SE350: Operating Systems

Lecture 8: Scheduling

Outline

e Definitions

¢ Response time, throughput, scheduling policy; ...

* Uniprocessor policies
* FCFS, SJF/SRTF Round Robin, ...

* Real-time scheduling

* Multiprocessor policies

* Oblivious scheduling, gang scheduling, ...

Definitions

e Task

* User request (e.g., mouse click, web request, shell command, etc.)

* Workload

* Set of tasks for system to perform

* Scheduling algorithm

 Takes workload as input, decides which tasks to do first

e Overhead

* How much extra work is done by scheduler?

* Preemptive scheduler

* |f we can take resources away from a running task

e Work-conserving
e Resources are used whenever there is task to run

* For non-preemptive schedulers, work-conserving is not always better

* Only preemptive, work-conserving schedulers to be considered in this lecture!

Recall: CPU Scheduling
— @j’

@ 1/0 wait queue 1/0 request

time slice
expired

child ELh i
termination crez:(t)tecg:;Id
wait queue P
interrupt interrupt | wait for an e
occurs wait queue interrupt

* Farlier, we talked about life-cycle of threads
* Threads work their way from ready to running to various waiting queues

* Question: How does OS decide which thread to dequeue!

* Obvious queue to worry about is ready queue
* Others can be scheduled as well, however

* Scheduling: Deciding which thread gets resource from moment to moment

Execution Model

Weighted toward small bursts

add store CPU burst A
read from file
wait for 1/O I/0 burst

)
store increment =
inqex] CPU burst g
write to file o
o
wait for 1/O 1/0O burst -
load store
add store CPU burst
read from file >
burst duration
wait for 1/O I/O burst

* Programs alternate between bursts of CPU and I/O
* Use CPU for some period, then do I/O, then use CPU again, etc.

» CPU scheduling is about choosing thread which gets CPU for its next CPU burst
* With preemption, thread may be forced to give up CPU before finishing its burst

CPU Scheduling Assumptions

* There are many implicit assumptions for CPU scheduling
* One program per user
* One thread per program

* Programs are independent

* These may not hold in all systems, but they simplify the problem

* High-level goal is to divide CPU time to optimize some desired properties

CPU Scheduling Policy Goals/Criteria

* Minimize average response time
* Minimize elapsed time to do an operation (or task)
* Response time I1s what users see

* Time to echo a keystroke in editor
* Time to compile a program

* Real-time tasks must meet deadlines imposed by “environment”

CPU Scheduling Policy Goals/Criteria
(cont.)

* Maximize throughput
* Maximize operations (or tasks) per time unit (e.g., second)
* Throughput related to response time, but not identical

* Minimizing response time could lead to more context switching
which will than hurt throughput (more on this laterl)

* [wo parts to maximizing throughput
* Minimize overhead (e.g., context-switching)

* Efficient use of resources (e.g., CPU, disk, memory, etc.)

CPU Scheduling Policy Goals/Criteria
(cont.)

* Achieve fairness
* Share CPU time among users in some equitable way

* What does equitable mean?
* Equal share of CPU time?

* What if some tasks don't need their full share?

* Minimize variance in worst case performance?

* What if some tasks were running when no one else was running?
* Who are users? Actual users or programs!

* If A runs one thread and B runs five, B could get five times as much CPU
time on many OS's

* Fairness Is not minimizing average response time

* Improving average response time could make system less fair
(more on this later!)

Outline

* Uniprocessor policies
* FCFS, SJF/SRTF Round Robin, ...

* Real-time scheduling

First-Come, First-Served (FCFS)
Scheduling

* First-Come, First-Served (FCFS)
* Also “First In, First Out” (FIFO)

* In early systems, FCFS meant one program
scheduled until done (including its I/O activities)

* Now, it means that program keeps CPU until the end of its CPU burst

* Example: Thread CPU Burst Time
T, 24
T, 3
IE 3

* Suppose threads arrive in order: T, ,T,,T5
The Gantt Chart for FCFS scheduling is

T T | T3

0 24 27 30

FCFS Scheduling (cont.)

