SE350: Operating Systems

| ecture 9: Deadlock



Outline

e Definitions

* Four conditions for deadlocks
e Mutual exclusion
 Hold and wait
* No preemption

 Circular wart

* Techniques for addressing Deadlock



Starvation vs. Deadlock

* Starvation: thread waits indefinitely
* E.g.,low-priority thread waiting for resources constantly in use by high-
priority threads
* Deadlock: circular waiting for resources
* Thread A owns Res | and is waiting for Res 2

* Thread B owns Res 2 and is waiting for Res |

Owned by Waiting for
> Thread A
| v
Resource | Resource 2
f Thread B < I
Waiting for Owned by

* Deadlock leads to starvation but not the other way around
e Starvation can end (but doesn't have to)

* Deadlock cant end without external intervention



Bridge Crossing Example

Each segment of road can be viewed as resource

* (Cars must own segment under them and acquire segment they are moving to

To cross bridge cars must acquire both halves
* Traffic only in one direction at a time

* Problem occurs when two cars in opposite directions on bridge: each
acquires one segment and needs next

If deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

* Several cars may have to be backed up

Starvation is possible

* FEast-going traffic really fast = no one goes west



Conditions for Deadlock

* Deadlock is not always deterministic

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

* This code doesn't always lead to deadlock

* Must have exactly right timing (“‘wrong" timing?)

* So you release a piece of software, and you tested it, and there it Is,
controlling a nuclear power plant...

* Deadlocks occur with multiple resources

* Can't solve deadlock for each resource independently



Four Requirements for Deadlock

Mutual exclusion

* Only limited number of threads at a time can use resource

Hold and walt

* Thread hold resources while waiting to acquire additional ones

No preemption

* Resources are released only voluntarily by thread holding them

Circular wait

* There existsasetT,..., T, of waiting threads
* T, is waiting for resource that is held by T,

* T, is waiting for resource that is held by T5

* T, is waiting for resource that is held by T,



Resource Allocation Graph

* System model
e ThreadsT,,T,,..,T,
* Resource types R, Ry, .., R,
» CPU cycles, memory space, I/O devices
* Each resource type R; has Wj instances
 Each thread utilizes resources as follows
* Request() / Use() / Release()

* Resource allocation graph

* Vs partitioned into two types
o T={T,,...,T,}, set threads in system
« R={R,,...,R}, set of resource types in system

* Request edge is directed edge T, — RJ-
* Assignment edge Is directed edge R, —> T,

Symbols
T T
[
¢ L
o
R
R



Resource Allocation Graph Examples

/\ /\

\/

Simple resource
allocation graph

R4

R|

/\ /\ /\
\// \/

R2 T4
R4
Allocation graph Allocation graph
with deadlock with cycle, but

no deadlock



Dining Philesephers Politicians!

Each politician needs two chopsticks to eat

Each grabs chopstick on the right first (all right-handed)

Deadlock if all grab chopstick at same time

Deadlock depends on the order of execution

* No deadlock if one was left-handed



Train Example
(Wormhole-Routed Network)

 Each train wants to turn right but is blocked by other trains
* Similar problem to multiprocessor networks

* How to fix this? (Imagine grid extends in all four directions)

* Force ordering of channels (tracks)
* Protocol: Always go east-west first, then north-south
* Called “"dimension ordering” (X thenY)




Methods for Handling Deadlocks

* Allow system to enter deadlock and then recover
* Requires deadlock detection algorithm
* Technique for forcibly preempting resources and/or terminating tasks

* Ensure that system will never enter deadlock
* Need to monirtor all resources acquisitions
* Selectively deny those that might lead to deadlock

% |

bl - o
7 V. .
< e o e

Y RS - . W

w7 A, . o PR &
‘ At
3
\

[y “’
Please disperse.

* |lgnore problem and pretend deadlocks never occur
* Used by most operating systems, including UNIX



Deadlock Detection Algorithm

* |f there is only one unit of each type of resource = look for loops

* More general deadlock detection algorithm
* Let [x] represent m-ary vector of non-negative integers (units per type)

[FreeResources]: Current free resources each type
[Request;]: Current requests from thread |
[Alloci]: Current resources held by thread i

* See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED R T
do { —
done = true
foreach node in UNFINISHED { /
if ([Request,,ge] <= [Avail]) { T T,

remove node from UNFINISHED
[Avail] = [Avail] + [AL10C, o] ‘\ v

done = false

} ~

} until(done)

* Nodes left in UNFINISHED = deadlocked



What to Do When Detect Deadlock?

Terminate thread, force it to give up resources
* Bridge example: Godzilla picks up a car, hurls it into river. Deadlock solved!

