
SE350: Operating Systems
Lecture 8: Scheduling

Outline

• Definitions

• Response time, throughput, scheduling policy, …

• Uniprocessor policies

• FCFS, SJF/SRTF, Round Robin, …

• Real-time scheduling

• Multiprocessor policies

• Oblivious scheduling, gang scheduling, …

Definitions

• Task
• User request (e.g., mouse click, web request, shell command, etc.)

• Workload
• Set of tasks for system to perform

• Scheduling algorithm
• Takes workload as input, decides which tasks to do first

• Overhead
• How much extra work is done by scheduler?

• Preemptive scheduler
• If we can take resources away from a running task

• Work-conserving
• Resources are used whenever there is task to run
• For non-preemptive schedulers, work-conserving is not always better

• Only preemptive, work-conserving schedulers to be considered in this lecture!

Recall: CPU Scheduling

• Earlier, we talked about life-cycle of threads
• Threads work their way from ready to running to various waiting queues

• Question: How does OS decide which thread to dequeue?
• Obvious queue to worry about is ready queue
• Others can be scheduled as well, however

• Scheduling: Deciding which thread gets resource from moment to moment

Execution Model

• Programs alternate between bursts of CPU and I/O
• Use CPU for some period, then do I/O, then use CPU again, etc.

• CPU scheduling is about choosing thread which gets CPU for its next CPU burst

• With preemption, thread may be forced to give up CPU before finishing its burst

Weighted toward small bursts

CPU Scheduling Assumptions

• There are many implicit assumptions for CPU scheduling
• One program per user
• One thread per program
• Programs are independent

• These may not hold in all systems, but they simplify the problem

• High-level goal is to divide CPU time to optimize some desired properties

CPU Scheduling Policy Goals/Criteria

• Minimize average response time
• Minimize elapsed time to do an operation (or task)
• Response time is what users see

• Time to echo a keystroke in editor
• Time to compile a program
• Real-time tasks must meet deadlines imposed by “environment”

CPU Scheduling Policy Goals/Criteria
(cont.)

• Maximize throughput
• Maximize operations (or tasks) per time unit (e.g., second)
• Throughput related to response time, but not identical

• Minimizing response time could lead to more context switching
which will than hurt throughput (more on this later!)

• Two parts to maximizing throughput
• Minimize overhead (e.g., context-switching)
• Efficient use of resources (e.g., CPU, disk, memory, etc.)

CPU Scheduling Policy Goals/Criteria
(cont.)

• Achieve fairness
• Share CPU time among users in some equitable way
• What does equitable mean?

• Equal share of CPU time?
• What if some tasks don’t need their full share?

• Minimize variance in worst case performance?
• What if some tasks were running when no one else was running?

• Who are users? Actual users or programs?
• If A runs one thread and B runs five, B could get five times as much CPU

time on many OS’s
• Fairness is not minimizing average response time

• Improving average response time could make system less fair
(more on this later!)

Outline

• Definitions

• Response time, throughput, scheduling policy, …

• Uniprocessor policies

• FCFS, SJF/SRTF, Round Robin, …

• Real-time scheduling

• Multiprocessor policies

• Oblivious scheduling, gang scheduling, …

• First-Come, First-Served (FCFS)
• Also “First In, First Out” (FIFO)
• In early systems, FCFS meant one program

scheduled until done (including its I/O activities)
• Now, it means that program keeps CPU until the end of its CPU burst

• Example: Thread CPU Burst Time
T1 24
T2 3
T3 3

• Suppose threads arrive in order: T1 , T2 , T3
The Gantt Chart for FCFS scheduling is

First-Come, First-Served (FCFS)
Scheduling

T1 T2 T3

24 27 300

FCFS Scheduling (cont.)

• Example continued:

• Waiting time for T1 is 0, for T2 is 24, and for T3 is 27
• Average waiting time is (0 + 24 + 27)/3 = 17
• Average response time is (24 + 27 + 30)/3 = 27

• Convoy effect: Short threads get stuck behind long ones
• At supermarket, you with milk get stuck behind cart full of small items

T1 T2 T3

24 27 300

FCFS Scheduling (cont.)

• If threads arrive in order: T2 , T3 , T1, then we have

• Waiting time for T1 is 6, for T2 is 0, and for T3 is 3
• Average waiting time is (6 + 0 + 3)/3 = 3
• Average response time is (3 + 6 + 30)/3 = 13
• Average waiting time is much better (before it was 17)
• Average response time is better (before it was 27)

• Pros and cons of FCFS
• Simple (+)
• Short tasks get stuck behind long ones (-)

T1T3T2

63 300

Round Robin (RR) Scheduling

• FCFS is potentially bad for short tasks!
• Depends on submit order
• If you are first in line at supermarket with milk,

you don’t care who is behind you, on the other hand…

• Round Robin
• Each thread gets small unit of CPU time, called time quantum

(usually 10-100 milliseconds)
• Once quantum expires, thread is preempted and added to

end of ready queue
• N threads in ready queue and time quantum is q Þ

• Each thread gets 1/N of CPU time in chunks of at most q time units
• No thread waits more than (N-1)q time units

Photo: Pinterest.ca

Example: RR with Time Quantum of 20

• Example: Thread Burst Time
T1 53
T2 8
T3 68
T4 24

• The Gantt chart is

• Waiting time for T1 = (68 - 20) + (112 - 88) = 72
T2 = (20 - 0) = 20
T3 = (28 - 0) + (88 - 48) + (125 - 108) = 85
T4 = (48 - 0) + (108 - 68) = 88

• Average waiting time is (72 + 20 + 85 + 88) / 4 = 66¼
• Average response time is (125 + 28 + 153 + 112) / 4 = 104½

T1

0 20

T2

28

T3

48

T4

68

T1

88

T3

108

T4 T1 T3 T3

112 125 145 153

• Pros and cons of RR
• Better for short tasks, Fair (+)
• Context-switching time adds up for long tasks (-)

• How does performance change with time quantum?
• What if it’s too long?

• Response time suffers!
• What if it’s too short?

• Throughput suffers!
• What if it’s infinite (¥)?