* Example continued:

T, T, 15

0 24 27 30

* Waiting time for T, is 0, for T, is 24, and for T5 is 27
* Average waiting time is (0 + 24 + 27)/3 =17
* Average response time is (24 + 27 + 30)/3 = 27

* Convoy effect: Short threads get stuck behind long ones

* At supermarket, you with milk get stuck behind cart full of small items

FCFS Scheduling (cont.)

* If threads arrive in order: T, ,T5,T,,then we have

LR E T

0 3 6 30

Wiaiting time for T | is 6,for T2 is 0,and for T3 is 3
Average waiting time is (6 + 0+ 3)/3 =3

* Average response time is (3 + 6 +30)/3 = 13
* Average waiting time is much better (before it was 17)

* Average response time Is better (before it was 27)

* Pros and cons of FCFS
* Simple (+)

* Short tasks get stuck behind long ones (-)

Round Robin (RR) Scheduling

* FCFS 1s potentially bad for short tasks!

* Depends on submit order

* If you are first in line at supermarket with milk,
you don't care who Is behind you, on the other hand...

e Round Robin

* Fach thread gets small unit of CPU time, called time quantum
(usually 10-100 milliseconds)

* Once quantum expires, thread is preempted and added to
end of ready queue
* N threads in ready queue and time quantum is g =
* Each thread gets |/N of CPU time in chunks of at most g time units

* No thread waits more than (N-1)g time units

Photo: Pinterest.ca

Example: RR with Time Quantum of 20

* Example: Thread Burst Time
T 53
T, 8
IE 68
T, 24

The Gantt chart is

T, T, | T | T4 | T Ty | T4 | T IEEE

0 20 28 48 68 88 108 12 125 145 I53
Wiaiting time for T, =(68-20)+(112-88) =72
T,=(20-0) =20
T3=(28-0)+(88-48) +(125-108) =85
T,=(48-0)+ (108 - 68) = 88
Average waiting time is (72 + 20+ 85 + 88) / 4 = 66%
* Average response time is (125 + 28 + 153 + 112) / 4 = 104%

Round-Robin Discussion

* Pros and cons of RR
* Better for short tasks, Fair (+)

* Context-switching time adds up for long tasks (-)

* How does performance change with time quantum!?
* What if it's too long?

* Response time suffers!
* What if it's too short?

* Throughput suffers!
* What if it's infinite (c0)?

« RR = FCFS

* Time quantum must be long compared to context switching time,
otherwise overhead will be too high

Round-Robin Discussion (cont.)

* Actual choices of time quantum

* Inrtially, UNIX time quantum was one second
* Worked ok when UNIX was used by one or two users
* What if you use text editor while there are three compilations going on?
* |t takes 3 seconds to echo each keystroke!
* Need to balance short-task performance and long-task throughput
* Typical time quantum today is between |0ms — [00ms
* Typical context-switching overhead is 0. ms — Ims

* Roughly 19 overhead due to context-switching

FCFS vs. RR

* Assuming zero-cost context-switching time, is RR always better than FCFS?

* Suppose there are |0 tasks, each take 100s of CPU time, RR quantum is Is

0 100 200 800 900 1000
0 10 20 980 990 N\ 71000
991 999

* Completion times

Task # FCFS RR
I 100 99|
2 200 992
9 900 999

10 1000 1000

FCFS vs. RR (cont.)

Completion times Task # FCFS RR
| 100 91
2 200 992
9 900 999
10 1000 1000

Both RR and FCEFS finish at the same time

Average response time is much worse under RR!

* Bad when all jobs have the same length

Also, cache must be shared between all tasks with RR but can be devoted to each
task with FIFO

 Total time for RR is longer even for zero-cost context switching!

