
SE350: Operating Systems
Lecture 8: Scheduling
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Definitions

• Task
• User request (e.g., mouse click, web request, shell command, etc.)

• Workload
• Set of tasks for system to perform

• Scheduling algorithm 
• Takes workload as input, decides which tasks to do first

• Overhead
• How much extra work is done by scheduler?

• Preemptive scheduler
• If we can take resources away from a running task

• Work-conserving
• Resources are used whenever there is task to run
• For non-preemptive schedulers, work-conserving is not always better

• Only preemptive, work-conserving schedulers to be considered in this lecture!



Recall: CPU Scheduling

• Earlier, we talked about life-cycle of threads
• Threads work their way from ready to running to various waiting queues

• Question: How does OS decide which thread to dequeue?
• Obvious queue to worry about is ready queue
• Others can be scheduled as well, however

• Scheduling: Deciding which thread gets resource from moment to moment  



Execution Model

• Programs alternate between bursts of CPU and I/O
• Use CPU for some period, then do I/O, then use CPU again, etc.

• CPU scheduling is about choosing thread which gets CPU for its next CPU burst

• With preemption, thread may be forced to give up CPU before finishing its burst

Weighted toward small bursts



CPU Scheduling Assumptions

• There are many implicit assumptions for CPU scheduling
• One program per user
• One thread per program
• Programs are independent

• These may not hold in all systems, but they simplify the problem

• High-level goal is to divide CPU time to optimize some desired properties



CPU Scheduling Policy Goals/Criteria

• Minimize average response time
• Minimize elapsed time to do an operation (or task)
• Response time is what users see

• Time to echo a keystroke in editor
• Time to compile a program
• Real-time tasks must meet deadlines imposed by “environment”



CPU Scheduling Policy Goals/Criteria 
(cont.)

• Maximize throughput
• Maximize operations (or tasks) per time unit (e.g., second)
• Throughput related to response time, but not identical

• Minimizing response time could lead to more context switching 
which will than hurt throughput (more on this later!)

• Two parts to maximizing throughput
• Minimize overhead (e.g., context-switching)
• Efficient use of resources (e.g., CPU, disk, memory, etc.)



CPU Scheduling Policy Goals/Criteria 
(cont.)

• Achieve fairness
• Share CPU time among users in some equitable way
• What does equitable mean?

• Equal share of CPU time?
• What if some tasks don’t need their full share?

• Minimize variance in worst case performance?
• What if some tasks were running when no one else was running?

• Who are users? Actual users or programs?  
• If A runs one thread and B runs five, B could get five times as much CPU 

time on many OS’s
• Fairness is not minimizing average response time

• Improving average response time could make system less fair 
(more on this later!)
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• First-Come, First-Served (FCFS)
• Also “First In, First Out” (FIFO)
• In early systems, FCFS meant one program 

scheduled until done (including its I/O activities)
• Now, it means that program keeps CPU until the end of its CPU burst

• Example: Thread CPU Burst Time
T1 24
T2 3
T3 3 

• Suppose threads arrive in order: T1 , T2 , T3
The Gantt Chart for FCFS scheduling is

First-Come, First-Served (FCFS) 
Scheduling

T1 T2 T3

24 27 300



FCFS Scheduling (cont.)

• Example continued:

• Waiting time for T1 is 0, for T2 is 24, and for T3 is 27
• Average waiting time is (0 + 24 + 27)/3 = 17
• Average response time is (24 + 27 + 30)/3 = 27

• Convoy effect: Short threads get stuck behind long ones
• At supermarket, you with milk get stuck behind cart full of small items

T1 T2 T3

24 27 300



FCFS Scheduling (cont.)