• RR Þ FCFS
• Time quantum must be long compared to context switching time,

otherwise overhead will be too high

Round-Robin Discussion

Round-Robin Discussion (cont.)

• Actual choices of time quantum
• Initially, UNIX time quantum was one second

• Worked ok when UNIX was used by one or two users
• What if you use text editor while there are three compilations going on?

• It takes 3 seconds to echo each keystroke!

• Need to balance short-task performance and long-task throughput
• Typical time quantum today is between 10ms – 100ms
• Typical context-switching overhead is 0.1ms – 1ms
• Roughly 1% overhead due to context-switching

FCFS vs. RR

• Assuming zero-cost context-switching time, is RR always better than FCFS?

• Suppose there are 10 tasks, each take 100s of CPU time, RR quantum is 1s

• Completion times

Task # FCFS RR
1
2
…
9
10

991
992
…
999
1000

100
200
…
900
1000

T1 T2 T9 T10…
0 100 800 900 1000200

FCFS

…
0 10 980 990 100020

… … … …

999991

RR

FCFS vs. RR (cont.)

• Completion times

• Both RR and FCFS finish at the same time

• Average response time is much worse under RR!
• Bad when all jobs have the same length

• Also, cache must be shared between all tasks with RR but can be devoted to each
task with FIFO
• Total time for RR is longer even for zero-cost context switching!

Task # FCFS RR
1
2
…
9
10

991
992
…
999
1000

100
200
…
900
1000

Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta

T2 (8) T4 (24) T1 (53) T3 (68)
0 8 32 85 153

Best
FCFS

Quantum T1 T2 T3 T5 Average

Waiting Time

Best FCFS

1

5

8

10

20

Worst FCFS

Response
Time

Best FCFS

1

5

8

10

20

Worst FCFS

32 0 85 8 31¼

85 8 153 32 69½

Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta (cont.)

T2 (8)T4 (24)T1 (53)T3 (68)
0 68 121 145 153

Worst
FCFS

Quantum T1 T2 T3 T5 Average

Waiting Time

Best FCFS

1

5

8

10

20

Worst FCFS

Response
Time

Best FCFS

1

5

8

10

20

Worst FCFS

32 0 85 8 31¼

85 8 153 32 69½
68 145 0 121 83½

121 153 68 145 121¾

Earlier Example: RR vs. FCFS,
Effect of Different Time Quanta (cont.)

Quantum T1 T2 T3 T5 Average

Waiting Time

Best FCFS

1

5

8

10

20

Worst FCFS

Response
Time

Best FCFS

1

5

8

10

20

Worst FCFS

32 0 85 8 31¼

85 8 153 32 69½
68 145 0 121 83½

121 153 68 145 121¾

P1

0 8 56
P2 P3 P4 P1 P3 P4 P1 P3 P4 P1 P3 P1 P3 P3P3

16 24 32 40 48 64 72 80 88 96 104 112
P1 P3 P1

120 128 133 141149
P3

153

80 8 85 56 57¼

133 16 153 80 95½

84 22 85 57 62

137 30 153 81 100½

82 20 85 58 61¼

82 10 85 68 61¼
72 20 85 88 66¼

135 28 153 82 99½

135 18 153 92 99½
125 28 153 112 104½

Shortest Task First (SJF) Scheduling

• Could we always mirror best FCFS?
• Shortest Task First (SJF)

• Run task that has least amount of computation to do
• Sometimes called “Shortest Time to Completion First” (STCF)

• Shortest Remaining Time First (SRTF)
• Preemptive version of SJF: If task arrives and has shorter time to completion

than remaining time on current task, immediately preempt current task
• Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)

• These can be applied to whole program or current CPU burst
• Key idea: get short tasks out of system
• Big effect on short tasks, only small effect on long ones
• Better average response time

SJF/SRTF Optimality

• SJF/SRTF minimize average response time! Why?

• Consider alternative policy P (not SJF/SRTF) that is optimal

• At some point, P chooses to run task that is not the shortest

• Keep order of tasks the same, but run the shorter task first

• This reduces average response time ⇒ contradiction!

SJF/SRTF Discussion

• SJF/SRTF are best you can do to minimize average response time
• Provably optimal (SJF among non-preemptive, SRTF among preemptive)
• Since SRTF is always at least as good as SJF, we can just focus on SRTF

• Comparison of SRTF with FCFS
• What if all tasks are the same length?

• SRTF ⇒ FCFS (i.e., FCFS is best we can do if all tasks have the same length)
• What if tasks have varying length?

• Unlike FCFS, with SRTF, short tasks do not get stuck behind long ones

Mix of CPU and I/O Bound Tasks:
FCFS vs. RR vs. SRTF

• Example: Suppose there are three tasks
• A and B are both CPU bound with CPU bursts that last for a week
• C is I/O bound with iterations of 1ms CPU burst followed by 9ms I/O burst
• If A or B run by themselves, CPU utilization is 100% and I/O utilization is 0%
• If C runs by itself, CPU utilization is 10% and I/O utilization is 90%

• With happens under FCFS scheduling policy?
• Once A or B get in, keep CPU for two weeks ⇒ poor avg. response time

• What about RR or SRTF?
• Easier to see with a timeline

Computation

A and B :

Computation

I/O

C :

Mix of CPU and I/O Bound Tasks:
FCFS vs. RR vs. SRTF (cont.)

RR with 40ms time quantum

A B A BCPU

I/O

I/O Utilization:
~11%

RR with 1ms time quantum

CPU

I/O

C,A,B,A,B,A,B,A,B,A, B

SRTF

ACPU

I/O

A A A A A A A A A A A A A A A

I/O Utilization:
~82%

I/O Utilization:
~90%

,C,A,B,A,…

Downsides of SRTF

• Starvation: Large tasks may never run if short ones keep coming
• Overhead: Short tasks preempt long ones ⇒ too many context switches
• Unfair : Large tasks are penalized, there is high variance in response time

• Impractical: We need to somehow predict future (but how?)
• Some systems ask users

• When you submit your task, you have to say how long it will take
• Users could maliciously misreport length of their task
• E.g., would it work if a supermarket uses SJF?

