
SE350: Operating Systems
Lecture 13: I/O and Storage Devices



Outline

• I/O subsystem
• Magnetic storage
• Flash memory



What’s Next?

• So far in this course:
• We have learned how to manage CPU and memory

• What about I/O?
• Without I/O, computers are useless (disembodied brains?)
• But … thousands of devices, each slightly different

• How can we standardize interfaces to these devices?
• Devices unreliable: media failures and transmission errors

• How can we make them reliable?
• Devices unpredictable and/or slow

• How can we manage them if we don’t know what they will do or how 
they will perform?



Operational Parameters for I/O

• Data granularity: Byte vs. Block
• Some devices provide single byte at a time (e.g., keyboard)
• Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
• Some devices must be accessed sequentially (e.g., tape)
• Others can be accessed “randomly” (e.g., disk, cd, etc.)

• Fixed overhead to start transfers

• Notification mechanisms: Polling vs. Interrupt
• Some devices require continual monitoring
• Others generate interrupts when they need service
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Modern I/O Systems

network



Goal of I/O Subsystem

• Provide uniform interfaces, despite wide range of different devices
• This code works on many different devices:

FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

• Why? Because device drivers implements standard interface

• We will get a flavor for what is involved in controlling devices in this lecture
• We can only scratch the surface!



I/O Device Types

• Character devices: e.g. keyboards, mice, serial ports, some USB devices
• Access single characters at a time
• Commands include get(), put()
• Libraries layered to allow line editing

• Block devices: e.g. disk drives, tape drives, DVD-ROM
• Access blocks of data
• Commands include open(), read(), write(), seek()

• Network devices: e.g. Ethernet, Wireless, Bluetooth
• Different enough from block/character to have its own interface
• Unix and Windows include socket interface

• Separates network protocol from network operation
• Includes select() functionality

• Usage: pipes, FIFOs, streams, queues, mailboxes



I/O Standard Interfaces

• Blocking interface: “Wait”
• When request data (e.g. read() syscall), put to sleep until data is ready
• When write data (e.g. write() syscall), put to sleep until device is ready

• Non-blocking interface:“Don’t wait”
• Return quickly from read or write with count of bytes successfully transferred
• Read may return nothing, write may write nothing

• Asynchronous interface: “Tell me later”
• When request data, take pointer to user’s buffer, return immediately; later 

kernel fills buffer and notifies user
• When send data, take pointer to user’s buffer, return immediately; later kernel 

takes data and notifies user 



I/O Transfer Rates

• Transfer rates vary over 7 orders of magnitude!
• System better be able to handle this wide range
• Better not have high overhead/byte for fast devices!
• Better not waste time waiting for slow devices
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I/O Data Access

• Device controller (may) contains
• Set of registers and memory buffers that can be read and written

• CPU accesses registers/buffers in two ways
• Port mapped I/O: in/out instructions

• Example from Intel architecture: out 0x21,AL
• Memory mapped I/O: load/store instructions

• Registers/memory appear in physical address space and accessed by load/store instructions
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Memory Mapped I/O

• Physical address space is shared 
between DRAM and I/O

• HW maps control registers and device 
memory into physical address space
• Set by HW jumpers or at boot time

• I/O-access instructions 
• load a1, (0xC00…) // To read
• store (0xC00…), b2.        // To write
• Example: writing to display memory 

(also called the “frame buffer”) changes 
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I/O Notification Mechanisms

• I/O Interrupt
• Device generates interrupt whenever it needs service
• Pro: handles unpredictable events well
• Con: interrupts have relatively high overhead 

• Polling
• OS periodically checks device-specific status register

• I/O device puts completion information in status register
• Pro: low overhead
• Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
• For instance – High-bandwidth network adapter

• Interrupt for first incoming packet
• Poll for following packets until hardware queues are empty



I/O Data Transfer

• Programmed I/O
• Each byte transferred via processor in/out or load/store
• Pro: Simple hardware, easy to program
• Con: Consumes processor cycles proportional to data size

• Direct Memory Access (DMA)
• Give controller access to memory bus
• Ask it to transfer data blocks to/from memory directly
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Review: Performance Concepts

• Response Time/Latency: Time to perform an operation

• Bandwidth/Throughput: Rate of executing operations (op/s)
• Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s

• Overhead: time to initiate an operation

• Most I/O operations are roughly linear in n bytes
• Latency(n) = Overhead + n/Bandwidth



Example: Fast Network

• Consider a 1 Gb/s link (B = 128 MB/s)
• With startup cost S = 1 ms

• Latency(n) = S + n/B
• Bandwidth = n/(S + n/B) = B x n/(B x S + n) = B/(B x S/n + 1)

• Bandwidth = B/2 when n = S x B



Example: Disk (10ms Startup)
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What Determines Peak BW for I/O?

