SE350: Operating Systems

Lecture |2: Demand Paging

Outline

* Demand paging

* Replacement policies
¢ FFO,MIN, LRU

* Clock algorithm

* Nt"-chance clock algorithm

Demand Paging

* Modern programs require a lot of physical memory
* Memory per system growing faster than 25%-30% per year

* But they don't use all their memory most of the time
* 90-10 rule: programs spend 90% of their time in 0% of their code

* Wiasteful to require all of user’s code to be in memory

* Solution: use main memory as cache for disk

Processor

Core

aydeD 7]

suL1sI3ay
YD |7

Secondary
Storage

Secondary Disk
Main Storage (Oisky
Memory (SSD)

(DRAM)

aye) 7] \%‘

(paueys)
ayeD €]

suL1sI3ay
YD |7

Since Demand Paging is Caching,
One Must Ask ...

What is block size?
* One page

What is organization of cache structure!
(i.e. direct mapped, set-associative, fully associative)

* Fully associative: Mapping arbitrary virtual page — any physical page

How do we find pages in cache?
* First check TLB, then page-table traversal

What is page replacement policy? (i.e. LRU, Random...)

* This requires more explanation... (it's kinda LRU)

VWhat happens on misses!?

* Go to lower level to fill miss (i.e. disk)

What happens on writes! (write-through, write back)
* Write-back — need dirty bit!

Next Up: What Happens When ...

Virtual Memory

Process \ / address V-Pagett
— P-Page#

Inst%tion—P MMU <<

PT
Retry / \ offset —
Page fault x

exception e
e
e
7

Opgrating/System _-” Update

el PT entry

Page fault | -~
handler [

N Disk
N>
\
\

load page
from disk

Scheduler

Recall: Page Table Entry

* What is in each Page Table Entry (or PTE)?

* Pointer to next-level page table or to actual page
* Permission bits: valid, read-only, read-write, write-only

* Example: Intel x86 architecture PTE

Pag.e Frame Number Free olLlipla 5 % T
(Physical Page Number) (0S)
31-12 11-9 8 7 6 5 4 3 2

Present (same as “valid” bit in other architectures)
Writeable

User accessible

Page write transparent: external cache write-through
Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently

Dirty bit: Page has been modified recently

L=1= 4MB page

TO» R2C ST
Dé -

Demand Paging Mechanisms

* PTE helps us implement demand paging
* Valid = Page in memory, PTE points at physical page

* Not Valid = Page not in memory; use info in PTE to find it on disk when necessary

* Suppose user references page with invalid PTE?

* Memory Management Unit (MMU) traps to OS
* Resulting trap is a “Page Fault”
* What does OS do on a Page Fault? (
e Choose an old page to replace
* If old page modified (“D=1"), write contents back to disk
e Change its PTE and any cached TLB to be invalid
* Load new page into memory from disk
e Update page table entry, invalidate TLB for new entry
¢ Continue thread from original faulting location

e TLB for new page will be loaded when thread continued!

* While pulling pages off disk for one process, run another process from ready queue

* Suspended process sits on wait queue

Demand Paging Cost Model

¢ Demand paging is caching = Can compute average access time! (Effective Access Time)
e EAT = Hit Time + Miss Rate x Miss Penalty

e Example:
¢ Memory access time = 200 nanoseconds
* Average page-fault service time = 8ms
* Suppose p = Probability of miss, | - p = Probably of hit
e Then, we can compute EAT as follows

EAT = 200ns + p x 8ms
= 200ns + p x 8,000,000ns

* If one access out of 1,000 causes page fault, then EAT = 8.2us:

* This is a slowdown by a factor of 40!

* What if want slowdown by less than 10%?
e 200ns x I.I > EAT = p <25x 10-6
e This is approximately | page fault in 400,000 accesses!

What Factors Lead to Misses?

* Compulsory misses
* Pages that have never been paged into memory before

* How might we remove these misses?
* Prefetching: loading them into memory before needed

* Need to predict future somehow!
» Capacity misses
* Not enough memory; must somehow increase available memory size
¢ Can we do this?
* One option is increasing amount of DRAM (not quick fix!)
* Another option is adjusting percentage of memory allocated to process if multiple processes are in memory
* Conflict misses

* Technically, conflict misses don't exist in virtual memory, since it is “fully-associative” cache

* Policy misses
* Caused when pages were in memory, but kicked out prematurely because of replacement policy

* How to fix?

e Better replacement policy

Page Replacement Policies

* Random
* Pick random page for every replacement
* Typical solution for TLB's, simple hardware

* Pretty unpredictable — makes it hard to provide any real-time guarantees

* First In, First Out (FIFO)
* Throw out oldest page, fair — let every page live in memory for same amount of time

* Bad — could throw out heavily used pages instead of infrequently used

e Minimum (MIN)
* Replace page that won't be used for the longest time
* Great, but how can we really know future!?