Earlier Example: RR vs. FCFS,

Effect of Different Time Quanta
ors (RO GO T)

0

Waiting Time

Response
Time

T3 (68)

8 32
Quantum T1 T2
Best FCFS 32 0
I
5
8
10
20
Worst FCFS
Best FCFS 85 8
I
5
8
10
20
Worst FCFS

85

T3
85

153

T5

32

153

Average

314

692

Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta (cont.)

Worst
0 68 |21 145 |53
Quantum T1 T2 T3 T5 Average

Best FCFS 32 0 85 8 314
I

5

Waiting Time 8
10
20

Worst FCFS 68 145 0 12| 83/

Best FCFS 85 8 153 32 692
I

5

Response 8
Time
10

20

Worst FCFS 121 153 68 145 12174

Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta (cont.)

aald BE BE BERERaRRRRRe

O 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 133 141149153

Quantum T1 T2 T3 T5 Average
Best FCFS 32 0 85 8 314
| 84 22 85 57 62
5 82 20 85 58 61/
Waiting Time 8 80 8 85 56 57V
0 82 10 85 68 61V
20 /2 20 85 88 66 /4
Worst FCFS 68 145 0 12| 83/4
Best FCFS 85 8 153 32 692
' 137 30 153 81 100Y%
5 |35 28 153 82 992
ResPonse 8 133 16 153 80 9514
Time
10 |35 |18 153 92 992
20 125 28 153 [12 104)4
Worst FCFS 121 153 68 |45 12134

Shortest Task First (SJF) Scheduling

Could we always mirror best FCFS?

Shortest Task First (SJF)

* Run task that has least amount of computation to do
* Sometimes called “Shortest Time to Completion First” (STCF)

Shortest Remaining Time First (SRTF)

* Preemptive version of SJF: If task arrives and has shorter time to completion
than remaining time on current task, immediately preempt current task

* Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)

These can be applied to whole program or current CPU burst
* Key idea: get short tasks out of system
* Big effect on short tasks, only small effect on long ones

* Better average response time

SJF/SRTF Optimality

* SIF/SRTF minimize average response time! Why!?
* Consider alternative policy P (not SJF/SRTF) that is optimal
* At some point, P chooses to run task that is not the shortest
» Keep order of tasks the same, but run the shorter task first

* This reduces average response time = contradiction!

SJF/SRTF Discussion

* SJF/SRTF are best you can do to minimize average response time
* Provably optimal (SJF among non-preemptive, SRTF among preemptive)

* Since SRTF is always at least as good as SJF, we can just focus on SRTF

e Comparison of SRTF with FCFS
* What if all tasks are the same length?
* SRTF = FCFS (i.e., FCFS is best we can do if all tasks have the same length)
* What if tasks have varying length?
* Unlike FCFS, with SRTF, short tasks do not get stuck behind long ones

Mix of CPU and I/O Bound Tasks:
FCFS vs. RR vs. SRTF

Computation Computation

A
A and B: C:

/O

* Example: Suppose there are three tasks
* A and B are both CPU bound with CPU bursts that last for a week
* Cis I/O bound with iterations of Ims CPU burst followed by 9ms I/O burst
* If A or B run by themselves, CPU utilization is 100% and I/O utilization is 0%
* If Cruns by itself, CPU utilization is 10% and I/O utilization is 90%

* With happens under FCFS scheduling policy?

* Once A or B get in, keep CPU for two weeks = poor avg. response time

* What about RR or SRTF!

* FEasier to see with a timeline

Mix of CPU and I/O Bound Tasks:
FCFS vs. RR vs. SRTF (cont.)

RR with 40ms time quantum

/O Utilization:]

@U.lﬂ-ﬂ--ﬂ-‘ﬂ./i“%
o [] []

RR with | ms time guantum
CABABABABA BCABA.... 2 /O Ut”,zatlon

I L O N e
o HHNNNEENEEENEENENE

/O Utlllzat|on

CPU ~90%

/O

Downsides of SRTF

Starvation: Large tasks may never run if short ones keep coming

Overhead: Short tasks preempt long ones = too many context switches

Unfair: Large tasks are penalized, there is high variance in response time

Impractical: Ve need to somehow predict future (but how?)