• If threads arrive in order: T2 , T3 , T1, then we have

• Waiting time for T1 is 6, for T2 is 0, and for T3 is 3
• Average waiting time is (6 + 0 + 3)/3 = 3
• Average response time is (3 + 6 + 30)/3 = 13
• Average waiting time is much better (before it was 17)
• Average response time is better (before it was 27) 

• Pros and cons of FCFS
• Simple (+)
• Short tasks get stuck behind long ones (-)

T1T3T2

63 300



Round Robin (RR) Scheduling

• FCFS is potentially bad for short tasks!
• Depends on submit order
• If you are first in line at supermarket with milk, 

you don’t care who is behind you, on the other hand…

• Round Robin
• Each thread gets small unit of CPU time, called time quantum

(usually 10-100 milliseconds)
• Once quantum expires, thread is preempted and added to 

end of ready queue
• N threads in ready queue and time quantum is q Þ

• Each thread gets 1/N of CPU time in chunks of at most q time units 
• No thread waits more than (N-1)q time units

Photo: Pinterest.ca



Example: RR with Time Quantum of 20

• Example: Thread Burst Time
T1 53
T2 8
T3 68
T4 24

• The Gantt chart is

• Waiting time for T1 = (68 - 20) + (112 - 88) = 72
T2 = (20 - 0) = 20
T3 = (28 - 0) + (88 - 48) + (125 - 108) = 85
T4 = (48 - 0) + (108 - 68) = 88

• Average waiting time is (72 + 20 + 85 + 88) / 4 = 66¼
• Average response time is (125 + 28 + 153 + 112) / 4 = 104½
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T4 T1 T3 T3

112 125 145 153



• Pros and cons of RR
• Better for short tasks, Fair (+)
• Context-switching time adds up for long tasks (-)

• How does performance change with time quantum?
• What if it’s too long?

• Response time suffers!
• What if it’s too short?

• Throughput suffers! 
• What if it’s infinite (¥)?

• RR Þ FCFS
• Time quantum must be long compared to context switching time, 

otherwise overhead will be too high

Round-Robin Discussion



Round-Robin Discussion (cont.)

• Actual choices of time quantum
• Initially, UNIX time quantum was one second

• Worked ok when UNIX was used by one or two users
• What if you use text editor while there are three compilations going on? 

• It takes 3 seconds to echo each keystroke!

• Need to balance short-task performance and long-task throughput
• Typical time quantum today is between 10ms – 100ms
• Typical context-switching overhead is 0.1ms – 1ms
• Roughly 1% overhead due to context-switching



FCFS vs. RR

• Assuming zero-cost context-switching time, is RR always better than FCFS?

• Suppose there are 10 tasks, each take 100s of CPU time, RR quantum is 1s

• Completion times

Task # FCFS RR
1
2
…
9
10

991
992
…
999
1000

100
200
…
900
1000

T1 T2 T9 T10…
0 100 800 900 1000200

FCFS

…
0 10 980 990 100020

… … … …

999991

RR



FCFS vs. RR (cont.)

• Completion times

• Both RR and FCFS finish at the same time

• Average response time is much worse under RR!
• Bad when all jobs have the same length

• Also, cache must be shared between all tasks with RR but can be devoted to each 
task with FIFO
• Total time for RR is longer even for zero-cost context switching!

Task # FCFS RR
1
2
…
9
10

991
992
…
999
1000

100
200
…
900
1000



Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta

T2 (8) T4 (24) T1 (53) T3 (68)
0 8 32 85 153

Best
FCFS

Quantum T1 T2 T3 T5 Average

Waiting Time

Best FCFS

1

5

8

10

20

Worst FCFS

Response 
Time

Best FCFS

1

5

8

10

20

Worst FCFS

32 0 85 8 31¼

85 8 153 32 69½



Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta (cont.)

T2 (8)T4 (24)T1 (53)T3 (68)
0 68 121 145 153

Worst
FCFS

Quantum T1 T2 T3 T5 Average

Waiting Time

Best FCFS

1

5

8

10

20

Worst FCFS

Response 
Time

Best FCFS

1

5

8

10

20

Worst FCFS

32 0 85 8 31¼

85 8 153 32 69½
68 145 0 121 83½

121 153 68 145 121¾



Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta (cont.)

