
SE350: Operating Systems
Lecture 12: Demand Paging

Outline

• Demand paging

• Replacement policies
• FIFO, MIN, LRU

• Clock algorithm

• Nth-chance clock algorithm

Demand Paging

• Modern programs require a lot of physical memory
• Memory per system growing faster than 25%-30% per year

• But they don’t use all their memory most of the time
• 90-10 rule: programs spend 90% of their time in 10% of their code
• Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

Caching

Since Demand Paging is Caching,
One Must Ask …

• What is block size?
• One page

• What is organization of cache structure?
(i.e. direct mapped, set-associative, fully associative)
• Fully associative: Mapping arbitrary virtual page ® any physical page

• How do we find pages in cache?
• First check TLB, then page-table traversal

• What is page replacement policy? (i.e. LRU, Random…)
• This requires more explanation… (it’s kinda LRU)

• What happens on misses?
• Go to lower level to fill miss (i.e. disk)

• What happens on writes? (write-through, write back)
• Write-back – need dirty bit!

Next Up: What Happens When …

PT
Instruction

Virtual
address

Operating System

Page fault
exception

Page fault
handler

load page
from disk

Update
PT entry

Process

Scheduler

Retry
P-Page#

MMU

V-Page#
P-Page#

offset

Memory

offset

Disk

Recall: Page Table Entry

• What is in each Page Table Entry (or PTE)?
• Pointer to next-level page table or to actual page
• Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE

• P: Present (same as “valid” bit in other architectures)
• W: Writeable
• U: User accessible
• PWT: Page write transparent: external cache write-through
• PCD: Page cache disabled (page cannot be cached)
• A: Accessed: page has been accessed recently
• D: Dirty bit: Page has been modified recently
• L: L=1Þ 4MB page

Page Frame Number
(Physical Page Number)

Free
(OS)

0 L D A

PCD

PWT U W P

01234567811-931-12

Demand Paging Mechanisms

• PTE helps us implement demand paging
• Valid Þ Page in memory, PTE points at physical page
• Not Valid Þ Page not in memory; use info in PTE to find it on disk when necessary

• Suppose user references page with invalid PTE?
• Memory Management Unit (MMU) traps to OS

• Resulting trap is a “Page Fault”
• What does OS do on a Page Fault?

• Choose an old page to replace
• If old page modified (“D=1”), write contents back to disk
• Change its PTE and any cached TLB to be invalid
• Load new page into memory from disk
• Update page table entry, invalidate TLB for new entry
• Continue thread from original faulting location

• TLB for new page will be loaded when thread continued!
• While pulling pages off disk for one process, run another process from ready queue

• Suspended process sits on wait queue

Demand Paging Cost Model

• Demand paging is caching ⇒ Can compute average access time! (Effective Access Time)
• EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
• Memory access time = 200 nanoseconds
• Average page-fault service time = 8ms
• Suppose p = Probability of miss, 1 - p = Probably of hit
• Then, we can compute EAT as follows

EAT = 200ns + p x 8ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes page fault, then EAT = 8.2μs:
• This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
• 200ns x 1.1 > EAT Þ p < 2.5 x 10-6
• This is approximately 1 page fault in 400,000 accesses!

What Factors Lead to Misses?

• Compulsory misses
• Pages that have never been paged into memory before
• How might we remove these misses?

• Prefetching: loading them into memory before needed
• Need to predict future somehow!

• Capacity misses
• Not enough memory; must somehow increase available memory size
• Can we do this?

• One option is increasing amount of DRAM (not quick fix!)
• Another option is adjusting percentage of memory allocated to process if multiple processes are in memory

• Conflict misses
• Technically, conflict misses don’t exist in virtual memory, since it is “fully-associative” cache

• Policy misses
• Caused when pages were in memory, but kicked out prematurely because of replacement policy
• How to fix?