* Some systems ask users

* When you submit your task, you have to say how long it will take
* Users could maliciously misreport length of their task
* E.g,would it work if a supermarket uses SJF?

* Customers could game the system: come with one item at a time

* To prevent cheating, systems may kill tasks if they take too long

* It's hard to predict task’s runtime even for non-malicious users

Predicting Length of Next CPU Burst

* Adaptive: Dynamically make predictions based on past behavior

* Works because programs have predictable behavior
e |f program was I/O bound in past, it'll likely be I/O bound in future

* If behavior were random, this approach wouldn't help

12F
T 10

CPU burst (f) 6 4 6 4 13 13 13

n > o @
T T

"guess” (t) 10 8 6 6 5 9 11 12

e Example: Use estimator function on previous bursts
* Lett,q, tho ths ..., t1 be previous CPU burst lengths
e Estimate next burst 1, = f(t,.1, tho, ths3 --)
* Function f could be any time series estimator (e.g., Kalman filters, etc.)

* For instance, exponential averaging 1, = at,.;+(1-a)t,.; with (0 <a < 1)

Aside: Application Types

* Can we use past burst times to identify application types!

* Consider mix of interactive and high-throughput programs
* How to best schedule them!?
* How to recognize one from the other?
* Do you trust applications to say that they are “interactive™?

* Should you schedule the set of applications identically on servers,
workstations, pads, and cellphones?

Aside: Application Types (cont.)

* Assumptions encoded into many schedulers

* Applications that sleep a lot and have short bursts must be interactive
* Give them high priority
* Applications that compute a lot must be high-throughput apps

* Give them lower priority, since they won't notice intermittent bursts from
interactive applications

* In general, it is hard to characterize applications

* What about applications that sleep for a long time, and then compute
for a long time?

* What about applications that must run under all circumstances

SRTF Final Notes

* Bottom line, we can't really know how long tasks will take

* However, we can use SRTF as yardstick for measuring other policies
* Optimal, so we can't do any better

* Pros & cons of SRTF
* Optimal (average response time) (+)
* Hard to predict future (-)

* Too many context switches (-)
 Unfair (-)

Strict Priority Scheduling

Priority 3 = Task | =] Task 2 > Task 3

Priority 2 = Task 4
Priority |

Priority O =>{ Task 5 t=—#| Task 6 f=»{ Task 7

* Execution plan
* Always execute highest-priority runnable tasks to completion

* Each queue can be threaded in RR with some time-quantum

* Notice any problems?
* Starvation: Lower priority tasks don't get to run because higher priority tasks

e Deadlock: Priority inversion

* Not strictly a problem with priority scheduling, but happens when low priority
task has lock needed by high-priority task

* Usually involves third, intermediate priority task that keeps running even though
high-priority task should be running

Strict Priority Scheduling (cont.)

Priority 3 |—>{ Task | |—»{ Task 2 = Task 3

Priority 2 = Task 4
Priority |

Priority O =>{ Task 5 t=—#| Task 6 f=»{ Task 7

* How to fix problems?
* Dynamic priorities — adjust base-level priority up or down
based on heuristics about interactivity, locking, burst
behavior, etc...

Scheduling Fairness

Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc.)

* |ong running tasks may never get any CPU time

* In Multics, shut down machine, found [0-year-old task

One approach: Give each queue some fraction of CPU
* What if there are 100 short tasks and only one long task?

* Like express lanes in a supermarket, sometimes express lanes get so long, get
better service by going into one of other lines

Another approach: Increase priority of tasks that don't get service
* What is done in some variants of UNIX
* This is ad hoc; what rate should you increase priorities?

* And, as system gets overloaded, no task gets CPU time, so everyone increases
in priority = Interactive tasks suffer

Tradeoff: Fairness Is usually gained by hurting average response time!