¢ Makes good comparison case, however

* LRU (Least Recently Used):
* Replace page that hasn't been used for the longest time
* Programs have locality, so if something is not used for a while, it's unlikely to be used in near future.

¢ Seems like LRU should be good approximation to MIN

Example: FIFO

* Suppose we have 3 p-pages , 4 v-pages, and following reference stream:
- ABCABDADBCB

e FIFO: 7/ faults

* When referencing D, replacing A is bad choice, since we'll need A again right away

Example: MIN

* Consider following reference streamABCABDADBCB

 MIN: 5 faults

* Where will D be brought in? Look for page not referenced farthest in future

* What will LRU do?

* Same decisions as MIN here but won't always be truel

When Will LRU Perform Badly?

* Consider following reference stream:ABCDABCDABCD

* Every reference is a page fault!

When will LRU Perform Badly? (cont.)

* Consider the following ABCDABCDABCD
e MIN Does much better

Refla |[B |C |D |A |[B |C |D |A |B |C |D
Page
|

A

2

3

Memory Size and Page Fault Rate

—_ —_
o N s
T T T

number of page faults

N A OO ©
T T T T

i 2 3 4 5 o
number of frames
* One desirable property:When you add memory the miss rate drops
* Does this always happen?
* Seems like it should, right?
* No: Bélddy's anomaly

* Certain replacement policies don't have this obvious property!

Bélady's Anomaly

* After adding memory:
* With FIFO, contents can be completely different
* With LRU or MIN, contents of memory with X pages are a subset of contents with X+ 1| Page

LRU Implementation

* How to implement LRU? Use a list!

Head ====p1 Page 6 =P Page / p=»{ Page | p=>{ Page 2

Tail (LRU)

* On each use, remove page from list and place at head, LRU page is at tall

* Problems with this scheme for paging?
* Need to know when each page is used to change its position in list

* Many instructions for each memory access

Clock Algorithm:
Practical LRU Implementation

Page Frames

0-use:0

* Arrange physical pages in circle with single clock hand

1-use:1

2-use:0

e HW sets “use” bit of PTE on each reference

 |f use bit isn't set, it means page hasn't been
referenced in long time

4-use:0

5-use:1

* HW could set use bit in TLB
* OS must copy this back to PTE when TLB entry replaced v Brused Tused

* On page fault, advance clock hand (not real time)

* Check use bit: 1 — used recently; clear and leave alone
0 — selected candidate for replacement

* Replace new page with selected candidate = replace old page, not the oldest page

* Wil this algorithm always find replacement page, or does it loop forever?

* If all use bits set, clock hand will eventually loop around = FIFO

Clock Algorithm: Not Recently Used

Page Frames

Single Clock Hand:

Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

0-use:0

* What if hand is moving slowly? Is it a good sign or a bad sign?
* Not many page faults and/or find page quickly

* What if hand is moving quickly?

* Lots of page faults and/or lots of reference bits set

* One way to view clock algorithm
* Crude partitioning of pages into two groups: young and old

* Why not partition into more than 2 groups!?

Clock Algorithms: Details

* Which bits of PTE entry are useful?
* Use: Set by HW when page is referenced, cleared by clock algorithm

* Dirty: set by HW when page is modified, cleared by clock algorithm when
page Is written back to disk

* Valid: OK for program to reference this page

* Read-only: OK for program to read page, but not modify

* Do we really need hardware-supported “dirty” bit?

No.

Can emulate it (BSD Unix) using read-only bit
Initially, mark all pages as read-only, even data pages

On write, trap to OS

OS sets software “dirty” bit, and marks page as read-write

Whenever page comes back in from disk, mark read-only

Clock Algorithms: Details (cont.)

* Do we really need a hardware-supported “use” bit?

* No, we can emulate it like what we did with “dirty” bit

Mark all pages as invalid, even if in memory

On read to invalid page, trap to OS

OS sets software “use” bit, and marks page read-only
On write, trap to OS (either invalid or read-only)

Set software “use” and “dirty” bits, mark page read-write

When clock hand passes by, reset “use” and "“dirty” bits and mark as invalid again

* Do we need reverse mapping (i.e. physical page — virtual page, core map)!?

* Yes. clock algorithm runs through physical pages

e Multiple virtual pages could be mapped to the same physical page

* We can't push physical page out to disk without invalidating all PTEs

* Clock algorithm is just approximation of LRU, can we do a better?