• Bus speed (per lane)
• Ultra Wide SCSI: 320 Mb/s
• Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s
• USB 3.0 – 5 Gb/s
• PCI-X:  > 8.5 Gb/s (1064 MB/s = 133 MHz x 64 bit)
• Thunderbolt 3 – 40 Gb/s 
• PCI Express (v. 6, RS-544/514): 60 Gb/s

• Device transfer bandwidth
• Rotational speed of disk
• Write/Read rate of NAND flash
• Signaling rate of network link

• Whatever is the bottleneck in the path…



Storage Devices

• Magnetic disks
• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block level random access (except for Shingled Magnetic Recording (SMR))
• Slow performance for random access
• Better performance for sequential access

• Flash memory
• Storage that rarely becomes corrupted
• Capacity at intermediate cost (5-20x disk)
• Block level random access
• Good performance for reads; worse for random writes
• Erasure requirement in large blocks
• Wear patterns issue



The Amazing Magnetic Disk

• Unit of transfer : Sector
• Ring of sectors form track
• Stack of tracks form cylinder
• Heads position on cylinders

• Disk tracks ~ 1µm (micron) wide
• Wavelength of light is ~ 0.5µm
• Resolution of human eye: 50µm
• 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
• Reduces likelihood neighboring tracks are 

corrupted during writes 
(still small non-zero chance)
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The Amazing Magnetic Disk (cont.)

• Track length varies across disk
• Outside: More sectors per track, 

higher bandwidth
• Disk is organized into 

regions of tracks with 
same # of sectors/track

• Only outer half of radius is used
• Most of disk area in outer 

regions of disk

• Disks are so big that some 
companies (like Google) reportedly 
only use part of disk for active data
• Rest is archival data www.lorextechnology.com
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Magnetic Disks

• Recall: Cylinder is all tracks under head at any given point on all surface

• Read/write data includes three stages
• Seek time: position r/w head over proper track
• Rotational latency: wait for desired sector to rotate under r/w head
• Transfer time: transfer block of bits (sector) under r/w head
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Disk Performance Example

• Assumptions
• Ignoring queuing and controller times for now
• Average seek time of 5 ms
• 7200 RPM ÞTime for rotation: 60000 (ms/minute) / 7200 (rotation/minute) @ 8ms
• Transfer rate of 4 MB/s, sector size of 1 KB Þ 210 B / 222 (B/s) = 2-12 s @ 0.24 ms

• Read sector from random place on disk
• Seek (5 ms) + Rotational delay (4 ms) + Transfer (0.24 ms)
• Approximately 10ms to fetch/put data: 100 KB/s

• Read sector from random place in same cylinder
• Rotational delay (4 ms) + Transfer (0.24 ms)
• Approximately 5 ms to fetch/put data: 200 KB/s

• Read next sector on same track
• Transfer (0.24 ms): 4 MB/s

• Key to using disk effectively (especially for file systems) is to minimize seek & rotational delays



(Lots of) Intelligence in Controller

• Sectors contain sophisticated error correcting codes
• Disk head magnet has field wider than track
• Hide corruptions due to neighboring track writes

• Sector sparing
• Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
• Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
• Offset sector numbers to allow for disk head movement to achieve sequential ops

• …



Example of Current HDDs

• Seagate EXOS X14 (2018)
• 14 TB hard disk
• 8 platters, 16 heads
• 4.16 ms average seek time
• 4 KB physical sectors
• 7200 RPMs
• 6 Gbps SATA / 12Gbps SAS interface
• 261 MB/s MAX transfer rate
• Cache size: 256 MB 

• IBM Personal Computer/AT (1986)
• 30 MB hard disk
• 30-40 ms seek time
• 0.7-1 MB/s (est.)



Disk Scheduling

• FCFS: Schedule disk operations in order they arrive
• Downsides?

• Poor performance for sequence of requests 
that alternate between outer and inner tracks

• Shortest Seek Time First (SSTF)
• Downsides?

• Not optimal!
• Starvation!