Quantum T1 T2 T3 T5 Average

Waiting Time

Best FCFS

1

5

8

10

20

Worst FCFS

Response 
Time

Best FCFS

1

5

8

10

20

Worst FCFS

32 0 85 8 31¼

85 8 153 32 69½
68 145 0 121 83½

121 153 68 145 121¾

P1

0 8 56
P2 P3 P4 P1 P3 P4 P1 P3 P4 P1 P3 P1 P3 P3P3

16 24 32 40 48 64 72 80 88 96 104 112
P1 P3 P1

120 128 133 141149
P3

153

80 8 85 56 57¼

133 16 153 80 95½

84 22 85 57 62

137 30 153 81 100½

82 20 85 58 61¼

82 10 85 68 61¼
72 20 85 88 66¼

135 28 153 82 99½

135 18 153 92 99½
125 28 153 112 104½



Shortest Task First (SJF) Scheduling

• Could we always mirror best FCFS?
• Shortest Task First (SJF)

• Run task that has least amount of computation to do
• Sometimes called “Shortest Time to Completion First” (STCF)

• Shortest Remaining Time First (SRTF)
• Preemptive version of SJF: If task arrives and has shorter time to completion 

than remaining time on current task, immediately preempt current task
• Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)

• These can be applied to whole program or current CPU burst
• Key idea: get short tasks out of system
• Big effect on short tasks, only small effect on long ones
• Better average response time



SJF/SRTF Optimality

• SJF/SRTF minimize average response time! Why?

• Consider alternative policy P (not SJF/SRTF) that is optimal

• At some point, P chooses to run task that is not the shortest

• Keep order of tasks the same, but run the shorter task first

• This reduces average response time ⇒ contradiction!



SJF/SRTF Discussion

• SJF/SRTF are best you can do to minimize average response time
• Provably optimal (SJF among non-preemptive, SRTF among preemptive)
• Since SRTF is always at least as good as SJF, we can just focus on SRTF

• Comparison of SRTF with FCFS
• What if all tasks are the same length?

• SRTF ⇒ FCFS (i.e., FCFS is best we can do if all tasks have the same length)
• What if tasks have varying length?

• Unlike FCFS, with SRTF, short tasks do not get stuck behind long ones



Mix of CPU and I/O Bound Tasks:
FCFS vs. RR vs. SRTF

• Example: Suppose there are three tasks
• A and B are both CPU bound with CPU bursts that last for a week
• C is I/O bound with iterations of 1ms CPU burst followed by 9ms I/O burst
• If A or B run by themselves, CPU utilization is 100% and I/O utilization is 0% 
• If C runs by itself, CPU utilization is 10% and I/O utilization is 90% 

• With happens under FCFS scheduling policy?
• Once A or B get in, keep CPU for two weeks ⇒ poor avg. response time 

• What about RR or SRTF?
• Easier to see with a timeline

Computation

A and B :

Computation

I/O

C :



Mix of CPU and I/O Bound Tasks:
FCFS vs. RR vs. SRTF (cont.)

RR with 40ms time quantum

A B A BCPU

I/O

I/O Utilization: 
~11%

RR with 1ms time quantum

CPU

I/O

C,A,B,A,B,A,B,A,B,A, B

SRTF

ACPU

I/O

A A A A A A A A A A A A A A A

I/O Utilization: 
~82%

I/O Utilization: 
~90%

,C,A,B,A,…



Downsides of SRTF

• Starvation: Large tasks may never run if short ones keep coming
• Overhead: Short tasks preempt long ones ⇒ too many context switches
• Unfair : Large tasks are penalized, there is high variance in response time

• Impractical:  We need to somehow predict future (but how?)
• Some systems ask users

• When you submit your task, you have to say how long it will take
• Users could maliciously misreport length of their task
• E.g., would it work if a supermarket uses SJF?

