
SE350: Operating Systems
Lecture 11: Caching

Outline

• Principle of locality
• Temporal locality: Locality in time
• Spatial locality: Locality in space

• Cache organizations
• Direct mapped, set associative, fully associative

• Major categories of cache misses
• Compulsory, conflict, capacity, coherence

• Translation Lookaside Buffer (TLB)
• Cache relatively small number of PTEs
• On TLB miss, page table is traversed

Caching Concept

• Cache is repository for copies that can be accessed more quickly
• Make frequent case fast and infrequent case less dominant

• Caching underlies many techniques used today to make computers fast
• We can cache memory locations, address translations, pages, file blocks, file

names, network routes, etc…
• Only good if

• Frequent case is frequent enough and
• Infrequent case is not too expensive

Why Bother with Caching?

9% per year
(2X/10 years)DRAM

1

10

100

1000

N
or

m
ali

ze
d

Pe
rfo

rm
an

ce
 G

ro
w

th

Time

60% per year
(2X/1.5 year)CPU

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Why Does Caching Help? Locality!

• Temporal locality (locality in time):
• Cache recently accessed data items

• Spatial locality (locality in space):
• Cache contiguous blocks

Address Space0 2n-1

Probability
of reference

Some Terminology

• Block: Group of spatially contiguous and aligned bytes (words)

• Typical sizes are 32B, 64B, 128B

• Hit: Access level of memory and find what we want

• Hit time: Time to hit (or discover miss)

• Miss: Access level of memory and do NOT find what we want

• Miss time: Time to satisfy miss

• Misses are expensive (take a long time) ⇒Try to avoid them

• But, if they happen, amortize their costs ⇒ Bring in more than just

specific word you want ⇒ Bring in whole block (multiple words)

Some Terminology (cont.)

• Hit rate: num of hits / (num of hits + num of misses)

• Miss rate = 1 – hit rate

• High hit rate means high probability of finding what we want

• Avg. access time: hit rate x hit time + miss rate x (hit time + miss time)

• Equal to hit time + miss rate x miss time

• Problem: hard to get low hit time and miss rate in one memory structure

• Large memory structures have low miss rate but high hit time

• Small memory structures have low hit time but high miss rate

• Solution: use hierarchy of memory structures

• Goal: Bring average memory access time close to L1’s

Memory Hierarchy of Modern
Computer Systems

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

1
10,000,000
(10 ms)

Speed (ns): 10-30 1000.3 3
100,000
(0.1 ms)

100BsSize (bytes): MBs GBs TBs10kBs 100kBs 100GBs

Page table lives here
(perhaps cached)

Address Translation
needs to occur here

Compiler
Managed

Hardware
Managed

Software
Managed (by OS)

Abstract Hierarchy Performance

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

How do we compute tavg ?
= tavg-M1

= thit-M1 + (%miss-M1 x tmiss-M1)

= thit-M1 + (%miss-M1 x tavg-M2)

= thit-M1 + (%miss-M1 x (thit-M2 + (%miss-M2 x tmiss-M2)))

= thit-M1 + (%miss-M1 x (thit-M2 + (%miss-M2 x tavg-M3)))

= …

Note: Miss at level X = Access at level X+1

Where to Put Blocks in Cache?

• Divide cache into sets
• Each block can only go in its set ⇒ there is 1-to-1 mapping from block

address to set
• Each set holds some number of blocks ⇒ set associativity

• E.g., 4 blocks per set ⇒ 4-way set-associative

• At extremes
• Whole cache has just one set ⇒ fully associative

• Most flexible (longest access latency)
• Each set has 1 block ⇒ 1-way set-associative ⇒ direct mapped

• Least flexible (shortest access latency)

Where to Put Blocks in Cache? (cont.)

• Example: where is block 12 placed in 8-block cache?
32-Block Address Space

Block address 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1

Block number

Direct mapped
Block 12 can go
only into block 4

(12 mod 8)

0 1 2 3 4 5 6 7

Fully associative
Block 12 can go

anywhere

0 1 2 3 4 5 6 7

2-way set-associative
Block 12 can go

anywhere in set 0
(12 mod 4)

0 1 2 3 0 1 2 3

Set 1 Set 2

How is Block Found in Cache?