• Better replacement policy

Page Replacement Policies

• Random
• Pick random page for every replacement
• Typical solution for TLB’s, simple hardware
• Pretty unpredictable – makes it hard to provide any real-time guarantees

• First In, First Out (FIFO)
• Throw out oldest page, fair – let every page live in memory for same amount of time
• Bad – could throw out heavily used pages instead of infrequently used

• Minimum (MIN)
• Replace page that won’t be used for the longest time
• Great, but how can we really know future?
• Makes good comparison case, however

• LRU (Least Recently Used):
• Replace page that hasn’t been used for the longest time
• Programs have locality, so if something is not used for a while, it’s unlikely to be used in near future.
• Seems like LRU should be good approximation to MIN

Example: FIFO

• Suppose we have 3 p-pages , 4 v-pages, and following reference stream:
• A B C A B D A D B C B

• FIFO: 7 faults

• When referencing D, replacing A is bad choice, since we’ll need A again right away

C

B
A

D

C
B

A

BCBDADBACBA

3
2
1

Ref
Page

Example: MIN

• Consider following reference stream: A B C A B D A D B C B

• MIN: 5 faults
• Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
• Same decisions as MIN here but won’t always be true!

C

DC
B

A

BCBDADBACBA

3
2
1

Ref
Page

• Consider following reference stream: A B C D A B C D A B C D

• Every reference is a page fault!

When Will LRU Perform Badly?

D
C

B

A
D

C

B
A

D

C
B

A

CBADCBADCBA D

3
2
1

Ref
Page

When will LRU Perform Badly? (cont.)

• Consider the following: A B C D A B C D A B C D

• MIN Does much better

B
C

DC
B

A

BADCBADCBA C D

3
2
1

Ref
Page

Memory Size and Page Fault Rate

• One desirable property: When you add memory the miss rate drops
• Does this always happen?
• Seems like it should, right?

• No: Bélády’s anomaly
• Certain replacement policies don’t have this obvious property!

Bélády's Anomaly

• After adding memory:
• With FIFO, contents can be completely different
• With LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

LRU Implementation

• How to implement LRU? Use a list!

• On each use, remove page from list and place at head, LRU page is at tail

• Problems with this scheme for paging?
• Need to know when each page is used to change its position in list
• Many instructions for each memory access

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Clock Algorithm:
Practical LRU Implementation

• Arrange physical pages in circle with single clock hand

• HW sets “use” bit of PTE on each reference
• If use bit isn’t set, it means page hasn’t been

referenced in long time

• HW could set use bit in TLB
• OS must copy this back to PTE when TLB entry replaced

• On page fault, advance clock hand (not real time)
• Check use bit: 1 ® used recently; clear and leave alone

0 ® selected candidate for replacement

• Replace new page with selected candidate ⇒ replace old page, not the oldest page

• Will this algorithm always find replacement page, or does it loop forever?
• If all use bits set, clock hand will eventually loop around Þ FIFO

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:0

Clock Algorithm: Not Recently Used

• What if hand is moving slowly? Is it a good sign or a bad sign?
• Not many page faults and/or find page quickly

• What if hand is moving quickly?
• Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm
• Crude partitioning of pages into two groups: young and old
• Why not partition into more than 2 groups?

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:0

Clock Algorithms: Details

• Which bits of PTE entry are useful?
• Use: Set by HW when page is referenced, cleared by clock algorithm
• Dirty: set by HW when page is modified, cleared by clock algorithm when

page is written back to disk
• Valid: OK for program to reference this page
• Read-only: OK for program to read page, but not modify

• Do we really need hardware-supported “dirty” bit?
• No. Can emulate it (BSD Unix) using read-only bit

• Initially, mark all pages as read-only, even data pages
• On write, trap to OS
• OS sets software “dirty” bit, and marks page as read-write
• Whenever page comes back in from disk, mark read-only

Clock Algorithms: Details (cont.)

• Do we really need a hardware-supported “use” bit?
• No, we can emulate it like what we did with “dirty” bit

• Mark all pages as invalid, even if in memory
• On read to invalid page, trap to OS
• OS sets software “use” bit, and marks page read-only
• On write, trap to OS (either invalid or read-only)
• Set software “use” and “dirty” bits, mark page read-write
• When clock hand passes by, reset “use” and “dirty” bits and mark as invalid again

• Do we need reverse mapping (i.e. physical page ® virtual page, core map)?
• Yes. clock algorithm runs through physical pages
• Multiple virtual pages could be mapped to the same physical page
• We can’t push physical page out to disk without invalidating all PTEs

• Clock algorithm is just approximation of LRU, can we do a better?
• Answer: Nth chance algorithm

Nth Chance Algorithm

• Give each page N chances
• OS keeps counter per page: # sweeps
• On page fault, OS checks use bit:

• 1 ® clear use AND clear counter (used in last sweep)
• 0 ® increment counter; if count = N, select as replacement candidate

• Clock hand must sweep by N times without page being used before page is replaced

• How do we pick N?
• Large N: Better approximation to LRU, if N ~ 1K, very good approximation
• Small N: More efficient, otherwise might have to look a long way to find free page

• What about dirty pages?
• Takes extra overhead to replace dirty page, so give dirty pages extra chance!