• Customers could game the system: come with one item at a time
• To prevent cheating, systems may kill tasks if they take too long

• It’s hard to predict task’s runtime even for non-malicious users

Predicting Length of Next CPU Burst

• Adaptive: Dynamically make predictions based on past behavior
• Works because programs have predictable behavior

• If program was I/O bound in past, it’ll likely be I/O bound in future
• If behavior were random, this approach wouldn’t help

• Example: Use estimator function on previous bursts
• Let tn-1, tn-2, tn-3, …, t1 be previous CPU burst lengths
• Estimate next burst tn = f(tn-1, tn-2, tn-3, …)
• Function f could be any time series estimator (e.g., Kalman filters, etc.)
• For instance, exponential averaging tn = atn-1+(1-a)tn-1 with (0 < a £ 1)

Aside: Application Types

• Can we use past burst times to identify application types?
• Consider mix of interactive and high-throughput programs

• How to best schedule them?
• How to recognize one from the other?

• Do you trust applications to say that they are “interactive”?
• Should you schedule the set of applications identically on servers,

workstations, pads, and cellphones?

Aside: Application Types (cont.)

• Assumptions encoded into many schedulers
• Applications that sleep a lot and have short bursts must be interactive

• Give them high priority

• Applications that compute a lot must be high-throughput apps
• Give them lower priority, since they won’t notice intermittent bursts from

interactive applications

• In general, it is hard to characterize applications
• What about applications that sleep for a long time, and then compute

for a long time?
• What about applications that must run under all circumstances

SRTF Final Notes

• Bottom line, we can’t really know how long tasks will take
• However, we can use SRTF as yardstick for measuring other policies
• Optimal, so we can’t do any better

• Pros & cons of SRTF
• Optimal (average response time) (+)
• Hard to predict future (-)
• Too many context switches (-)
• Unfair (-)

Strict Priority Scheduling

• Execution plan
• Always execute highest-priority runnable tasks to completion
• Each queue can be threaded in RR with some time-quantum

• Notice any problems?
• Starvation: Lower priority tasks don’t get to run because higher priority tasks
• Deadlock: Priority inversion

• Not strictly a problem with priority scheduling, but happens when low priority
task has lock needed by high-priority task

• Usually involves third, intermediate priority task that keeps running even though
high-priority task should be running

Priority 3
Priority 2
Priority 1
Priority 0 Task 5 Task 6

Task 1 Task 2 Task 3

Task 7

Task 4

Strict Priority Scheduling (cont.)

• How to fix problems?
• Dynamic priorities – adjust base-level priority up or down

based on heuristics about interactivity, locking, burst
behavior, etc…

Priority 3
Priority 2
Priority 1
Priority 0 Task 5 Task 6

Task 1 Task 2 Task 3

Task 7

Task 4

Scheduling Fairness

• Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc.)
• long running tasks may never get any CPU time
• In Multics, shut down machine, found 10-year-old task

• One approach: Give each queue some fraction of CPU
• What if there are 100 short tasks and only one long task?

• Like express lanes in a supermarket, sometimes express lanes get so long, get
better service by going into one of other lines

• Another approach: Increase priority of tasks that don’t get service
• What is done in some variants of UNIX
• This is ad hoc; what rate should you increase priorities?
• And, as system gets overloaded, no task gets CPU time, so everyone increases

in priority Þ Interactive tasks suffer

• Tradeoff: Fairness is usually gained by hurting average response time!

Multi-Level Feedback Queue
Scheduling

• Another method for exploiting past behavior (first use in CTSS)
• Multiple queues, each with different priority

• Higher priority queues often considered “foreground” tasks
• Each queue has its own scheduling algorithm

• E.g. foreground – RR, background – FCFS
• Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next: 2ms, next: 4ms, etc.)

• Adjust each task’s priority as follows (details vary)
• Task starts in highest priority queue
• If timeout expires, drop one level
• If timeout doesn’t expire, push up one level (or to top)

Long-Running compute
tasks are demoted to
lower priority queues

Multi-Level Feedback Queue
Scheduling (cont.)

• Result approximates SRTF
• CPU bound tasks drop like a rock
• Short-running I/O bound tasks stay near top

• Scheduling must be done between queues
• Fixed priority scheduling

• Serve all from highest priority, then next priority, etc.
• Time slicing

• Each queue gets fraction of CPU time
• E.g., 70% to highest, 20% next, 10% lowest

Multi-Level Feedback Queue
Scheduling (cont.)

• Countermeasure: user action that foil intent of OS designers
• For multilevel feedback, put simple I/O’s to keep task’s priority high
• Example of MIT Othello Contest

• Cheater put printf ’s, ran much faster than competitors!
• Of course, if everyone did this, wouldn’t work!

Lottery Scheduling

• Give each task some number of lottery tickets
• On each time slice, randomly pick a winning ticket
• On average, CPU time is proportional to # of tickets given to task
• How to assign tickets?

• Give tasks tickets proportional to their priorities
• To approximate SRTF, give short tasks more and long tasks fewer
• To avoid starvation, give every task at least one ticket

(everyone makes progress)

• Compared to strict priority scheduling, lottery scheduling behaves
gracefully as load changes
• Adding or deleting one task affects all tasks proportionally, independent of

how many tickets each task possesses

Lottery Scheduling Example

• Assume short tasks get 10 tickets, long tasks get 1 ticket

• What if too many short tasks to give reasonable response time?
• If load average is 100, hard to make progress
• One approach is to log some users out

short tasks/
long tasks

% of CPU each
short tasks gets

% of CPU each
long tasks gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

Max-Min Fair (MMF) Scheduling

• Always choose task with lowest accumulated CPU time so far
• If chosen task doesn’t have CPU burst, schedule second lowest …
• Break ties randomly if multiple tasks equally have lowest CPU time

• Goal is to give each task equal share of CPU time
• With N runnable threads, each thread should get 1/Nth of CPU time

• At any time t we want to have

Ac
cu

m
ula

te
d

CP
U

 T
im

e

T1 T2 T3

t/N

MMF Scheduling (cont.)