• Byte select field used to select data within block
• Offset of byte in block

• Cache index used to lookup candidate blocks in cache
• Index identifies set

• Cache tag used to identify actual copy
• If no candidate matches, then declare cache miss

Byte SelectCache IndexCache Tag

Memory address

0x50

Direct Mapped Cache

• Direct mapped 2N byte cache with block size of 2M bytes

• Uppermost (32 - N) bits of address are cache tag
• Lowest M bits are byte select, rest are cash index

• Example: 1KB direct mapped cache with 32B blocks
• Log232 = 5 bits for byte select, 32 – Log21024 = 22 bits for cache tag
• 32 – 5 – 22 = 5 bits for cache index

Ex: 0x50 Ex: 0x00Ex: 0x01

Byte SelectCache IndexCache Tag

0431 9

Memory address

31

:

Valid
Bit Cache Tag Cache Data

0
1

2

3

:

B0B1B31 :

B33B63

B992B1023 :
:

B32:
Cache structure

1

==

Set-Associative Cache

• 2K-way set-associative 2N byte cache with block size of 2M bytes

• Lowest M bits for byte select, (32 – N + K) bits for cache tag, rest for cache index
• 2K direct mapped caches operates in parallel

• Previous example, now with 2-way set-associativity
• Cache Index selects “set” from cache, there are 16 sets ⇒ 4 bits for index

Cache
Structure

:

Valid
Bit Cache Tag Cache Data

::

Cache Block 0

Cache Block 1

Cache Block 31

Byte SelectCache IndexCache Tag

0431 8

Memory address

31

:

Valid
Bit Cache Tag Cache Data

0
1

2

3
::

Cache Block 0

Cache Block 1

Cache Block 31

Cache Block

01

selc1 selc0

ORHit

=

=

=

Fully Associative Cache

• Every cache block can hold any memory block
• Address does not include cache index
• Compare cache tags of all cache blocks in parallel

• Previous example now with fully associative cache

Byte SelectCache Tag

0431

Memory address

Cache
Structure

31

:

Valid
Bit Cache Tag Cache Data

0
1

2

3

:

B0B1B31 :

B33B63

B992B1023 :

:

B32:

Hit

Possible Sources of Cache Misses

• Compulsory (cold)
• Cache hasn’t seen this block before (start or migration of process)
• “Cold” fact of life: not whole lot you can do about it
• When running billions of instruction, compulsory misses are insignificant

• Capacity
• Cache cannot contain all blocks accessed by program
• Solution: increase cache size

• Conflict (collision)
• Multiple memory locations mapped to the same cache location
• Solution 1: increase cache size
• Solution 2: increase associativity (no conflict misses in fully associative cache)

• Coherence (invalidation)
• Other process (e.g., I/O) updates memory

Which Block Should be Replaced on
Cache Miss?

• Easy for direct mapped: Only one possibility
• Set Associative or Fully Associative:
• Random
• Least Recently Used (LRU, more on this later)

What Happens on Write?

• Write through: Write to both cache and lower-level memory
• Write back: Write only to cache

• Modified cache block is marked dirty
• On replacement, dirty block is written to lower-level memory

• Pros and Cons of each?
• WT

• PRO: Read misses cannot result in writes
• CON: Processor held up on writes unless writes are buffered

• WB
• PRO: Repeated writes are not sent to DRAM

Processor not held up on writes
• CON: More complex

Read miss may require writeback of dirty data

Address Translation:
Major Application of Caching

• Cannot afford to translate on every access
• At least five DRAM accesses per actual DRAM access
• Or: perhaps I/O if page table partially resides on disk!
• Even worse, what if we use caches to make memory access faster than DRAM access?

• Solution?
• Cache translations in Translation Lookaside Buffer (TLB)

• Fully associative (since conflict misses are expensive)

Caching Applied to Address Translation

• Does page locality exist?
• Instruction accesses: Sequential accesses ⇒ Frequent accesses to the same page ⇒Yes!
• Stack accesses: Definite locality of reference ⇒Yes!
• Data accesses: Less page locality, but still some ⇒Yes, so so!

• Can we have a TLB hierarchy?
• Sure: multiple levels at different sizes/speeds

CPU TLB Page
Tables

Physical
Memory

Virtual
Address Miss Invalid Raise

Exception

+
Offset

Hit

Physical Address

Data

Cache Valid

Do TLBs Always Work for Sequential
Accesses?

