
SE350: Operating Systems
Lecture 13: I/O and Storage Devices

Outline

• I/O subsystem
• Magnetic storage
• Flash memory

What’s Next?

• So far in this course:
• We have learned how to manage CPU and memory

• What about I/O?
• Without I/O, computers are useless (disembodied brains?)
• But … thousands of devices, each slightly different

• How can we standardize interfaces to these devices?
• Devices unreliable: media failures and transmission errors

• How can we make them reliable?
• Devices unpredictable and/or slow

• How can we manage them if we don’t know what they will do or how
they will perform?

Operational Parameters for I/O

• Data granularity: Byte vs. Block
• Some devices provide single byte at a time (e.g., keyboard)
• Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
• Some devices must be accessed sequentially (e.g., tape)
• Others can be accessed “randomly” (e.g., disk, cd, etc.)

• Fixed overhead to start transfers

• Notification mechanisms: Polling vs. Interrupt
• Some devices require continual monitoring
• Others generate interrupts when they need service

Kernel Device Structure

The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Modern I/O Systems

network

Goal of I/O Subsystem

• Provide uniform interfaces, despite wide range of different devices
• This code works on many different devices:

FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

• Why? Because device drivers implements standard interface

• We will get a flavor for what is involved in controlling devices in this lecture
• We can only scratch the surface!

I/O Device Types

• Character devices: e.g. keyboards, mice, serial ports, some USB devices
• Access single characters at a time
• Commands include get(), put()
• Libraries layered to allow line editing

• Block devices: e.g. disk drives, tape drives, DVD-ROM
• Access blocks of data
• Commands include open(), read(), write(), seek()

• Network devices: e.g. Ethernet, Wireless, Bluetooth
• Different enough from block/character to have its own interface
• Unix and Windows include socket interface

• Separates network protocol from network operation
• Includes select() functionality

• Usage: pipes, FIFOs, streams, queues, mailboxes

I/O Standard Interfaces

• Blocking interface: “Wait”
• When request data (e.g. read() syscall), put to sleep until data is ready
• When write data (e.g. write() syscall), put to sleep until device is ready

• Non-blocking interface:“Don’t wait”
• Return quickly from read or write with count of bytes successfully transferred
• Read may return nothing, write may write nothing

• Asynchronous interface: “Tell me later”
• When request data, take pointer to user’s buffer, return immediately; later

kernel fills buffer and notifies user
• When send data, take pointer to user’s buffer, return immediately; later kernel

takes data and notifies user

I/O Transfer Rates

• Transfer rates vary over 7 orders of magnitude!
• System better be able to handle this wide range
• Better not have high overhead/byte for fast devices!
• Better not waste time waiting for slow devices

Other Devices
or Buses

I/O Data Access

• Device controller (may) contains
• Set of registers and memory buffers that can be read and written

• CPU accesses registers/buffers in two ways
• Port mapped I/O: in/out instructions

• Example from Intel architecture: out 0x21,AL
• Memory mapped I/O: load/store instructions

• Registers/memory appear in physical address space and accessed by load/store instructions

Address + Data

Interrupt RequestInterrupt
Controller

Bus
Adaptor

Bus
Adaptor

Device Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Processor Memory Bus

CPU

Regular
Memory

Memory Mapped I/O

• Physical address space is shared
between DRAM and I/O

• HW maps control registers and device
memory into physical address space
• Set by HW jumpers or at boot time

• I/O-access instructions
• load a1, (0xC00…) // To read
• store (0xC00…), b2. // To write
• Example: writing to display memory

(also called the “frame buffer”) changes
image on screen

Audio Controller
Keyboard Controller

Disk Controller

DRAM

Physical
Address
Ranges

0x00000000

0xFFFFFFFF

0xC0003000

0xC0002000

0xC0001000

= 232-1

0x7FFFFFFF

I/O Notification Mechanisms

• I/O Interrupt
• Device generates interrupt whenever it needs service
• Pro: handles unpredictable events well
• Con: interrupts have relatively high overhead

• Polling
• OS periodically checks device-specific status register

• I/O device puts completion information in status register
• Pro: low overhead
• Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
• For instance – High-bandwidth network adapter

• Interrupt for first incoming packet
• Poll for following packets until hardware queues are empty

I/O Data Transfer

• Programmed I/O
• Each byte transferred via processor in/out or load/store
• Pro: Simple hardware, easy to program
• Con: Consumes processor cycles proportional to data size

• Direct Memory Access (DMA)
• Give controller access to memory bus
• Ask it to transfer data blocks to/from memory directly

DMA Transfer

4

5

6

1

2

3

Review: Performance Concepts

• Response Time/Latency: Time to perform an operation

• Bandwidth/Throughput: Rate of executing operations (op/s)
• Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s

• Overhead: time to initiate an operation

• Most I/O operations are roughly linear in n bytes
• Latency(n) = Overhead + n/Bandwidth