• Strict MMF causes too many context switches
• It effectively turns to running one instruction of each task

• Relaxed MMF runs task with lowest accumulated CPU time
for fixed time quantum before choosing next task

• Notice any problem?
• Fixed quantum leads to poor response time as # of tasks increases

Ac
cu

m
ula

te
d

CP
U

 T
im

e

T1
T2 T3

MMF Scheduling (cont.)

• Solution: Dynamically change time quantum
• Target latency: Time interval during which all tasks should run at least once
• Time quantum = Target latency / N

• E.g., with 20ms target latency and 4 threads, time quantum is 5ms

• Notice any problem?
• With 20ms target latency and 200 threads, time quantum becomes 0.1ms
• Recall RR: Large context switching overhead if time quantum gets to small

• Minimum granularity: Minimum length of any time quantum
• E.g., with target latency 20ms, 1ms minimum granularity, and 200 processes,

time quantum is1ms

Weighted Max-Min Fair Scheduling

• What if we want to give more to some and less to others (proportional share)?

• Key Idea: Assign weight wi to each thread i

• MMF uses single time quantum for all tasks

• Weighted MMF uses different time quanta for different tasks

• E.g., with 20ms target latency, 1ms minimum granularity, and 2 threads: A with
weight 1 and B with weight 4
• Time quantum for A is 4 ms
• Time quantum for B is 16 ms

Q =
Target latency

N

<latexit sha1_base64="Bp7uKwkGRlLTppYf8DBXScxD+og=">AAACDHicbVC7SgNBFL3rKxpfUUubwQdYhV1RTCNEbKxEwSRCEmR2cjcOzj6YuSuGZcHWxl+xEVTE1g+w8x/8CCeJha8LwxzOOZeZc/xESUOu++6MjI6NTxQmp4rTM7Nz86WFxbqJUy2wJmIV61OfG1QywhpJUniaaOShr7DhX+z39cYlaiPj6IR6CbZD3o1kIAUnS52VVo/ZLmsFmousRXhF2QnXXSSmOGEkenmeHebW5ZbdwbC/wPsCq9VK+aOw9hAfnZXeWp1YpCFGJBQ3pum5CbUzrkkKhXmxlRpMuLjgXWxaGPEQTTsbhMnZumU6LIi1PRGxAft9I+OhMb3Qt86Q07n5rfXJ/7RmSkGlnckoSfvRhg8FqWIUs34zrCM1ClI9C7jQ0v6ViXNumyHbX9GW4P2O/BfUN8veVnn72Laxdw2DmYRlWIEN8GAHqnAAR1ADATdwB4/w5Nw6986z8zK0jjjDG5bgxzivnwsenwM=</latexit>

Qi =
wi ⇥ Target latency

PN
j=1 wj

<latexit sha1_base64="s2rhlR4NJ97YiUH+ygDrFrFBNhM=">AAACKXicbVBNSxxBEK1Ro2aTmFGPuTSRQE6bGTHoRVgRgidRcFXY2Qw9vTVra88H3TXq0gzk13jxj3jwYiCiXvMfArmldzeHRH3Q1OO9KrrqJaWShoLg3puYnHoxPTP7svHq9Zu5t/78wr4pKi2wLQpV6MOEG1QyxzZJUnhYauRZovAgOdkc+genqI0s8j0alNjNeD+XqRScnBT7rd1YsnUWpZoLe+Z4RDJD4wqek93juo/EFCfMxaCubWSqLLbH62H91W7XZ/FxHftLQTMYgT0l4V+y1Pry62rK//R7J/a/R71CVBnmJBQ3phMGJXUt1ySFwroRVQZLLk54HzuO5tyt07WjS2v2wSk9lhbavZzYSP13wvLMmEGWuM6M05F57A3F57xORela18q8rIanjj9KK8WoYMPYWE9qFKQGjnChpduViSPuQiMXbsOFED4++SnZX26GK83Puy6NjW8wwiy8g/fwEUJYhRZswQ60QcAFXMMPuPUuvRvvznsYt0544wqL8B+8n38AN/Gr/Q==</latexit>

Weighted MMF Scheduling (cont.)

• Also track threads’ virtual runtime rather than their true wall-clock runtime
• Higher weight: Virtual runtime increases more slowly
• Lower weight: Virtual runtime increases more quickly
• Linux Completely Fair Scheduler deploys very similar ideas

Ac
tu

al
CP

U
 T

im
e

B

A

16

4
Vi

rt
ua

l C
PU

 T
im

e
B A

1 1

Real-Time Scheduling (RTS)

• Efficiency is important but predictability is essential
• We need to predict with confidence worst case response times for systems
• In RTS, performance guarantees are task and/or class centric and often ensured a priori
• In conventional systems, performance is system/throughput oriented with post-

threading (… wait and see …)
• Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard real-time
• Attempt to meet all deadlines
• EDF (Earliest Deadline First), LLF (Least Laxity First),

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

• Soft real-time
• Attempt to meet deadlines with high probability
• Minimize miss ratio / maximize completion ratio (firm real-time)
• Important for multimedia applications
• CBS (Constant Bandwidth Server)

Real-Time Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

A1 C1 D1

A2 C2 D2

A3 C3 D3

A4 C4 D4

T1

T2

T3

T4

Real-Time Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C)
• Example Setup: Missed

Deadline!

A1 D1

A2 D2

A3 D3

A4 D4

T1

T2

T3

T4

Time

Earliest Deadline First (EDF)

• Tasks are periodic with period P and computation C in each period: (P, C)
• Preemptive priority-based dynamic scheduling
• Tasks’ (current) priority is based on how close their deadline is
• Scheduler always schedules active task with closest deadline

0 5 10 15

T1: (4, 1)

T2: (5, 2)

T3: (7, 2)