• Example: For HD displays, video frame buffer could be large
• E.g., 4k display: 32 bits x 4K x 3K = 48MB (spans12K of 4KB pages)

• Even large on-chip TLB with 256 entries cannot cover entire display
• Each horizontal line of pixels could be on a page
• Drawing a vertical line could require loading a new TLB entry

Video Frame Buffer
Page#

0

1

2

3

1021

1022

1023

Superpages: Improving TLB Hit Rate

• Reduce number of TLB entries for large, contiguous regions of memory
• Represent 2 adjacent 4KB pages by single 8KB superpage

• By setting a flag, TLB entry can be a page or a supperpage
• E.g., in x86: 4KB (12 bits offset), 2MB (21 bits offset), or 1GB (30 bits offset)

Physical
Memory

Frame Offset

Physical
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table
Lookup

What Happens on TLB Miss?

• Hardware-traversed page tables
• On TLB miss, hardware walks through current page tables to fill TLB

(could be multiple levels)
• Valid PTE: Hardware fills TLB and processor never notices
• Invalid PTE: CPU raises page fault ⇒ Kernel decides what to do next

• Software-traversed page tables
• On TLB miss, CPU raises TLB fault
• Kernel walks through page table(s) to find PTE

• Valid PTE: Fills TLB and returns from fault
• Invalid, internally calls page fault handler

What Happens on Context Switch?

• TLBs map virtual addresses to physical addresses
• Address space just changed, so TLB entries are no longer valid!

• Options?
• Invalidate TLB: simple but might be expensive

• What if switching frequently between processes?
• Include Process-ID in TLB

• This is microarchitectural solution ⇒ needs extra hardware

• What if translation tables change?
• For example, to move page from memory to disk or vice versa …
• Must invalidate TLB entry!

• Otherwise, might think that page is still in memory!

http://static.duartes.org

Recall: 32-bit Linux Memory Layout
(Pre-Meltdown patch!)

• Interrupts are frequent; on each interrupts, kernel could access interrupted process’
memory very fast (using same page table and TLB entries)

• Translated kernel space addresses can stay in TLB after each context switch

• …

Transparent Exceptions:
TLB/Page Fault

• How to transparently restart faulting instructions?
(Consider load or store that gets TLB or Page fault)
• Could we just skip faulting instruction?

• No: need to perform load or store after reconnecting physical page
• Hardware must save Faulting instruction and partial state

• Need to know which instruction caused fault
• Processor state is needed to restart user thread

• Save/restore registers, stack, etc.

Software
Load TLB

Fa
ul

tin
g

In
st

 1

Fa
ul

tin
g

In
st

 2

Fa
ul

tin
g

In
st

 2

Fetch page/
Load TLB

Fa
ul

tin
g

In
st

 1User

OS

TLB Faults

Permission Reduction

• Keeping TLB consistent with page table is OS’s responsibility
• Nothing needs to be done when permission is added

• E.g., changing invalid to read-only
• Any reference would cause exception, OS re-loads TLB

• If permission is reduced, TLB should be updated
• Early computers discarded the entire content of TLB
• Modern architectures (e.g., x86 and ARM) support removal of

individual entries

TLB Shootdown in Multiprocessors

• Suppose processor 1 wants to update entry for page 0x53 in process 0
• First, it must remove the entry from its TLB
• Then, it must send an interprocessor interrupt to each processor requesting it to

remove the old translation

• Shootdown is complete only when all processors verify that the old
translation has been removed

• TLB shootdown overhead increases linearly with the # of processors

Processor 1 TLB

VirtualPage PageFrame Access

0x00530

Process
ID

=

=

0x0003 R/W

0x4OFF1 0x0012 R/W

Processor 2 TLB 0x00530=

=

0x0003 R/W

0x00010 0x0005 Read

Processor 3 TLB 0x4OFF1=

=

0x0012 R/W

0x00010 0x0005 Read

Improve Efficiency Even More!

• TLB improves performance by caching recent translations
• How to improve performance even more?

• Add another layer of cache!