• Clean pages, use N = 1
• Dirty pages, use N = 2 (and write back to disk when N = 1)

Implementation Notes

• Clock and Nth chance algorithms can run synchronously
• In page fault handler, run algorithm to find next page to evict
• Might require writing changes back to disk first

• Or asynchronously
• Run algorithms in the background
• Maintain pool of candidates for eviction
• Write dirty pages back to disk
• On page fault, check if requested page is in pool!
• If not, evict a page from the pool

Allocation of Physical Pages

• How do we allocate memory among different processes?
• Does every process get same fraction of memory?
• Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
• All processes loaded into memory should make progress

• Possible replacement scopes
• Global replacement – to make space for one process’s page,

replacement is selected from all processes’ pages
• Local replacement – to make space for one process’s page,

replacement is selected from process’ set of allocated pages

Fixed/Priority Allocation

• Equal allocation (fixed scheme)
• Every process gets same amount of memory
• Example: 100 physical pages, 5 processes ® Each. process gets 20 pages

• Proportional allocation (fixed scheme)
• Allocate according to size of process
• Computation proceeds as follows:

• si = size of process pi and S = sum of si’s for all pi’s
• m = total number of physical pages
• ai = allocation for pi = (si x m) / S

• Priority allocation
• Proportional scheme using priorities rather than size
• Possible behavior : If process pi generates page fault, select for replacement page from

process with lower priority number

• Perhaps we should use an adaptive scheme instead?
• What if some application just needs more memory?

Page-Fault Rate: Capacity Misses

• Can we reduce capacity misses by dynamically changing # of pages per application?

• Establish “acceptable” page-fault rate
• If actual rate too low, process loses page
• If actual rate too high, process gains page

• Question: What if we just don’t have enough memory?

Thrashing

• If process does not have “enough” pages, page-fault rate is very high which leads to
• Low CPU utilization
• OS spends most of its time swapping pages to disk

• Thrashing º process is busy swapping pages in and out disk

• Questions:
• How do we detect thrashing?
• What is best response to thrashing?

Locality In Memory-Reference Pattern

• Working set defines minimum
number of pages needed for
process to behave well

• Not enough memory for working
set ÞThrashing
• Better to swap out process?

Working-Set Model

• D º working-set window º fixed number of page references
• Example: 10,000 instructions

• WSi (working set of pi) = total set of pages referenced in most recent D (varies in time)
• if D too small will not encompass entire locality
• if D too large will encompass several localities
• if D = ¥ Þ will encompass entire program

• D = S|WSi| º total demand frames

• if D > m ÞThrashing
• Policy: if D > m, then suspend/swap out processes
• This can improve overall system behavior by a lot!

Page Fault Rate: Compulsory Misses

• Recall that compulsory misses are misses that occur first time that page is seen
• Pages that are touched for the first time
• Pages that are touched after process is swapped out/swapped back in

• Clustering
• On page-fault, bring in multiple pages “around” the faulting page
• Since efficiency of disk reads increases with sequential reads, makes sense to read

several sequential pages

• Working set tracking
• Use algorithm to track working set of applications
• When swapping process back in, swap in working set

Summary

• Replacement policies
• FIFO: Place pages on queue, replace page at end
• MIN: Replace page that will be used farthest in future
• LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
• Arrange all pages in circular list
• Sweep through them, marking as not “in use”
• If page not “in use” for one pass, then can replace

• Nth-chance clock algorithm: Another approximate LRU
• Give pages multiple passes of clock hand before replacing

• Thrashing: process is busy swapping pages in and out
• Process will thrash if working set doesn’t fit in memory
• Need to swap out a process

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