EDF: Feasibility Testing

• Even EDF won't work if you have too many tasks
• For n periodic tasks with computation time Ci and

deadline and period Di, feasible schedule exists if

nX

i=1

⇣Ci

Di

⌘
 1

<latexit sha1_base64="st17TGMTLx+7D6ANxutsWcePDu8=">AAACFnicbVDLSgMxFM34rPU16tJNsCh1YZlRRDdCsQriqoJ9QKcOmTTThmYyQ5IRyjBf4cYf8CPcuFDErbhz5Ye4MX0stPXAvRzOuZfkHi9iVCrL+jSmpmdm5+YzC9nFpeWVVXNtvSrDWGBSwSELRd1DkjDKSUVRxUg9EgQFHiM1r1vq+7VbIiQN+bXqRaQZoDanPsVIack19xwZB25CT+z0JuGpc0rbeccXCCcll6bJmW59bRc6jEDbNXNWwRoAThJ7RHLFy2/2tdN9KLvmh9MKcRwQrjBDUjZsK1LNBAlFMSNp1okliRDuojZpaMpRQGQzGZyVwm2ttKAfCl1cwYH6eyNBgZS9wNOTAVIdOe71xf+8Rqz842ZCeRQrwvHwIT9mUIWwnxFsUUGwYj1NEBZU/xXiDtKhKJ1kVodgj588Sar7BfugcHil0zgHQ2TAJtgCeWCDI1AEF6AMKgCDO/AInsGLcW88Ga/G23B0yhjtbIA/MN5/ANkzouY=</latexit>

How to Evaluate Scheduling Algorithms?

• Deterministic modeling
• Take predetermined workload and compute performance of each algorithm

• Queueing models
• Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
• Build system which allows actual algorithms to be run against actual data –

most flexible/general

Starvation and Sample Bias

• Suppose you want to compare scheduling policies
• Create some infinite sequence of arriving tasks
• Start measuring
• Stop at some point
• Compute ART for finished tasks between start and stop

• Is this valid or invalid?
• SJF and FCFS would complete different sets of tasks

• Their ARTs are not directly comparable
• E.g., suppose you stopped at any point in FCFS vs. SJF slide

Solutions for Sample Bias

• For both systems, measure for long enough that
of completed tasks >> # of uncompleted tasks

• Start and stop system in idle periods
• Idle period: no work to do
• If algorithms are work-conserving, both will complete the

same set of tasks

Choosing Right Scheduling Algorithm

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to Get CPU Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

Outline

• Definitions

• Response time, throughput, scheduling policy, …

• Uniprocessor policies

• FCFS, SJF/SRTF, Round Robin, …

• Real-time scheduling

• Multiprocessor policies

• Oblivious scheduling, gang scheduling, …

Multicore Processor Scheduling

• There could be one ready queue for all cores

• Notice any problems?
• Single bottleneck: Contention for ready queue’s lock
• Limited cache reuse: Lack of data locality as tasks get

scheduled on different cores

• Solution: each core has its own private ready queue

• Notice any problems?
• Load balancing: Some cores might be idle

while tasks pile up on others ready queues

• One solution: Work stealing
• Idle cores steal waiting task from busy ones

T4 T3 T2 T1
Core 2

Core 3

Core 1

Core 4

T3 T2 T1

T4

T8 T7 T6 T5

Core 2

Core 3

Core 1

Core 4

Processor Affinity

• When task run on core, cache contents of that core stores recent
memory accesses by that task

• This is referred to as core affinity of tasks
• Load balancing may affect core affinity as task migrate between cores
• Performance of migrated task suffers because it loses contents of what it

had in cache of the core it was moved off of
• Migration is justified only if performance loss is less than waiting time

• Soft affinity: OS tries to keep tasks on same core, but no guarantees
• Hard affinity: OS allows tasks to specify set of cores they may run on

NUMA and CPU Scheduling

• Uniform memory access (UMA): Cores
experience same, uniform access time
to any memory module

• Non-uniform memory access (NUMA):
Cores access their local memory modules
faster than remote memory modules

• If OS is NUMA-aware, it will assign memory
closes to core that task is running on

Local access

Photos from: http://www.evoventurepartners.com

Remote access

Scheduling Multithreaded Programs

• So far, we assumed that there is one thread per program
• Now, consider scheduling multithreaded programs on multicore processor
• At any given time, multiple threads from same program could be running

• Oblivious scheduling: Cores independently schedule threads in their queue
• Each thread is treated as independent task

• What happens if one thread gets time-sliced while others are still running?
• Assuming program uses locks and condition variables, it will still be correct
• Performance, however, could suffer if threads actually depend on one another

Core 1 Core 2 Core 3
Ti

m
e

P1.1

P2.3

P3.1

P2.1

P3.2

P2.4

P1.2

P1.3

P2.2

Px.y: thread y in process x

Problem with Oblivious Scheduling:
Bulk Synchronous Delay

• Data parallelism is common programming design pattern
(e.g., Google MapReduce)
• Data is split into roughly equal sized chunks
• Chunks are processed independently on different cores
• Once all chunks are processed, cores synchronize and communicate their

results to next stage of computation

Photo from cs.calvin.edu

Problem with Oblivious Scheduling:
Bulk Synchronous Delay (cont.)

• At each step, computation is limited by the slowest task
• If task is preempted on one core, its work is delayed, stalling all other cores

Photo from cs.calvin.edu

Core 1 Core 2 Core 3

Ti
m

e Synchronization

Synchronization
Communication

Problem with Oblivious Scheduling:
Producer-Consumer Delay

• Producer-consumer design patter is also very common
• Preempting a thread on one core stalls all others in the chain
• Some other problems with oblivious scheduling

• Preempting a thread on the critical path will slow down the entire process
• Preempting lock holder stalls others until lock holder is re-scheduled

Core 1 Core 2 Core 3

Thread 1 Thread 2 Thread 3

Gang Scheduling

• Time is divided into equal intervals
• Threads from same process are scheduled at beginning of each interval
• Notice any problems?

• CPU cycles are waisted when threads have different lengths
• Some cores remain idle when a process doesn’t have enough tasks for all cores

P1.4

P2.3

P3.1

P2.1

P3.2

P2.4

P1.2 P1.3

P2.2

Core 1 Core 2 Core 3

Ti
m

e

Space Sharing

• Each process is assigned a subset of cores
• Minimizes processor context switches

T1

T5

T6

T2

T4
T3

T7

Core 1 Core 2 Core 3

Ti
m

e

Core 4 Core 4 Core 5

T1

T6

T2

T4

T3

T5
T7

Process 1 Process 2

How Many Cores
Does a Process Need?