• Customers could game the system: come with one item at a time
• To prevent cheating, systems may kill tasks if they take too long

• It’s hard to predict task’s runtime even for non-malicious users



Predicting Length of Next CPU Burst

• Adaptive: Dynamically make predictions based on past behavior
• Works because programs have predictable behavior

• If program was I/O bound in past, it’ll likely be I/O bound in future
• If behavior were random, this approach wouldn’t help

• Example: Use estimator function on previous bursts
• Let tn-1, tn-2, tn-3, …, t1 be previous CPU burst lengths
• Estimate next burst tn = f(tn-1, tn-2, tn-3, …)
• Function f could be any time series estimator (e.g., Kalman filters, etc.)
• For instance, exponential averaging tn = atn-1+(1-a)tn-1 with (0 < a £ 1)



Aside: Application Types

• Can we use past burst times to identify application types?
• Consider mix of interactive and high-throughput programs

• How to best schedule them?
• How to recognize one from the other?

• Do you trust applications to say that they are “interactive”?
• Should you schedule the set of applications identically on servers, 

workstations, pads, and cellphones?



Aside: Application Types (cont.)

• Assumptions encoded into many schedulers
• Applications that sleep a lot and have short bursts must be interactive 

• Give them high priority

• Applications that compute a lot must be high-throughput apps
• Give them lower priority, since they won’t notice intermittent bursts from 

interactive applications

• In general, it is hard to characterize applications
• What about applications that sleep for a long time, and then compute 

for a long time?
• What about applications that must run under all circumstances



SRTF Final Notes

• Bottom line, we can’t really know how long tasks will take
• However, we can use SRTF as yardstick for measuring other policies
• Optimal, so we can’t do any better

• Pros & cons of SRTF
• Optimal (average response time) (+)
• Hard to predict future (-)
• Too many context switches (-)
• Unfair (-)



Strict Priority Scheduling

• Execution plan
• Always execute highest-priority runnable tasks to completion
• Each queue can be threaded in RR with some time-quantum

• Notice any problems?
• Starvation: Lower priority tasks don’t get to run because higher priority tasks
• Deadlock: Priority inversion

• Not strictly a problem with priority scheduling, but happens when low priority 
task has lock needed by high-priority task

• Usually involves third, intermediate priority task that keeps running even though 
high-priority task should be running

Priority 3
Priority 2
Priority 1
Priority 0 Task 5 Task 6

Task 1 Task 2 Task 3

Task 7

Task 4



Strict Priority Scheduling (cont.)

• How to fix problems?
• Dynamic priorities – adjust base-level priority up or down 

based on heuristics about interactivity, locking, burst 
behavior, etc…

Priority 3
Priority 2
Priority 1
Priority 0 Task 5 Task 6

Task 1 Task 2 Task 3

Task 7

Task 4



Scheduling Fairness

• Strict fixed-priority scheduling between queues is unfair 
(run highest, then next, etc.)
• long running tasks may never get any CPU time
• In Multics, shut down machine, found 10-year-old task

• One approach: Give each queue some fraction of CPU 
• What if there are 100 short tasks and only one long task?

• Like express lanes in a supermarket, sometimes express lanes get so long, get 
better service by going into one of other lines

• Another approach: Increase priority of tasks that don’t get service
• What is done in some variants of UNIX
• This is ad hoc; what rate should you increase priorities?
• And, as system gets overloaded, no task gets CPU time, so everyone increases 

in priority Þ Interactive tasks suffer

• Tradeoff: Fairness is usually gained by hurting average response time!



Multi-Level Feedback Queue 
Scheduling

• Another method for exploiting past behavior (first use in CTSS)
• Multiple queues, each with different priority

• Higher priority queues often considered “foreground” tasks
• Each queue has its own scheduling algorithm

• E.g. foreground – RR, background – FCFS
• Sometimes multiple RR priorities with quantum increasing exponentially 

(highest:1ms, next: 2ms, next: 4ms, etc.)

