain lock variable and impose mutual exclusion only during 
operations on that variable

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go_to_sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (threads on wait queue) {

take one off wait queue
place it on ready queue;

} else {
value = FREE;

}
enable interrupts;

}



New Lock Implementation: Discussion

• Why do we need to disable interrupts at all?
• Avoid interruption between checking and setting lock value
• Otherwise, two threads could think that they both have lock

• Unlike previous solution, critical section (inside Acquire()) is very short
• User of lock can take as long as they like in their own critical section

(doesn’t impact global machine behavior)
• Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go_to_sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical Section



Re-Enabling Interrupts

• Before putting thread on wait queue?
• Release can check waiting queue and not wake up thread

• After putting thread on wait queue?
• Release puts thread on ready queue, but thread still thinks it needs to go to sleep!
• Thread goes to sleep while holding lock (deadlock!)

• After go_to_sleep()? But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go_to_sleep();

} else {
value = BUSY;

}
enable interrupts;

}

enable here?



How to Re-Enable After go_to_sleep()?

• Make it responsibility of next thread to re-enable interrupts

• When sleeping thread wakes up, returns to Acquire() and re-enables interrupts

Thread A Thread B
.
.

disable interrupts
sleep

sleep return
enable interrupts

.

.

.

disable interrupts
sleep

sleep return
enable interrupts

.

.

context
switch

context

switch



Problem with 
Implementing Locks Using Interrupts

• Cannot give lock implementation to users
• Doesn’t work well on multiprocessor

• Disabling interrupts on all processors requires messages and would be 
very time consuming

• Alternative solution: atomic read-modify-write instructions
• Read value from an address and then write new value to it atomically
• Make HW responsible for implementing this correctly 

• Uniprocessors (not too hard) 
• Multiprocessors (requires help from cache coherence protocol)

• Unlike disabling interrupts, this can be used in both uniprocessors and 
multiprocessors



Examples of 
Read-Modify-Write Instructions 

• test&set (&address) { /* most architectures */
result = M[address]; /* return result from
M[address] = 1;            “address” and set value at 
return result; “address” to 1 */

}

• swap (&address, register) { /* x86 */
temp = M[address]; /* swap register’s value to
M[address] = register; value at “address” */
register = temp;

}

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}



Implementing Locks Using test&set

• Simple implementation

int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}
Release() {

value = 0;
}

• Free lock: test&set reads 0 and sets value = 1
• Busy lock: test&set reads 1 and sets value = 1 (no change)
• What is wrong with this implementation?

• Waiting threads consume cycles while busy-waiting



Locks with Busy-Waiting: Discussion

• Upside?
• Machine can receive interrupts
• User code can use this lock
• Works on multiprocessors

• Downside?
• This is very wasteful as threads consume cycles waiting
• Waiting threads may take cycles away from thread holding lock (no one wins!)
• Priority inversion: if busy-waiting thread has higher priority than thread holding 

lock Þ no progress!

• In semaphores and monitors, threads may wait for arbitrary long time!
• Even if busy-waiting was OK for locks, it’s not ok for other primitives
• Exam solutions should avoid busy-waiting!



Better Implementation of Locks 
Using test&set

• Can we build test&set locks without busy-waiting?
• We cannot eliminate busy-waiting, but we can minimize it!
• Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
• Why can’t we do it just before or just after the sleep?

int guard = 0;
int value = FREE;
Acquire() {

// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go_to_sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if (threads on wait queue) {

take one off wait queue
place it on ready queue;

} else {
value = FREE;

}
guard = 0;

}



Locks Using Interrupts vs. test&set

• Replace
• disable interrupts; ⇒ while (test&set(guard));

• enable interrupts ⇒ guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go_to_sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go_to_sleep() & enable interrupts;

} else {
value = BUSY;

}
enable interrupts;

}



Summary

• Atomic operations
• Operation that runs to completion or not at all
• These are the primitives on which to construct various 

synchronization primitives

• Hardware atomicity primitives
• Disabling of Interrupts, test&set, swap, compare&swap

• Several implementation of Locks
• Must be very careful not to waste/tie up machine resources

• Shouldn’t disable interrupts for long
• Shouldn’t busy-wait for long

• Key idea: Separate lock variable, use hardware mechanisms to protect 
modifications of that variable



Questions?

globaldigitalcitizen.org
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