Example: Fast Network

• Consider a 1 Gb/s link (B = 128 MB/s)
• With startup cost S = 1 ms

• Latency(n) = S + n/B
• Bandwidth = n/(S + n/B) = B x n/(B x S + n) = B/(B x S/n + 1)

• Bandwidth = B/2 when n = S x B

Example: Disk (10ms Startup)

0""

5""

10""

15""

20""

25""

30""

35""

40""

45""

50""

0""

2,000""

4,000""

6,000""

8,000""

10,000""

12,000""

14,000""

16,000""

18,000""

0"" 50,000""100,000""150,000""200,000""250,000""300,000""350,000""400,000""450,000""500,000""

Ba
nd

w
id
th
)(m

B/
s)
)

La
te
nc
y)
(u
s)
)

Length)(b))

Performance)of)gbps)link)with)10)ms)startup)

n = 1,280,000 bytes!

What Determines Peak BW for I/O?

• Bus speed (per lane)
• Ultra Wide SCSI: 320 Mb/s
• Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s
• USB 3.0 – 5 Gb/s
• PCI-X: > 8.5 Gb/s (1064 MB/s = 133 MHz x 64 bit)
• Thunderbolt 3 – 40 Gb/s
• PCI Express (v. 6, RS-544/514): 60 Gb/s

• Device transfer bandwidth
• Rotational speed of disk
• Write/Read rate of NAND flash
• Signaling rate of network link

• Whatever is the bottleneck in the path…

Storage Devices

• Magnetic disks
• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block level random access (except for Shingled Magnetic Recording (SMR))
• Slow performance for random access
• Better performance for sequential access

• Flash memory
• Storage that rarely becomes corrupted
• Capacity at intermediate cost (5-20x disk)
• Block level random access
• Good performance for reads; worse for random writes
• Erasure requirement in large blocks
• Wear patterns issue

The Amazing Magnetic Disk

• Unit of transfer : Sector
• Ring of sectors form track
• Stack of tracks form cylinder
• Heads position on cylinders

• Disk tracks ~ 1µm (micron) wide
• Wavelength of light is ~ 0.5µm
• Resolution of human eye: 50µm
• 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
• Reduces likelihood neighboring tracks are

corrupted during writes
(still small non-zero chance)

track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation

The Amazing Magnetic Disk (cont.)

• Track length varies across disk
• Outside: More sectors per track,

higher bandwidth
• Disk is organized into

regions of tracks with
same # of sectors/track

• Only outer half of radius is used
• Most of disk area in outer

regions of disk

• Disks are so big that some
companies (like Google) reportedly
only use part of disk for active data
• Rest is archival data www.lorextechnology.com

Original
position

Desired
data

Magnetic Disks

• Recall: Cylinder is all tracks under head at any given point on all surface

• Read/write data includes three stages
• Seek time: position r/w head over proper track
• Rotational latency: wait for desired sector to rotate under r/w head
• Transfer time: transfer block of bits (sector) under r/w head

Rotational
latency

Seek
time

H
ardw

are
Controller

Software queue
(device driver)

Request Media Time
(Seek+Rot+Xfer)

Result

Disk Latency = Queuing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Disk Performance Example

• Assumptions
• Ignoring queuing and controller times for now
• Average seek time of 5 ms
• 7200 RPM ÞTime for rotation: 60000 (ms/minute) / 7200 (rotation/minute) @ 8ms
• Transfer rate of 4 MB/s, sector size of 1 KB Þ 210 B / 222 (B/s) = 2-12 s @ 0.24 ms

• Read sector from random place on disk
• Seek (5 ms) + Rotational delay (4 ms) + Transfer (0.24 ms)
• Approximately 10ms to fetch/put data: 100 KB/s

• Read sector from random place in same cylinder
• Rotational delay (4 ms) + Transfer (0.24 ms)
• Approximately 5 ms to fetch/put data: 200 KB/s

• Read next sector on same track
• Transfer (0.24 ms): 4 MB/s

• Key to using disk effectively (especially for file systems) is to minimize seek & rotational delays

(Lots of) Intelligence in Controller

• Sectors contain sophisticated error correcting codes
• Disk head magnet has field wider than track
• Hide corruptions due to neighboring track writes

• Sector sparing
• Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
• Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
• Offset sector numbers to allow for disk head movement to achieve sequential ops

• …

Example of Current HDDs

• Seagate EXOS X14 (2018)
• 14 TB hard disk
• 8 platters, 16 heads
• 4.16 ms average seek time
• 4 KB physical sectors
• 7200 RPMs
• 6 Gbps SATA / 12Gbps SAS interface
• 261 MB/s MAX transfer rate
• Cache size: 256 MB

• IBM Personal Computer/AT (1986)
• 30 MB hard disk
• 30-40 ms seek time
• 0.7-1 MB/s (est.)