• Adjust each task’s priority as follows (details vary)
• Task starts in highest priority queue
• If timeout expires, drop one level
• If timeout doesn’t expire, push up one level (or to top)

Long-Running compute
tasks are demoted to
lower priority queues



Multi-Level Feedback Queue 
Scheduling (cont.)

• Result approximates SRTF
• CPU bound tasks drop like a rock
• Short-running I/O bound tasks stay near top

• Scheduling must be done between queues
• Fixed priority scheduling

• Serve all from highest priority, then next priority, etc.
• Time slicing

• Each queue gets fraction of CPU time 
• E.g., 70% to highest, 20% next, 10% lowest



Multi-Level Feedback Queue 
Scheduling (cont.)

• Countermeasure: user action that foil intent of OS designers
• For multilevel feedback, put simple I/O’s to keep task’s priority high
• Example of MIT Othello Contest

• Cheater put printf ’s, ran much faster than competitors!
• Of course, if everyone did this, wouldn’t work!



Lottery Scheduling

• Give each task some number of lottery tickets
• On each time slice, randomly pick a winning ticket
• On average, CPU time is proportional to # of tickets given to task
• How to assign tickets?

• Give tasks tickets proportional to their priorities
• To approximate SRTF, give short tasks more and long tasks fewer
• To avoid starvation, give every task at least one ticket 

(everyone makes progress)

• Compared to strict priority scheduling, lottery scheduling behaves 
gracefully as load changes
• Adding or deleting one task affects all tasks proportionally, independent of 

how many tickets each task possesses



Lottery Scheduling Example

• Assume short tasks get 10 tickets, long tasks get 1 ticket

• What if too many short tasks to give reasonable response time?  
• If load average is 100, hard to make progress
• One approach is to log some users out

# short tasks/
# long tasks

% of CPU each 
short tasks gets

% of CPU each 
long tasks gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%



Max-Min Fair (MMF) Scheduling

• Always choose task with lowest accumulated CPU time so far
• If chosen task doesn’t have CPU burst, schedule second lowest …
• Break ties randomly if multiple tasks equally have lowest CPU time

• Goal is to give each task equal share of CPU time
• With N runnable threads, each thread should get 1/Nth of CPU time

• At any time t we want to have
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MMF Scheduling (cont.)

• Strict MMF causes too many context switches
• It effectively turns to running one instruction of each task

• Relaxed MMF runs task with lowest accumulated CPU time 
for fixed time quantum before choosing next task

• Notice any problem?
• Fixed quantum leads to poor response time as # of tasks increases
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MMF Scheduling (cont.)

• Solution: Dynamically change time quantum
• Target latency: Time interval during which all tasks should run at least once
• Time quantum = Target latency / N

• E.g., with 20ms target latency and 4 threads, time quantum is 5ms

• Notice any problem?
• With 20ms target latency and 200 threads, time quantum becomes 0.1ms
• Recall RR: Large context switching overhead if time quantum gets to small

• Minimum granularity: Minimum length of any time quantum
• E.g., with target latency 20ms, 1ms minimum granularity,  and 200 processes, 

time quantum is1ms



Weighted Max-Min Fair Scheduling

• What if we want to give more to some and less to others (proportional share)?

• Key Idea: Assign weight wi to each thread i

• MMF uses single time quantum for all tasks

• Weighted MMF uses different time quanta for different tasks

• E.g., with 20ms target latency, 1ms minimum granularity, and 2 threads: A with 
weight 1 and B with weight 4
• Time quantum for A is 4 ms
• Time quantum for B is 16 ms

Q =
Target latency

N
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Weighted MMF Scheduling (cont.)