* But, not always possible: killing thread holding mutex leaves world inconsistent

Proceed without the resource
* Requires robust exception handling code

* E.g,Amazon will say you can buy book, if inventory subsystem doesn't reply
quickly enough (wrong answer quickly is better than right answer slowly)

Roll back actions of deadlocked threads
* Hit rewind button, pretend last few minutes never happened
* Bridge example: make one car roll backwards (may require others behind him)
* Common technique in databases (transactions)

* Of course, If you restart in the same way, may reenter deadlock once again

Many operating systems use other options



Resource Requests Over Time

* Applications usually don't know exactly when/what they'll request

* Resources are taken/released over time

AA
V%

Rs



Techniques for Preventing Deadlock

* Infinite resources
* Include enough resources so that no one ever runs out of resources
* Doesn't have to be infinite, just large
* Give illusion of infinite resources (e.g. virtual memory)

* Examples:
* Bay bridge with 12,000 lanes. Never wait!

* Infinite disk space (not realistic yet?)

* No Sharing of resources (totally independent threads)

» Often true (most things don't depend on each other) but not very realistic in general

* Don't allow waiting
* How phone company avoids deadlock
* Call someone, either goes through or goes to voicemall
* Technique used in Ethernet/some multiprocessor nets
* Everyone speaks at once. On collision, back off and retry

* Inefficient, since must keep retrying

* Consider: driving to Toronto, when hit traffic jam, suddenly transported back and told to retry!



Techniques for Preventing Deadlock
(cont.)

* Make all threads request everything they'll need at the beginning
* Problem: Predicting future is hard, tend to over-estimate resources
e Example:
* If need 2 chopsticks, request both at same time
* Don't leave home until we know no one is using any intersection between here

and where you want to go; only one car on the bridge at a time

* Force all threads to request resources in fixed order preventing any cyclic
use of resources
e Thus, preventing deadlock
* Example (xByRzP...)
* Make tasks request disk, then memory, then...

* Keep from deadlock on freeways by requiring everyone to go clockwise



Banker’s Algorithm

Invariant: every request always would succeed
We don't know order/amount of requests ahead of time

We assume worst-case max required resource for each thread

Allow thread i to proceed if

(avallable resources - request;) > max remaining
required resources by any thread

Really conservative!




Banker’s Algorithm (cont.)

* Less conservative invariant
At all times, there exists some order of requests that would succeed

* How to implement this?
* Allocate resources dynamically
* FEvaluate each request and grant it if some ordering of threads is deadlock free

* Use deadlock detection algorithm presented earlier

* BUT: Assume each process needs "max’’ resources to finish
Each process might

[Avail] = [FreeResources] L
Add all nodes to UNFINISHED need "max’’ resources
do { in order to finish

done = true
foreach node in UNFINISHED
if ( [Maxnode] - [A-L-Locnode]<= [Avai—l] ) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc, 4]
done = false

}
} until%done)



Banker’s Algorithm: Key Properties

* Keeps system in “SAFE" state

* There exists a sequence {T,...,T,} with T| requesting all its remaining
resources and finishing, then T2 requesting all remaining resources, etc.

* Algorithm allows sum of maximum resource needs of all
current threads to be greater than total resources



Banker’s Algorithm Example

* Banker's algorithm with dining politicians

» “Safe” (won't cause deadlock) if when try to grab chopstick either
* Not last chopstick

* s last chopstick but someone will have
two afterwards

* What if k-handed politician? Don't allow f:
* [t's the last one, no one would have k

* It's 2nd to last, and no one would have k- |

* It's 3rd to last, and no one would have k-2



Deadlock Prevention — The Reality

e Deadlock Prevention is HARD

* How many resources will each thread need?

* How many total resources are there?

* Also Slow/Impractical
* Matrix of resources/requirements could be big and dynamic
* Re-evaluate on every request (even for small/non-contended)

* Banker's algorithm assumes everyone asks for max

e REALITY
* Most OSs don't bother

* Programmers job to write deadlock-free programs
(e.g. by ordering all resource requests).



Summary

* Starvation (wait indefinitely) versus deadlock (circular waiting)

e Four conditions for deadlocks

* Mutual exclusion
* Only limited number of thread at a time can use resources
* Hold and walit
* Thread hold at least one resource while waiting to acquire additional ones
* No preemption
* Resources are released only voluntarily by threads
* Circular wait
 dset{T,, ..., T,} of threads with a cyclic waiting pattern

* Techniques for addressing Deadlock
* Allow system to enter deadlock and then recover
* Ensure that system will never enter a deadlock

* lgnore problem and pretend that deadlocks never occur in system



Questions!?




Acknowledgment

* Slides by courtesy of Anderson, Culler; Stoica,
Silberschatz, Joseph, and Canny