• What is the cost of first-level TLB miss?
• Second-level TLB lookup

• What is the cost of a second level TLB miss?
• x86: 2-4 level page table walk

Improve Efficiency Even More:
Virtually Addressed Cache

• Too slow to access TLB before looking up address in memory
• Instead, add virtually addressed cached
• In parallel, access TLB to generate physical address in case of cache miss

CPU TLB Page
Tables

Physical
Memory

Virtual
Address Miss Invalid Raise

Exception

+
Offset

Hit

Physical Address

Data

Cache Valid

Virtual
Address

Miss

Hit

Virtual
Cache

Aliasing

• Multiple virtual addresses could refer to same physical address
• When one process modifies its copy, how does system know

to update other processes’ copy?
• Typical solution

• Keep both virtual and physical address for each entry in virtually
addressed cache

• Lookup virtually addressed cache and TLB in parallel
• Check if physical address from TLB matches multiple entries, and

update/invalidate other copies

Putting it All Together: TLB, Virtual,
and Physical Caches

CPU TLB Page
Tables

Physical
Memory

Virtual
Address Miss Invalid Raise

Exception

+
Offset

Hit

Physical
Address

Cache Valid

Virtual
Address

Miss

Hit

Virtual
Cache

Physical
Cache

Data

Hit

Physical
Address

Miss

TLB Set Associativity

• TLB is on critical path of memory access
• tavg-mem-acc= thit-TLB + (%miss-TLB x tmiss-TLB)

• TLB access time is added to all memory accesses
• This seems to argue for direct mapped or low associativity!
• However, TLB needs to have very few conflicts!

• Miss time is extremely high!
• This argues that cost of conflict (miss time) is much higher

than slightly increased cost of access (hit time)

CPU TLB Cache Memory

Where Are Some of Places That
Caching Arises?

• Direct use of caching techniques
• TLB (cache of PTEs)
• Paged virtual memory (memory as cache for disk)
• File systems (cache disk blocks in memory)
• DNS (cache hostname to IP address translations)
• Web proxies (cache recently accessed pages)

Caches and Operating Systems

• Indirect - dealing with cache effects (e.g., sync state across levels)
• Maintaining correctness of various caches
• E.g., TLB consistency:

• With PT across context switches?
• Across updates to PT?

• Process scheduling
• Which and how many processes are active? Priorities?
• Large memory footprints versus small ones?
• Shared pages mapped into VAS of multiple processes?

• Impact of thread scheduling on cache performance
• Rapid interleavings (small quantum) may degrade cache performance

• Designing operating system data structures for cache performance

Working Set Model

• As program executes, it transitions through sequence of
Working Sets (WS) consisting of varying sized subsets of address space

Time

Ad
dr

es
s

Cache Behavior Under WS Model

• Amortized by fraction of time working set is active
• Transitions from one WS to the next
• Applicable to memory caches, pages, …

H
it

Ra
te

Cache Size

New working set fits

0

1

Another Model of Locality: Zipf

• Likelihood of accessing item of rank r is ∝ 1/ra, for a ∈ [1,2]

• Popularity of webpages, population of cities, distribution of salaries, size of friend lists in social
networks, and distribution of references in scientific papers

• Although rare to access items below top few, there are so many of them that it yields
heavy tailed distribution

• Substantial value from even a tiny cache

• Substantial misses from even a very large cache

0

0.2

0.4

0.6

0.8

1

0%

5%

10%

15%

20%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Es
tim

at
ed

 H
it

Ra
te

Po
pu

lar
ity

 (%
 a

cc
es

se
s)

Rank

P access(rank) = 1/rank

pop a=1

Hit Rate(cache)

Summary (1/2)

• Principle of locality
• Program likely to access relatively small portion of address space at any instant

of time
• Temporal locality: Locality in time
• Spatial locality: Locality in space

• Cache organizations
• Direct mapped: single block per set
• Set associative: more than one block per set
• Fully associative: all entries equivalent

• Three (+1) major categories of cache misses
• Compulsory: Sad facts of life
• Conflict: Increase cache size and/or associativity
• Capacity: Increase cache size
• Coherence: Caused by external processors or I/O devices

Summary (2/2)

• Cache of translations called “Translation Lookaside Buffer” (TLB)
• Relatively small number of PTEs and optional process IDs (< 512)
• Fully associative (since conflict misses expensive)
• On TLB miss, page table is traversed and if PTE is invalid, cause page fault
• On change in page table, TLB entries must be invalidated

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Sorin, Culler, Stoica,
Silberschatz, Joseph, and Canny