• There are overheads
• E.g., creating extra threads, synchronization, communication

• Overheads shift the curve down

Number of Processors

Pe
rf

or
m

an
ce

(In
ve

rs
e

Re
sp

on
se

 T
im

e)

Perfectly Parallel

Diminishing Returns

Limited Parallelism

Amdahl’s Law
[G. Amdahl 1967]

• Architects use it to estimate upper bounds on speedups

Speedup(x) =
T1

Tx
=

T1

(1� F)T1 +
FT1
x

=
x

x(1� F) + F
<latexit sha1_base64="immSh03zMRHEJkMcJ1Tt4d09R88=">AAACQnicbVBNaxsxEJ1N0yZ13NZNjrmImoJNqNntpc0hYFIwPTrEjkNt42rl2URE+4E0W9Ys+9966R/IrX+glx7SEMgph8prF1InDyTevHnDSM9PlDTkuj+dtSfrT59tbD6vbFVfvHxVe719YuJUC+yLWMX61OcGlYywT5IUniYaeegrHPgXn+b9wTfURsZRj2YJjkN+FslACk5WmtS+jAgzyo8TxGmaNLJmwQ7YKNBc5L2JV9grKw7u1Q3vXadp2d5C65RiVvzzZLYoLXudYlKruy23BHtIvCWptw+rt18BoDupXY6msUhDjEgobszQcxMa51yTFAqLyig1mHBxwc9waGnEQzTjvMygYG+tMmVBrO2JiJXq/Ymch8bMQt86Q07nZrU3Fx/rDVMKPo5zGSUpYSQWi4JUMYrZPFA2lRoFqZklXGhp38rEObdhkI29YkPwVr/8kPTft/Zb7pENow0LbMIuvIEGePAB2vAZutAHAd/hF1zBH+eH89u5dm4W1jVnObMD/8G5+wsT4rIe</latexit><latexit sha1_base64="xIDD0c1Tbn8/aMShHBBgtOGCWxg=">AAACQnicbVDLSgMxFM34tr6qLt0ERaiIZcaNuhCKQnGpaFVsS8mkdzQ08yC5I1OG+QM/wk9x4w+48wfcuFARXLkwnSr4OpBw7rnncpPjRlJotO17a2BwaHhkdGy8MDE5NT1TnJ071mGsONR4KEN16jINUgRQQ4ESTiMFzHclnLid3V7/5BKUFmFwhN0Imj47D4QnOEMjtYpnDYQE08MIoB1HpWQlo9u04SnG06OWk5kryba/1SVnrbpi2Gpfq+Zikn15ElPkltVq1iou2WU7B/1LnE+yVNmZfGMvV9f7reJdox3y2IcAuWRa1x07wmbKFAouISs0Yg0R4x12DnVDA+aDbqZ5BhldNkqbeqEyJ0Caq98nUuZr3fVd4/QZXujfvZ74X68eo7fZTEUQxQgB7y/yYkkxpL1AaVso4Ci7hjCuhHkr5RfMhIEm9oIJwfn95b+ktl7eKtsHJowK6WOMLJBFUiIO2SAVskf2SY1wckMeyBN5tm6tR+vFeu1bB6zPmXnyA9b7B+ZJtDw=</latexit><latexit sha1_base64="xIDD0c1Tbn8/aMShHBBgtOGCWxg=">AAACQnicbVDLSgMxFM34tr6qLt0ERaiIZcaNuhCKQnGpaFVsS8mkdzQ08yC5I1OG+QM/wk9x4w+48wfcuFARXLkwnSr4OpBw7rnncpPjRlJotO17a2BwaHhkdGy8MDE5NT1TnJ071mGsONR4KEN16jINUgRQQ4ESTiMFzHclnLid3V7/5BKUFmFwhN0Imj47D4QnOEMjtYpnDYQE08MIoB1HpWQlo9u04SnG06OWk5kryba/1SVnrbpi2Gpfq+Zikn15ElPkltVq1iou2WU7B/1LnE+yVNmZfGMvV9f7reJdox3y2IcAuWRa1x07wmbKFAouISs0Yg0R4x12DnVDA+aDbqZ5BhldNkqbeqEyJ0Caq98nUuZr3fVd4/QZXujfvZ74X68eo7fZTEUQxQgB7y/yYkkxpL1AaVso4Ci7hjCuhHkr5RfMhIEm9oIJwfn95b+ktl7eKtsHJowK6WOMLJBFUiIO2SAVskf2SY1wckMeyBN5tm6tR+vFeu1bB6zPmXnyA9b7B+ZJtDw=</latexit>

Amdahl’s Law (cont.)
[G. Amdahl 1967]