Multi-Level Feedback Queue
Scheduling

J quantum = 8 Ib’

—)ﬁuantum =16 /"%—’ "=~ Long-Running compute
tasks are demoted to

—){‘ FCFS |j—’

lower priority queues
* Another method for exploiting past behavior (first use in CTSS)

* Multiple queues, each with different priority

¢ Higher priority queues often considered “foreground tasks

* Each queue has its own scheduling algorithm
* E.g foreground — RR background — FCFS

¢ Sometimes multiple RR priorities with quantum increasing exponentially
(highest: I ms, next: 2ms, next: 4ms, etc.)

* Adjust each task’s priority as follows (details vary)
 Task starts in highest priority queue
* If timeout expires, drop one level

* If timeout doesn't expire, push up one level (or to top)

Multi-Level Feedback Queue
Scheduling (cont.)

J quantum = 8
——ﬁuantum =16
——f FCFS

1=

* Result approximates SRTF
» CPU bound tasks drop like a rock

* Short-running I/O bound tasks stay near top

* Scheduling must be done between queues
* Fixed priority scheduling
* Serve all from highest priority, then next priority, etc.
* Time slicing
* Each queue gets fraction of CPU time
* Eg, /0% to highest, 20% next, 10% lowest

Multi-Level Feedback Queue
Scheduling (cont.)

J quantum = 8

FCFS

1=

——ﬁuantum =316

* Countermeasure: user action that foil intent of OS designers

* For multilevel feedback, put simple I/O’s to keep task’s priority high
* Example of MIT Othello Contest

* Cheater put printf’s, ran much faster than competitors!

» Of course, if everyone did this, wouldn't work!

Lottery Scheduling

Give each task some number of lottery tickets

On each time slice, randomly pick a winning ticket

* On average, CPU time is proportional to # of tickets given to task

How to assign tickets!?
* Give tasks tickets proportional to their priorities
* To approximate SRTF, give short tasks more and long tasks fewer

* To avoid starvation, give every task at least one ticket
(everyone makes progress)

Compared to strict priority scheduling, lottery scheduling behaves
gracefully as load changes

* Adding or deleting one task affects all tasks proportionally, independent of
how many tickets each task possesses

Lottery Scheduling Example

* Assume short tasks get 10 tickets, long tasks get | ticket

short tasks/ % of CPU each % of CPU each

long tasks short tasks gets long tasks gets
A 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

* What if too many short tasks to give reasonable response time?
* If load average is 100, hard to make progress

* One approach is to log some users out

Max-Min Fair (MMF) Scheduling

* Always choose task with lowest accumulated CPU time so far
* |f chosen task doesn’t have CPU burst, schedule second lowest ...

* Break ties randomly if multiple tasks equally have lowest CPU time

* Goal Is to give each task equal share of CPU time
* With N runnable threads, each thread should get |/N™ of CPU time

* At any time t we want to have

= t/N

Accumulated CPU Time

MMF Scheduling (cont.)

* Strict MMF causes too many context switches

* |t effectively turns to running one instruction of each task

* Relaxed MMF runs task with lowest accumulated CPU time
for fixed time quantum before choosing next task

>

Accumulated CPU Time

* Notice any problem?

* Fixed quantum leads to poor response time as # of tasks increases

MMF Scheduling (cont.)

Solution: Dynamically change time quantum

Target latency: Time interval during which all tasks should run at least once

* Time quantum = Target latency / N

* E.g.,with 20ms target latency and 4 threads, time quantum is 5ms

Notice any problem?
* With 20ms target latency and 200 threads, time quantum becomes O.Ims

* Recall RR: Large context switching overhead if time quantum gets to small

e Minimum granularity: Minimum length of any time quantum

* E.g,with target latency 20ms, I ms minimum granularity, and 200 processes,
time quantum isIms

Weighted Max-Min Fair Scheduling

* What if we want to give more to some and less to others (proportional share)?
* Key Idea: Assign weight w; to each thread i

* MMF uses single time quantum for all tasks

Target latency
N

* Weighted MMF uses different time quanta for different tasks

Q=

w; X Target latency
Qi — N
Zj:l W

* E.g,with 20ms target latency, | ms minimum granularity, and 2 threads: A with
weight | and B with weight 4

* Time quantum for A is 4 ms

e Time quantum for Bis 16 ms

Weighted MMF Scheduling (cont.)

