
IRS: An Incentive-compatible Reward Scheme for Algorand
Maizi Liao

University of Waterloo

Waterloo, Canada

m7liao@uwaterloo.ca

Wojciech Golab

University of Waterloo

Waterloo, Canada

wgolab@uwaterloo.ca

Seyed Majid Zahedi

University of Waterloo

Waterloo, Canada

smzahedi@uwaterloo.ca

ABSTRACT
Founded in 2017, Algorand is one of theworld’s first carbon-negative,

public blockchains inspired by proof of stake. Algorand uses a

Byzantine agreement protocol to add new blocks to the blockchain.

The protocol can tolerate malicious users as long as a supermajor-

ity of the stake is controlled by non-malicious users. The protocol

achieves about 100x more throughput compared to Bitcoin and can

be easily scaled to millions of nodes. Despite its impressive features,

Algorand lacks a reward-distribution scheme that can effectively

incentivize nodes to participate in the protocol. In this work, we

study the incentive issue in Algorand through the lens of game

theory. We model the Algorand protocol as a Bayesian game and

propose a novel reward scheme to address the incentive issue in Al-

gorand. We derive necessary conditions to ensure that participation

in the protocol is a Bayesian Nash equilibrium under our proposed

reward scheme even in the presence of a malicious adversary. We

also present quantitative analysis of our proposed reward scheme

by applying it to two real-world deployment scenarios. We estimate

the costs of running an Algorand node and simulate the protocol

to measure the overheads in terms of computation, storage, and

networking.

CCS CONCEPTS
• Theory of computation→ Algorithmic mechanism design;
Algorithmic game theory.

KEYWORDS
Incentive-compatible reward schemes; Algorand; Bayesian games

ACM Reference Format:
Maizi Liao,Wojciech Golab, and SeyedMajid Zahedi. 2023. IRS: An Incentive-

compatible Reward Scheme for Algorand. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
The concept of blockchain is first popularized by Bitcoin [44] as a

tamper-resistant distributed transaction ledger. Blockchains could

be classified into two categories: permissioned and permission-

less. Permissioned blockchains, also known as private blockchains,

implement an access-control mechanism to restrict unauthorized

users from accessing the ledger [14, 37, 46]. Examples include Hy-

perLedger Fabric [8] and Libra (now called Diem) [18]. In contrast,

permissionless blockchains do not impose any access restrictions

[32, 42]. Examples include Bitcoin [44] and Ethereum [56].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

When obtaining permission is not required, the system could

become prone to Sybil attacks
1
. To mitigate the Sybil attack threat,

permissionless consensus protocols often use additional mecha-

nisms. For example, Bitcoin uses proof of work (PoW), which re-

quires nodes to solve a computationally intensive puzzle. Winners

earn the right to add blocks to the blockchain and collect rewards

for their computational effort. PoW suffers from high energy and

computational costs [24]. Proof of stake (PoS) has been proposed

to mitigate these costs [35, 49]. In most PoS consensus protocols,

nodes stake their cryptocurrency assets to gain rights to add blocks

and earn rewards.

Inspired by proof of stake, Algorand is one of the world’s first car-

bon negative blockchain protocols [27]. The Algorand blockchain

runs a randomized, committee-based consensus protocol [15, 29].

The core of the protocol is a Byzantine agreement protocol that

allows nodes to reach consensus on a new block in the presence

of Byzantine faults
2
. Nodes are selected randomly to participate

in the Byzantine agreement protocol as committee members. The

original reward scheme of Algorand
3
rewards all nodes proportion-

ally to their account balance. Although simple, this reward scheme

suffers from the free-rider problem: nodes have no incentive to

participate in the protocol as doing so imposes computational and

communication costs. This can be seen by tracking the number of

nodes that actively participate in Algorand. According to [3], in

May 2022, only about 1.6 billion units of Algorand’s cryptocurrency

were registered to participate while a total of about 8.4 billion units

of Algorand’s cryptocurrency were available. Moreover, while there

were more than 1.7 million active accounts, only 361 unique ac-

counts had recently participated in Algorand’s consensus protocol.

Since the safety and liveness of Algorand depend mainly on high

participation of nodes, the lack of participation poses a serious

threat to Algorand by making it prone to attacks from malicious

participants.

There exist other proof of stake based consensus protocols which

have different properties comparing to Algorand. Avalanche’s con-

sensus protocol [50] is inspired by gossip protocols and does not

need a committee. Tendermint [10] is committee-based consensus

protocol but the membership of the committee is deterministic

and public. The consensus protocols of Ethereum 2, Polkadot and

Cardano are similar. They use proof of stake to randomly select

block proposers and then use a chain selection rule to resolve forks

[11–13, 17, 34, 54, 55].