Disk Scheduling

• FCFS: Schedule disk operations in order they arrive
• Downsides?

• Poor performance for sequence of requests
that alternate between outer and inner tracks

• Shortest Seek Time First (SSTF)
• Downsides?

• Not optimal!
• Starvation!

• SCAN: move disk arm in one direction,
until all requests satisfied, then reverse direction
• Also called “elevator scheduling”

Disk Scheduling (cont.)

• CSCAN: move disk arm in one direction,
until all requests satisfied, then start again
from farthest request

• R-CSCAN: CSCAN but consider that
short track switch has rotational delay

FCFS Example

SCAN Example

C-SCAN Example

Disk Performance

• When is disk performance highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy backed (reordering queues)

• OK to be inefficient when things are mostly idle

• Bursts are both a threat and an opportunity

• Other techniques:
• Reduce overhead through user level drivers
• Reduce the impact of I/O delays by doing other useful work in the meantime

Flash Memory

• 1995: Replace rotating magnetic media with battery backed DRAM

• 2009: Use NAND multi-level cell (2 or 3-bit/cell) flash memory
• Trapped electrons distinguish between 1 (no charge on FG) and 0 (negative charge on FG)
• Data can be addressed, read, and modified in pages, typically between 4 KB and 16 KB in size
• But … data can only be erased at level of entire blocks consisting of multiple pages (MB in size)
• When block is erased all cells are logically set to 1

• No moving parts (no rotate/seek motors)
• Eliminates seek and rotational delay
• Very low power and lightweight
• Limited “write cycles”

Figures: www.androidcentral.com and flashdba.com

Flash Memory – Reads

• No seek or rotational latency

• Transfer time: transfer 4 KB page
• SATA: 300-600 MB/s ⇒ 4 KB / 400 MB/s ~ 10 us

• Latency = Queuing time + Controller time + Transfer time

• Highest Bandwidth: Sequential OR Random reads

Host
Buffer Manager

(software Queue)
Flash Memory

Controller

DRAM

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

SATA

Flash Memory – Writes

• Writing data is complex!
• Data can only be written into erased pages in each block
• Pages cannot be erased individually, erasing entire block takes time
• Rule of thumb

• Write take 10x more time than reads
• Erasure takes 10x more time than writes

Flash Memory Controller

• Maps logical page numbers to physical locations

• Maintains pool of empty blocks by coalescing used pages

• Garbage collects blocks by copying live pages to new location, then erase

• More efficient if blocks stored at the same time are deleted at the same time

(e.g., keep blocks of file together)

• Wear-levels by only writing each physical page a limited number of times

• Remaps pages that no longer work (sector sparing)

• How does flash device know which blocks are live?

• File system tells device when blocks are no longer in use (Trim command)

Example of Current SSDs

Is full Kindle Heavier than Empty One?

• Actually, “Yes”, but not by much

• Flash works by trapping electrons:
• So, erased state lower energy than written state

• Assuming that:
• Kindle has 4 GB flash
• ½ of all bits in full Kindle are in high-energy state
• High-energy state about 10-15 joules higher
• Then: Full Kindle is 1 attogram (10-18 gram) heavier (Using E = mc2)

• Of course, this is less than most sensitive scale can measure (10-9 grams)

• This difference is overwhelmed by battery discharge, weight from getting warm, …

According to John Kubiatowicz (New York Times, Oct 24, 2011)

SSD Summary

• Pros (vs. hard disk drives)
• Low latency, high throughput (eliminate seek/rotational delay)
• No moving parts

• Very light weight, low power, silent, very shock insensitive

• Read at memory speeds (limited by controller and I/O bus)

• Cons
• Expensive
• Asymmetric block write performance

• Controller garbage collection (GC) algorithms have major effect on performance

• Limited drive lifetime
• 1-10K writes/page for MLC NAND
• Average failure rate is 6 years, life expectancy is 9–11 years

(These are changing rapidly!)

HDD vs. SSD

Summary (1/2)

• I/O device types
• Many different speeds (0.1 B/s to GB/s)
• Different access patterns

• Block devices, character devices, network devices
• Different access timing

• Blocking, non-blocking, asynchronous

• I/O controllers
• Hardware that controls actual device
• Processor accesses through I/O instructions, load/store to special physical memory

• I/O notification mechanisms
• Interrupts
• Polling: Report results through status register that processor looks at periodically

Summary (2/2)

• Disk performance
• Rotational latency: on average ½ rotation
• Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
• Response time (Latency) = Queue + Overhead + Transfer

• Effective BW = BW * T/(S+T)
• HDD: Queuing time + controller + seek + rotation + transfer
• SDD: Queuing time + controller + transfer (erasure & wear)

• Disk scheduling
• FIFO, SSTF, SCAN, CSCAN, R-CSCAN

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