* Also track threads' virtual runtime rather than their true wall-clock runtime
* Higher weight:Virtual runtime increases more slowly
* Lower weight:Virtual runtime increases more quickly

* Linux Completely Fair Scheduler deploys very similar ideas

>
>

=)

Virtual CPU Time

Actual CPU Time

Real-Time Scheduling (RTS)

* Efficiency is important but predictability is essential

We need to predict with confidence worst case response times for systems
In RTS, performance guarantees are task and/or class centric and often ensured a priori

In conventional systems, performance is system/throughput oriented with post-
threading (... wait and see ...)

Real-time is about enforcing predictability, and does not equal fast computingl!!

* Hard real-time

Attempt to meet all deadlines

EDF (Earliest Deadline First), LLF (Least Laxity First),
RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

e Soft real-time

* Attempt to meet deadlines with high probability

Minimize miss ratio / maximize completion ratio (firm real-time)

Important for multimedia applications

* (BS (Constant Bandwidth Server)

Real-Time Workload Characteristics

* Tasks are preemptable, independent with arbitrary arrival (=release) times
* Tasks have deadlines (D) and known computation times (C)

* Example Setup:

Real-Time Workload Characteristics

* Tasks are preemptable, independent with arbitrary arrival (=release) times

* Tasks have deadlines (D) and known computation times (C)

* Example Setup:

Time

Earliest Deadline First (EDF)

Tasks are periodic with period P and computation C in each period: (P C)

Preemptive priority-based dynamic scheduling

Tasks' (current) priority is based on how close their deadline is

Scheduler always schedules active task with closest deadline

T . — 1 -—o—- — 1 I 1 |
12(:2) T—- : 1 . 1 -—u—-—»
102 | N 1 . -—o—»

0 5

EDF: Feasibility Testing

* Even EDF won't work if you have too many tasks

* For n periodic tasks with computation time C; and
deadline and period D, feasible schedule exists if

How to Evaluate Scheduling Algorithms?

¢ Deterministic modeling

 Take predetermined workload and compute performance of each algorithm

* Queueing models

* Mathematical approach for handling stochastic workloads

* Implementation/Simulation:

 Build system which allows actual algorithms to be run against actual data —
most flexible/general

)) performance
simulation —> statistics

for FCFS
FCFS

CPU 10
/0 213

actual CPU 12
process —=»1/0 112
execution CPU 2
/10 147
CPU 173
ee e

i : performance
simulation =) statistics

for SJF
SJF

trace tape

/ 1\

i _ performance
simulation —>> statistics

for RR (g = 14)
RR (q = 14)

Starvation and Sample Bias

* Suppose you want to compare scheduling policies
* Create some Infinite sequence of arriving tasks
* Start measuring
* Stop at some point
* Compute ART for finished tasks between start and stop

* |s this valid or invalid?

* SJF and FCFS would complete different sets of tasks
* Their ARTs are not directly comparable
* E.g,suppose you stopped at any point in FCFS vs. SJF slide

Solutions for Sample Bias

* For both systems, measure for long enough that
of completed tasks >> # of uncompleted tasks

* Start and stop system in idle periods
* |dle period: no work to do

* If algorithms are work-conserving, both will complete the
same set of tasks

Choosing Right Scheduling Algorithm

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Response Time SRTF Approximation
/O Throughput SRTF Approximation
Fairness (CPU Time) Linux CFS
Fairness —Wait Time to Get CPU Round Robin
Meeting Deadlines EDF

Favoring Important Tasks Priority

Outline

* Multiprocessor policies

* Oblivious scheduling, gang scheduling, ...

Multicore Processor Scheduling

There could be one ready queue for all cores

Notice any problems?