Speedup(x) =
T1

Tx
=

T1

(1� F)T1 +
FT1
x

=
x

x(1� F) + F
<latexit sha1_base64="immSh03zMRHEJkMcJ1Tt4d09R88=">AAACQnicbVBNaxsxEJ1N0yZ13NZNjrmImoJNqNntpc0hYFIwPTrEjkNt42rl2URE+4E0W9Ys+9966R/IrX+glx7SEMgph8prF1InDyTevHnDSM9PlDTkuj+dtSfrT59tbD6vbFVfvHxVe719YuJUC+yLWMX61OcGlYywT5IUniYaeegrHPgXn+b9wTfURsZRj2YJjkN+FslACk5WmtS+jAgzyo8TxGmaNLJmwQ7YKNBc5L2JV9grKw7u1Q3vXadp2d5C65RiVvzzZLYoLXudYlKruy23BHtIvCWptw+rt18BoDupXY6msUhDjEgobszQcxMa51yTFAqLyig1mHBxwc9waGnEQzTjvMygYG+tMmVBrO2JiJXq/Ymch8bMQt86Q07nZrU3Fx/rDVMKPo5zGSUpYSQWi4JUMYrZPFA2lRoFqZklXGhp38rEObdhkI29YkPwVr/8kPTft/Zb7pENow0LbMIuvIEGePAB2vAZutAHAd/hF1zBH+eH89u5dm4W1jVnObMD/8G5+wsT4rIe</latexit><latexit sha1_base64="xIDD0c1Tbn8/aMShHBBgtOGCWxg=">AAACQnicbVDLSgMxFM34tr6qLt0ERaiIZcaNuhCKQnGpaFVsS8mkdzQ08yC5I1OG+QM/wk9x4w+48wfcuFARXLkwnSr4OpBw7rnncpPjRlJotO17a2BwaHhkdGy8MDE5NT1TnJ071mGsONR4KEN16jINUgRQQ4ESTiMFzHclnLid3V7/5BKUFmFwhN0Imj47D4QnOEMjtYpnDYQE08MIoB1HpWQlo9u04SnG06OWk5kryba/1SVnrbpi2Gpfq+Zikn15ElPkltVq1iou2WU7B/1LnE+yVNmZfGMvV9f7reJdox3y2IcAuWRa1x07wmbKFAouISs0Yg0R4x12DnVDA+aDbqZ5BhldNkqbeqEyJ0Caq98nUuZr3fVd4/QZXujfvZ74X68eo7fZTEUQxQgB7y/yYkkxpL1AaVso4Ci7hjCuhHkr5RfMhIEm9oIJwfn95b+ktl7eKtsHJowK6WOMLJBFUiIO2SAVskf2SY1wckMeyBN5tm6tR+vFeu1bB6zPmXnyA9b7B+ZJtDw=</latexit><latexit sha1_base64="xIDD0c1Tbn8/aMShHBBgtOGCWxg=">AAACQnicbVDLSgMxFM34tr6qLt0ERaiIZcaNuhCKQnGpaFVsS8mkdzQ08yC5I1OG+QM/wk9x4w+48wfcuFARXLkwnSr4OpBw7rnncpPjRlJotO17a2BwaHhkdGy8MDE5NT1TnJ071mGsONR4KEN16jINUgRQQ4ESTiMFzHclnLid3V7/5BKUFmFwhN0Imj47D4QnOEMjtYpnDYQE08MIoB1HpWQlo9u04SnG06OWk5kryba/1SVnrbpi2Gpfq+Zikn15ElPkltVq1iou2WU7B/1LnE+yVNmZfGMvV9f7reJdox3y2IcAuWRa1x07wmbKFAouISs0Yg0R4x12DnVDA+aDbqZ5BhldNkqbeqEyJ0Caq98nUuZr3fVd4/QZXujfvZ74X68eo7fZTEUQxQgB7y/yYkkxpL1AaVso4Ci7hjCuhHkr5RfMhIEm9oIJwfn95b+ktl7eKtsHJowK6WOMLJBFUiIO2SAVskf2SY1wckMeyBN5tm6tR+vFeu1bB6zPmXnyA9b7B+ZJtDw=</latexit>

s(x) =
x

x(1� F) + F
<latexit sha1_base64="f9zvgM5Q2UUJUMFw66UwOFcXKIc=">AAACAXicbVDLSgNBEOyNrxhfUU+ih8EgJIhh14t6UAKB4DGCawLJEmYns8mQ2Qczs5KwBC/+ihcPKl79C2/e/BQnj4MmFjQUVd10d7kRZ1KZ5peRWlhcWl5Jr2bW1jc2t7LbO3cyjAWhNgl5KOoulpSzgNqKKU7rkaDYdzmtub3yyK/dUyFZGNyqQUQdH3cC5jGClZZa2T2Z7xfQJWp6ApOkP0z6eeukUjiuDFvZnFk0x0DzxJqSXOnqoPwNANVW9rPZDkns00ARjqVsWGaknAQLxQinw0wzljTCpIc7tKFpgH0qnWT8whAdaaWNvFDoChQaq78nEuxLOfBd3elj1ZWz3kj8z2vEyjt3EhZEsaIBmSzyYo5UiEZ5oDYTlCg+0AQTwfStiHSxDkPp1DI6BGv25XlinxYviuaNDqMEE6RhHw4hDxacQQmuoQo2EHiAJ3iBV+PReDbejPdJa8qYzuzCHxgfP08slyY=</latexit><latexit sha1_base64="1dLfmWgM00V+igOTyOMlAIZgrtE=">AAACAXicbVDLSsNAFJ34rPUVdSWKDBahRSxJN+pCKRSKywrWFtpQJ9NJO3QyCTMTaQnBjb/ixoWKW//CnR/gfzh9LLT1wIXDOfdy7z1uyKhUlvVlzM0vLC4tp1bSq2vrG5vm1vatDCKBSRUHLBB1F0nCKCdVRRUj9VAQ5LuM1NxeaejX7omQNOA3ahASx0cdTj2KkdJSy9yV2X4OXsCmJxCO+0ncz9on5dxxOWmZGStvjQBniT0hmeLlfum7cHBXaZmfzXaAI59whRmSsmFboXJiJBTFjCTpZiRJiHAPdUhDU458Ip149EICj7TShl4gdHEFR+rviRj5Ug58V3f6SHXltDcU//MakfLOnJjyMFKE4/EiL2JQBXCYB2xTQbBiA00QFlTfCnEX6TCUTi2tQ7CnX54l1UL+PG9d6zCKYIwU2AOHIAtscAqK4ApUQBVg8ACewAt4NR6NZ+PNeB+3zhmTmR3wB8bHD0Awl9s=</latexit><latexit sha1_base64="1dLfmWgM00V+igOTyOMlAIZgrtE=">AAACAXicbVDLSsNAFJ34rPUVdSWKDBahRSxJN+pCKRSKywrWFtpQJ9NJO3QyCTMTaQnBjb/ixoWKW//CnR/gfzh9LLT1wIXDOfdy7z1uyKhUlvVlzM0vLC4tp1bSq2vrG5vm1vatDCKBSRUHLBB1F0nCKCdVRRUj9VAQ5LuM1NxeaejX7omQNOA3ahASx0cdTj2KkdJSy9yV2X4OXsCmJxCO+0ncz9on5dxxOWmZGStvjQBniT0hmeLlfum7cHBXaZmfzXaAI59whRmSsmFboXJiJBTFjCTpZiRJiHAPdUhDU458Ip149EICj7TShl4gdHEFR+rviRj5Ug58V3f6SHXltDcU//MakfLOnJjyMFKE4/EiL2JQBXCYB2xTQbBiA00QFlTfCnEX6TCUTi2tQ7CnX54l1UL+PG9d6zCKYIwU2AOHIAtscAqK4ApUQBVg8ACewAt4NR6NZ+PNeB+3zhmTmR3wB8bHD0Awl9s=</latexit>