* Answer: N™ chance algorithm

Nt Chance Algorithm

* Give each page N chances
* OS keeps counter per page: # sweeps
* On page fault, OS checks use bit:

* 1 — clear use AND clear counter (used in last sweep)

* 0 — increment counter; if count = N, select as replacement candidate

* Clock hand must sweep by N times without page being used before page is replaced

* How do we pick N?
* Large N: Better approximation to LRU, if N ~ 1K, very good approximation

* Small N: More efficient, otherwise might have to look a long way to find free page

* What about dirty pages?
» Takes extra overhead to replace dirty page, so give dirty pages extra chancel
e C(lean pages,use N = 1

e Dirty pages,use N = 2 (and write back to disk when N = 1)

Implementation Notes

* Clock and N™ chance algorithms can run synchronously
* |In page fault handler, run algorithm to find next page to evict

* Might require writing changes back to disk first

* Or asynchronously

* Run algorithms in the background

Maintain pool of candidates for eviction

Write dirty pages back to disk

On page fault, check if requested page is in pool!

If not, evict a page from the pool

Allocation of Physical Pages

* How do we allocate memory among different processes?
* Does every process get same fraction of memory?

* Should we completely swap some processes out of memory?

* Each process needs minimum number of pages

* All processes loaded into memory should make progress

* Possible replacement scopes

* Global replacement — to make space for one process's page,
replacement is selected from all processes’ pages

* Local replacement — to make space for one process's page,
replacement is selected from process’ set of allocated pages

Fixed/Priority Allocation

Equal allocation (fixed scheme)
* Every process gets same amount of memory

* Example: 100 physical pages, 5 processes — Each. process gets 20 pages

Proportional allocation (fixed scheme)
* Allocate according to size of process
» Computation proceeds as follows:
e 5 = size of process p; and S = sum of s/s for all p;'s
* m = total number of physical pages

e g, = allocation forpi = (s;.xm) /S

Priority allocation
* Proportional scheme using priorities rather than size

* Possible behavior: If process p; generates page fault, select for replacement page from
process with lower priority number

Perhaps we should use an adaptive scheme instead?

* What if some application just needs more memory?

Page-Fault Rate: Capacity Misses

» (Can we reduce capacity misses by dynamically changing # of pages per application?

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

* Establish “acceptable” page-fault rate
* |f actual rate too low, process loses page

* |f actual rate too high, process gains page

* Question:What if we just don't have enough memory?

Thrashing

thrashing
—_—

CPU utilization

degree of multiprogramming

* If process does not have “enough’ pages, page-fault rate is very high which leads to

* Low CPU utilization
e OS spends most of its time swapping pages to disk

e Thrashing = process Is busy swapping pages in and out disk

e Questions:
* How do we detect thrashing?

* What is best response to thrashing?

Locality In Memory-Reference Pattern

. .. 34
* Working set defines minimum
number of pages needed for w .
process to behave well | — Pidais
. 30 - i~ L
* Not enough memory for working T
set = Thrashing . - i W
* Better to swap out process! 2 | il
g
g
: —
24 14 oy e i . -
T A
ik it T Jl
” e L ﬁi e
) 1L L . -
2 20 ‘ W ey
g Th H' X I
g 16 1B il)
execution time ——

Working-Set Model

page reference table
. ..2615777751623412344434344413234443444...

- -

t t,

WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}

* A = working-set window = fixed number of page references

e Example: 10,000 instructions

WS, (working set of p;) = total set of pages referenced in most recent A (varies in time)
* If A too small will not encompass entire locality
e if Atoo large will encompass several localities

e if A =00 = will encompass entire program

D = Z|WS§|| = total demand frames

if D > m = Thrashing
e Policy:if D > m, then suspend/swap out processes

e This can improve overall system behavior by a lot!

Page Fault Rate: Compulsory Misses

* Recall that compulsory misses are misses that occur first time that page Is seen
* Pages that are touched for the first time

* Pages that are touched after process is swapped out/swapped back in

* Clustering
* On page-fault, bring in multiple pages “around” the faulting page

* Since efficiency of disk reads increases with sequential reads, makes sense to read
several sequential pages

* Working set tracking
* Use algorithm to track working set of applications

* When swapping process back in, swap in working set

Summary

Replacement policies
* FIFO: Place pages on queue, replace page at end
* MIN: Replace page that will be used farthest in future
* LRU: Replace page used farthest in past

Clock Algorithm: Approximation to LRU
* Arrange all pages in circular list
* Sweep through them, marking as not “in use”

* If page not "in use” for one pass, then can replace

N-chance clock algorithm: Another approximate LRU

* Give pages multiple passes of clock hand before replacing

Thrashing: process is busy swapping pages in and out
* Process will thrash if working set doesn't fit in memory

* Need to swap out a process

Questions?

N

|

>
I

|

|

Acknowledgment

* Slides by courtesy of Anderson, Culler; Stoica,
Silberschatz, Joseph, and Canny