* Single bottleneck: Contention for ready queue’s lock

* Limited cache reuse: Lack of data locality as tasks get

scheduled on different cores

Solution: each core has its own private ready queue

Notice any problems!?
* Load balancing: Some cores might be idle
while tasks pile up on others ready queues

One solution: Work stealing

* |dle cores steal waiting task from busy ones

T T T TR
Y * Core?2
\
\\‘\
\ \
v Core 3
\
\
\
¥ Core 4
_» Core |
T3 Tz T| -~
-+ Core 2
Ta =~ Core3
Te [T7 [Te | Ts < _
> Core 4

Processor Affinity

* When task run on core, cache contents of that core stores recent
memory accesses by that task

 This is referred to as core affinity of tasks
* Load balancing may affect core affinity as task migrate between cores

* Performance of migrated task suffers because it loses contents of what it
had in cache of the core it was moved off of

* Migration is justified only if performance loss is less than waiting time
* Soft affinity: OS tries to keep tasks on same core, but no guarantees

* Hard affinity: OS allows tasks to specify set of cores they may run on

NUMA and CPU Scheduling

* Uniform memory access (UMA): Cores
experience same, uniform access time

to any memory module

Memor Memory
y . Controller

Local access Remote access

v [v

* Non-uniform memory access (NUMA):
Cores access their local memory modules
faster than remote memory modules

Memory
Controller
J3)|013u0)

Klows\

13]|0J1U0D
Klows |

>0
9 o
==
v
o
§O

QuickPath Interconnect

* [f OS is NUMA-aware, it will assign memory
closes to core that task is running on

Photos from: http://www.evoventurepartners.com

Scheduling Multithreaded Programs

So far, we assumed that there is one thread per program

Now, consider scheduling multithreaded programs on multicore processor

At any given time, multiple threads from same program could be running

Core | Core 2 Core 3

Pl P2.1
P1.2

P23 P32

Time

P13

P3.1 P24

P2.2

Px.y: thread vy in process x

Oblivious scheduling: Cores independently schedule threads in their queue

* Each thread is treated as independent task

What happens if one thread gets time-sliced while others are still running?
* Assuming program uses locks and condition variables, it will still be correct

* Performance, however, could suffer if threads actually depend on one another

Problem with Oblivious Scheduling:
Bulk Synchronous Delay

Input

The overall MapReduce word count process

Shuffling

Splitting

Mapping

Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Deer, 1
Bear, 1
River, 1

Y

Car Car River

Car, 1
Car, 1
River, 1

Deer Car Bear

Deer, 1
Car, 1
Bear, 1

Bear, 1
Bear, 1

Reducing Final result

Bear, 2

Car, 1
Car, 1
Car, 1

Car, 3

» Bear, 2

Car, 3

Deer, 1
Deer, 1

Deer, 2

Deer, 2

River, 2

Y

River, 1
River, 1

River, 2

* Data parallelism is common programming design pattern

(e.g., Google MapReduce)

e Data is split into roughly equal sized chunks

* Chunks are processed independently on different cores

* Once all chunks are processed, cores synchronize and communicate their

results to next stage of computation

Photo from cs.calvin.edu

Problem with Oblivious Scheduling:
Bulk Synchronous Delay (cont.)

Core | Core 2 Core 3

-
S~ -
-

Time

* At each step, computation is limited by the slowest task

* If task is preempted on one core, its work is delayed, stalling all other cores

Photo from cs.calvin.edu

Problem with Oblivious Scheduling:
Producer-Consumer Delay

Core | Core 2 Core 3

Thread | = = = = > Thread 2 @ = = = = = » Thread 3

* Producer-consumer design patter is also very common
* Preempting a thread on one core stalls all others in the chain

* Some other problems with oblivious scheduling
* Preempting a thread on the critical path will slow down the entire process

* Preempting lock holder stalls others until lock holder is re-scheduled

Gang Scheduling

Core |

Core 2

Core 3

Time

* Time is divided into equal intervals

* Threads from same process are scheduled at beginning of each interval

* Notice any problems?