• Also track threads’ virtual runtime rather than their true wall-clock runtime
• Higher weight: Virtual runtime increases more slowly
• Lower weight: Virtual runtime increases more quickly
• Linux Completely Fair Scheduler deploys very similar ideas
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Real-Time Scheduling (RTS)

• Efficiency is important but predictability is essential
• We need to predict with confidence worst case response times for systems
• In RTS, performance guarantees are task and/or class centric and often ensured a priori
• In conventional systems, performance is system/throughput oriented with post-

threading (… wait and see …)
• Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard real-time
• Attempt to meet all deadlines
• EDF (Earliest Deadline First), LLF (Least Laxity First), 

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

• Soft real-time
• Attempt to meet deadlines with high probability
• Minimize miss ratio / maximize completion ratio (firm real-time)
• Important for multimedia applications
• CBS (Constant Bandwidth Server)



Real-Time Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C) 
• Example Setup:

A1 C1 D1

A2 C2 D2

A3 C3 D3

A4 C4 D4

T1

T2

T3

T4



Real-Time Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C) 
• Example Setup: Missed 

Deadline!

A1 D1

A2 D2

A3 D3

A4 D4

T1

T2

T3

T4

Time



Earliest Deadline First (EDF)

• Tasks are periodic with period P and computation C in each period:  (P, C)
• Preemptive priority-based dynamic scheduling
• Tasks’ (current) priority is based on how close their deadline is
• Scheduler always schedules active task with closest deadline

0 5 10 15

T1: (4, 1)

T2: (5, 2)

T3: (7, 2)



EDF: Feasibility Testing

• Even EDF won't work if you have too many tasks
• For n periodic tasks with computation time Ci and 

deadline and period Di, feasible schedule exists if

nX

i=1

⇣Ci

Di

⌘
 1

<latexit sha1_base64="st17TGMTLx+7D6ANxutsWcePDu8="></latexit>



How to Evaluate Scheduling Algorithms?

• Deterministic modeling
• Take predetermined workload and compute performance of each algorithm  

• Queueing models
• Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
• Build system which allows actual algorithms to be run against actual data –

most flexible/general



Starvation and Sample Bias

• Suppose you want to compare scheduling policies
• Create some infinite sequence of arriving tasks
• Start measuring
• Stop at some point
• Compute ART for finished tasks between start and stop

• Is this valid or invalid?
• SJF and FCFS would complete different sets of tasks

• Their ARTs are not directly comparable
• E.g., suppose you stopped at any point in FCFS vs. SJF slide



Solutions for Sample Bias

• For both systems, measure for long enough that 
# of completed tasks >> # of uncompleted tasks

• Start and stop system in idle periods
• Idle period: no work to do
• If algorithms are work-conserving, both will complete the 

same set of tasks



Choosing Right Scheduling Algorithm

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to Get CPU Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority
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Multicore Processor Scheduling

• There could be one ready queue for all cores

• Notice any problems?
• Single bottleneck: Contention for ready queue’s lock
• Limited cache reuse: Lack of data locality as tasks get 

scheduled on different cores

• Solution: each core has its own private ready queue

• Notice any problems?
• Load balancing: Some cores might be idle 

while tasks pile up on others ready queues 

• One solution: Work stealing
• Idle cores steal waiting task from busy ones

T4 T3 T2 T1
Core 2

Core 3

Core 1

Core 4

T3 T2 T1

T4

T8 T7 T6 T5

Core 2

Core 3

Core 1

Core 4



Processor Affinity

• When task run on core, cache contents of that core stores recent 
memory accesses by that task

• This is referred to as core affinity of tasks
• Load balancing may affect core affinity as task migrate between cores
• Performance of migrated task suffers because it loses contents of what it 

had in cache of the core it was moved off of
• Migration is justified only if performance loss is less than waiting time

• Soft affinity: OS tries to keep tasks on same core, but no guarantees
• Hard affinity: OS allows tasks to specify set of cores they may run on



NUMA and CPU Scheduling

• Uniform memory access (UMA): Cores 
experience same, uniform access time 
to any memory module

• Non-uniform memory access (NUMA): 
Cores access their local memory modules 
faster than remote memory modules

• If OS is NUMA-aware, it will assign memory 
closes to core that task is running on