• SCAN: move disk arm in one direction, 
until all requests satisfied, then reverse direction
• Also called “elevator scheduling”



Disk Scheduling (cont.)

• CSCAN: move disk arm in one direction, 
until all requests satisfied, then start again 
from farthest request

• R-CSCAN: CSCAN but consider that 
short track switch has rotational delay



FCFS Example



SCAN Example



C-SCAN Example



Disk Performance

• When is disk performance highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy backed (reordering queues)

• OK to be inefficient when things are mostly idle

• Bursts are both a threat and an opportunity

• Other techniques:
• Reduce overhead through user level drivers
• Reduce the impact of I/O delays by doing other useful work in the meantime



Flash Memory

• 1995: Replace rotating magnetic media with battery backed DRAM

• 2009: Use NAND multi-level cell (2 or 3-bit/cell) flash memory
• Trapped electrons distinguish between 1 (no charge on FG) and 0 (negative charge on FG)
• Data can be addressed, read, and modified in pages, typically between 4 KB and 16 KB in size
• But … data can only be erased at level of entire blocks consisting of multiple pages (MB in size)
• When block is erased all cells are logically set to 1

• No moving parts (no rotate/seek motors)
• Eliminates seek and rotational delay
• Very low power and lightweight
• Limited “write cycles”

Figures: www.androidcentral.com and flashdba.com



Flash Memory – Reads

• No seek or rotational latency

• Transfer time: transfer 4 KB page
• SATA: 300-600 MB/s ⇒ 4 KB / 400 MB/s ~ 10 us

• Latency = Queuing time + Controller time + Transfer time

• Highest Bandwidth: Sequential OR Random reads
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Flash Memory – Writes

• Writing data is complex!
• Data can only be written into erased pages in each block
• Pages cannot be erased individually, erasing entire block takes time
• Rule of thumb

• Write take 10x more time than reads
• Erasure takes 10x more time than writes



Flash Memory Controller

• Maps logical page numbers to physical locations

• Maintains pool of empty blocks by coalescing used pages 

• Garbage collects blocks by copying live pages to new location, then erase

• More efficient if blocks stored at the same time are deleted at the same time 

(e.g., keep blocks of file together)

• Wear-levels by only writing each physical page a limited number of times

• Remaps pages that no longer work (sector sparing)

• How does flash device know which blocks are live?

• File system tells device when blocks are no longer in use (Trim command)



Example of Current SSDs



Is full Kindle Heavier than Empty One?

• Actually, “Yes”, but not by much

• Flash works by trapping electrons:
• So, erased state lower energy than written state

• Assuming that:
• Kindle has 4 GB flash
• ½ of all bits in full Kindle are in high-energy state
• High-energy state about 10-15 joules higher
• Then: Full Kindle is 1 attogram (10-18 gram) heavier (Using E = mc2)

• Of course, this is less than most sensitive scale can measure (10-9 grams)

• This difference is overwhelmed by battery discharge, weight from getting warm, …

According to John Kubiatowicz (New York Times, Oct 24, 2011)



SSD Summary

• Pros (vs. hard disk drives)
• Low latency, high throughput (eliminate seek/rotational delay)
• No moving parts

• Very light weight, low power, silent, very shock insensitive

• Read at memory speeds (limited by controller and I/O bus)

• Cons
• Expensive
• Asymmetric block write performance

• Controller garbage collection (GC) algorithms have major effect on performance

• Limited drive lifetime 
• 1-10K writes/page for MLC NAND
• Average failure rate is 6 years, life expectancy is 9–11 years

(These are changing rapidly!)



HDD vs. SSD



Summary (1/2)

• I/O device types
• Many different speeds (0.1 B/s to GB/s)
• Different access patterns

• Block devices, character devices, network devices
• Different access timing

• Blocking, non-blocking, asynchronous

• I/O controllers
• Hardware that controls actual device
• Processor accesses through I/O instructions, load/store to special physical memory

• I/O notification mechanisms
• Interrupts
• Polling: Report results through status register that processor looks at periodically 



Summary (2/2)

• Disk performance
• Rotational latency: on average ½ rotation
• Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
• Response time (Latency) = Queue + Overhead + Transfer

• Effective BW = BW * T/(S+T)
• HDD: Queuing time + controller + seek + rotation + transfer
• SDD: Queuing time + controller + transfer (erasure & wear)

• Disk scheduling
• FIFO, SSTF, SCAN, CSCAN, R-CSCAN



Questions?

globaldigitalcitizen.org
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