* CPU cycles are waisted when threads have different lengths

* Some cores remain idle when a process doesn’t have enough tasks for all cores

Space Sharing

f ________ \ f ________
I Core | Core 2 Core 3 I I Core 4 Core 4 Core 5
| |
T T |
. I I 2 T3 I TJ T2 T3
é Ts Ty I T
| i | ' T
T, | T, o >
| I | !
\ ———————— 4 \ ————————
Process | Process 2

* Fach process Is assigned a subset of cores
* Minimizes processor context switches

How Many Cores
Does a Process Need?

Perfectly Parallel

Diminishing Returns

Performance
(Inverse Response Time)

Limited Parallelism

Number of Processors

 There are overheads

* kg, creating extra threads, synchronization, communication

e Overheads shift the curve down

Amdahl’s Law

[G. Amdahl 1967]

* Architects use it to estimate upper bounds on speedups

Serial Portions

T ———

" ————

- -

- -

- —
" —————
- —
- —
- —
-
-
-
-

-

Tl #
T, e e —
W‘L_J — ~ _

~~~~~~~
"""""""""
________

@p.
§®;
@D
@D

Q.
o

=
|
I
|



Amdahl’s Law (cont.)

[G. Amdahl 1967]

Amdahl's Law

20 -———————————————————-———-————-————:_—:_—__—a— —
—
/’/
18 //
/ Parallel portion
16 / 50%
/L e 75%
14 / —-— 90%
// —— 95%
12
g /
E 0 +————————— 7*****'***"*_*;’_?;—*-;—*—'—'
—
o —
” / T
8 /7
///
6 /.
/7
/1.7
4 +————— */./****::_j__T_T..T.T--T-ﬁ-’f-“"-“"'“"'“""'"‘“'““"'“"“‘""'""""“"“""“"
2
0
- N < -] © [\ < -] © N < =] © N < [~ ©
- % e 8 g g §F g3 gL

Number of processors

Speedup(x) = I h — v
T. (1-PTh+52 2(1-F)+F




What Portion of Code is Parallelizable?

[Allen Karp and Horace Flatt 1990]

* Expert programmers may not know!

* Fortunately, we can measure speedup

Set
Measure

\
OG0

K
arp-Flatt 1 B 7
Metric s(x)

Calculate




A Final Word On Scheduling

* When do details of scheduling policy and fairness really matter?

* When there aren't enough resources to go around

* When should you simply buy faster cores?
(Or network link; or expanded highway, or ...)
* Buy it when it will pay for itself in improved response time,

assuming you're paying for worse response time
in reduced productivity, customer angst, etc...

* Might think you need X fully utilized core, but usually
you will have to buy more than X because response time
goes to infinity as utilization approaches|00%

* Interesting implication of this curve

* Most scheduling algorithms work fine in linear portion of curve, fail otherwise

* Argues for buying faster resources when hit knee of curve

Response time

Utilization

%00 |




Summary (| of 2)

First-Come, First-Served (FCFS)

* Threads are served in the order of their arrival

Round-Robin (RR)

* Give each thread a small amount of CPU time when it executes; cycle
between all ready threads

Shortest Task First (SJF) / Shortest Remaining Time First (SRTF):

* Run whatever task that has the least amount of computation to do/least
remaining amount of computation to do

Multi-level Feedback Queue (MFQ)

* Multiple queues of different priorities and scheduling algorithms

Lottery Scheduling

* Give each thread a priority-dependent number of tickets



Summary (2 of 2)

Max-Min Fair (MMF)

* Give each task equal share of CPU time

Real-Time Scheduling

* Need to meet a deadline, predictability essential

Oblivious Scheduling

* Fach core schedules its own threads

Gang Scheduling

* Schedule tasks from same process at the same time

Space Sharing

* Give each process some number of cores



Questions!?




Acknowledgment

* Slides by courtesy of Anderson, Culler; Stoica,
Silberschatz, Joseph, and Canny