What Portion of Code is Parallelizable?
[Allen Karp and Horace Flatt 1990]

• Expert programmers may not know!
• Fortunately, we can measure speedup

Set
Measure Calculate

Fig. criticallyrated.files.wordpress.com

F =

✓
1� 1

s(x)

◆✓
1� 1

x

◆

<latexit sha1_base64="qQhtE3ffpWsvIxujU0fqbhIg71I=">AAACJnicbZDJSgNBEIZrXGPcoh69NAYhORhmvKgHJSCIxwhGhUwIPZ2epLFnobtGDEOewZfw4lt49iK4IN58FDubaGJBw8//VVFdvxdLodG2P62p6ZnZufnMQnZxaXllNbe2fqGjRDFeZZGM1JVHNZci5FUUKPlVrDgNPMkvvevjHr+84UqLKDzHTszrAW2FwheMorEauaMTckhcyX0sODuuryhLnW6qC7fFrqtEq43FESU75IffjmAjl7dLdr/IpHCGIl8+utOPAFBp5F7cZsSSgIfIJNW65tgx1lOqUDDJu1k30Tym7Jq2eM3IkAZc19P+nV2ybZwm8SNlXoik7/6eSGmgdSfwTGdAsa3HWc/8j9US9PfrqQjjBHnIBov8RBKMSC800hSKM5QdIyhTwvyVsDY1YaCJNmtCcMZPnhTV3dJByT4zYZRhUBnYhC0ogAN7UIZTqEAVGNzDE7zCm/VgPVvv1segdcoazmzAn7K+vgHN5qaN</latexit><latexit sha1_base64="IW7xTh2dAWm/jzJBCq+Se9Ukx08=">AAACJnicbZDLSsNAFIYn9VbrLerSzWAR6sKSuFEXloIgLhWMCk0pk+mkHTq5MHMiLSHP0Jdw41vo1o3gBXHng7hw2lrxdmDg5//O4cz5vVhwBZb1auQmJqemZ/Kzhbn5hcUlc3nlTEWJpMyhkYjkhUcUEzxkDnAQ7CKWjASeYOde52DAzy+ZVDwKT6EXs3pAWiH3OSWgrYZZOcT72BXMh5K95fqS0NTOUlXqbmau5K02bI4p3sJfvDuGDbNola1h4b/C/hTFaqWvbm7f+8cN88FtRjQJWAhUEKVqthVDPSUSOBUsK7iJYjGhHdJiNS1DEjBVT4d3ZnhDO03sR1K/EPDQ/T6RkkCpXuDpzoBAW/1mA/M/VkvA362nPIwTYCEdLfITgSHCg9Bwk0tGQfS0IFRy/VdM20SHATragg7B/n3yX+Fsl/fK1okOo4pGlUdraB2VkI12UBUdoWPkIIqu0B16RE/GtXFvPBsvo9ac8Tmzin6U8fYB3YGo2Q==</latexit><latexit sha1_base64="IW7xTh2dAWm/jzJBCq+Se9Ukx08=">AAACJnicbZDLSsNAFIYn9VbrLerSzWAR6sKSuFEXloIgLhWMCk0pk+mkHTq5MHMiLSHP0Jdw41vo1o3gBXHng7hw2lrxdmDg5//O4cz5vVhwBZb1auQmJqemZ/Kzhbn5hcUlc3nlTEWJpMyhkYjkhUcUEzxkDnAQ7CKWjASeYOde52DAzy+ZVDwKT6EXs3pAWiH3OSWgrYZZOcT72BXMh5K95fqS0NTOUlXqbmau5K02bI4p3sJfvDuGDbNola1h4b/C/hTFaqWvbm7f+8cN88FtRjQJWAhUEKVqthVDPSUSOBUsK7iJYjGhHdJiNS1DEjBVT4d3ZnhDO03sR1K/EPDQ/T6RkkCpXuDpzoBAW/1mA/M/VkvA362nPIwTYCEdLfITgSHCg9Bwk0tGQfS0IFRy/VdM20SHATragg7B/n3yX+Fsl/fK1okOo4pGlUdraB2VkI12UBUdoWPkIIqu0B16RE/GtXFvPBsvo9ac8Tmzin6U8fYB3YGo2Q==</latexit>

Karp-Flatt
Metric ?

A Final Word On Scheduling

• When do details of scheduling policy and fairness really matter?
• When there aren’t enough resources to go around

• When should you simply buy faster cores?
(Or network link, or expanded highway, or …)
• Buy it when it will pay for itself in improved response time,

assuming you’re paying for worse response time
in reduced productivity, customer angst, etc…

• Might think you need X fully utilized core, but usually
you will have to buy more than X because response time
goes to infinity as utilization approaches100%

• Interesting implication of this curve
• Most scheduling algorithms work fine in linear portion of curve, fail otherwise
• Argues for buying faster resources when hit knee of curve

Utilization

Re
sp

on
se

 ti
m

e

100%

Summary (1 of 2)

• First-Come, First-Served (FCFS)
• Threads are served in the order of their arrival

• Round-Robin (RR)
• Give each thread a small amount of CPU time when it executes; cycle

between all ready threads

• Shortest Task First (SJF) / Shortest Remaining Time First (SRTF):
• Run whatever task that has the least amount of computation to do/least

remaining amount of computation to do

• Multi-level Feedback Queue (MFQ)
• Multiple queues of different priorities and scheduling algorithms

• Lottery Scheduling
• Give each thread a priority-dependent number of tickets

Summary (2 of 2)

• Max-Min Fair (MMF)
• Give each task equal share of CPU time

• Real-Time Scheduling
• Need to meet a deadline, predictability essential

• Oblivious Scheduling
• Each core schedules its own threads

• Gang Scheduling
• Schedule tasks from same process at the same time

• Space Sharing
• Give each process some number of cores

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