Local access

Photos from: http://www.evoventurepartners.com

Remote access



Scheduling Multithreaded Programs

• So far, we assumed that there is one thread per program
• Now, consider scheduling multithreaded programs on multicore processor
• At any given time, multiple threads from same program could be running

• Oblivious scheduling: Cores independently schedule threads in their queue
• Each thread is treated as independent task

• What happens if one thread gets time-sliced while others are still running?
• Assuming program uses locks and condition variables, it will still be correct
• Performance, however, could suffer if threads actually depend on one another
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Problem with Oblivious Scheduling:
Bulk Synchronous Delay

• Data parallelism is common programming design pattern 
(e.g., Google MapReduce)
• Data is split into roughly equal sized chunks 
• Chunks are processed independently on different cores
• Once all chunks are processed, cores synchronize and communicate their 

results to next stage of computation
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Problem with Oblivious Scheduling:
Bulk Synchronous Delay (cont.)

• At each step, computation is limited by the slowest task
• If task is preempted on one core, its work is delayed, stalling all other cores
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Problem with Oblivious Scheduling:
Producer-Consumer Delay

• Producer-consumer design patter is also very common
• Preempting a thread on one core stalls all others in the chain
• Some other problems with oblivious scheduling

• Preempting a thread on the critical path will slow down the entire process
• Preempting lock holder stalls others until lock holder is re-scheduled

Core 1 Core 2 Core 3
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Gang Scheduling

• Time is divided into equal intervals
• Threads from same process are scheduled at beginning of each interval
• Notice any problems?

• CPU cycles are waisted when threads have different lengths
• Some cores remain idle when a process doesn’t have enough tasks for all cores
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Space Sharing

• Each process is assigned a subset of cores
• Minimizes processor context switches
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How Many Cores 
Does a Process Need?

• There are overheads
• E.g., creating extra threads, synchronization, communication

• Overheads shift the curve down
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Amdahl’s Law
[G. Amdahl 1967]

• Architects use it to estimate upper bounds on speedups

Speedup(x) =
T1

Tx
=

T1

(1� F )T1 +
FT1
x

=
x

x(1� F ) + F
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Amdahl’s Law (cont.)
[G. Amdahl 1967]

Speedup(x) =
T1

Tx
=

T1

(1� F )T1 +
FT1
x

=
x

x(1� F ) + F
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What Portion of Code is Parallelizable?
[Allen Karp and Horace Flatt 1990]

• Expert programmers may not know!
• Fortunately, we can measure speedup
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A Final Word On Scheduling

• When do details of scheduling policy and fairness really matter?
• When there aren’t enough resources to go around

• When should you simply buy faster cores? 
(Or network link, or expanded highway, or …)
• Buy it when it will pay for itself in improved response time,

assuming you’re paying for worse response time 
in reduced productivity,  customer angst, etc…

• Might think you need X fully utilized core, but usually 
you will have to buy more than X because response time 
goes to infinity as utilization approaches100%

• Interesting implication of this curve
• Most scheduling algorithms work fine in linear portion of curve, fail otherwise
• Argues for buying faster resources when hit knee of curve
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Summary (1 of 2)

• First-Come, First-Served (FCFS)
• Threads are served in the order of their arrival

• Round-Robin (RR)
• Give each thread a small amount of CPU time when it executes; cycle 

between all ready threads

• Shortest Task First (SJF) / Shortest Remaining Time First (SRTF):
• Run whatever task that has the least amount of computation to do/least 

remaining amount of computation to do

• Multi-level Feedback Queue (MFQ)
• Multiple queues of different priorities and scheduling algorithms

• Lottery Scheduling
• Give each thread a priority-dependent number of tickets



Summary (2 of 2)

• Max-Min Fair (MMF)
• Give each task equal share of CPU time

• Real-Time Scheduling
• Need to meet a deadline, predictability essential

• Oblivious Scheduling
• Each core schedules its own threads

• Gang Scheduling
• Schedule tasks from same process at the same time

• Space Sharing
• Give each process some number of cores 
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