1
In a Sybil attack, the attacker creates a large number of pseudonymous identities to

gain disproportionate control and/or influence over the system.

2
Byzantine faults cause a node to inconsistently appear both failed and functioning to

others. The term “Byzantine” is taken from the “Byzantine general problem” [38].

3
Algorand is moving from its original reward scheme to a new reward scheme called

the Governance Rewards [28]. Under the new reward scheme, only agents who commit

to participate in the governance of the Algorand ecosystem will be rewarded. Agents

have to prove their commitment by locking their cryptocurrency assets for a potentially

long term. This new scheme is in line with proof-of-stake protocols.

The incentive problem in Bitcoin-like blockchains has been stud-

ied extensively in recent years [16, 21, 39, 47, 52]. However, the

results do not apply to Algorand due to its unique consensus proto-

col. In this paper, we propose IRS, an incentive-compatible reward

scheme for Algorand. Under IRS, nodes’ participation is monitored

through committee votes. These votes serve as evidence of the

committee members’ participation in the protocol. In addition, IRS

requires committee members to include with their vote the identi-

ties of the nodes from which they have received a valid message.

This facilitates the monitoring of the collaboration of nodes that

are not chosen as committee members. We model Algorand as a

Bayesian game and study nodes’ strategies under our proposed re-

ward scheme. Our analysis considers an adversary that can corrupt

nodes in a probabilistic manner. We show that if certain conditions

are met, all nodes are incentivized to participate in the protocol

regardless of being selected as committee members.

In summary, we make the following contributions. In §3.3, we

present a detailed cost model for nodes’ participation in Algorand.

In §4, we model the Algorand protocol as a Bayesian game. In §5, we

propose IRS, a novel incentive-compatible reward scheme to address

the free-rider problem. In §5, we study equilibrium strategies under

IRS and derive necessary conditions to ensure nodes participation.

In §6, we present detailed implementation requirements for real-

world deployment of IRS. Finally, in §7, we quantitatively analyze

our proposed reward scheme and simulate the protocol to measure

its overheads in terms of computation, storage, and networking.

2 ALGORAND PROTOCOL
The Algorand protocol maintains a permissionless blockchain. In

Algorand, adding a new block to the blockchain requires multiple

steps. Algorithm (1) provides high-level pseudocode of the Algo-

rand protocol (please refer to Appendix C in [41] for an in-depth

overview of the protocol). At each step, all nodes wait for the mes-

sages from the previous step for a fixed amount of time. Each node

then validates and propagates received messages to its neighbors.

The protocol can terminate at specific steps (i.e., 𝑘 > 4 where 𝑘 . 1

(mod 3)) if a termination condition is met (i.e., enough votes are

received or the final step, Kmax, is reached). At each non-terminal

step, a random committee of self-selected nodes is formed. Com-

mittee members generate and propagate a message according to

the protocol. The message is a block proposal if 𝑘 = 1, and its a

vote on a proposed block if 𝑘 > 1.

Cryptographic sortition. In Algorand, nodes are assumed to

have access to a unique signature scheme (e.g., [43]). As shown in

Algorithm (1), at step 𝑘 , given a publicly known random seed, 𝑄 ,

each node privately computes a hashlen-bit-long random string

𝑥𝑘 = 𝐻 (SIG(𝑘,𝑄)) by digitally signing (𝑘,𝑄) and then hashing

it using a random oracle 𝐻 [30]. The string 𝑥𝑘 is interpreted as a

binary expansion of a number between 0 and 1, denoted by .𝑥𝑘 =

𝑥𝑘/2hashlen. If this number is less than a known threshold, 𝑝𝑐 , then

the node is a member of the committee at step 𝑘 . The threshold

is set such that the expected size of the committee is 𝜏 (i.e., 𝑝𝑐 =

𝜏/𝑛, where 𝑛 is the number of nodes in the system). .𝑥𝑘 is also

used to represent the priority of the node; the smaller .𝑥𝑘 is the

higher the priority of the node will be. For nodes in the committee,

Algorithm 1: High-level pseudocode for Algorand

for 𝑘 = 1, . . . ,Kmax do
if 𝑘 > 1 then Validate and gossip step-(𝑘 - 1) messages;

if 𝑘 > 4 and 𝑘 . 1 (mod 3) then Exit if termination

condition for step 𝑘 is met;

(𝑥𝑘 , 𝜎𝑘) ← Sortition(𝑘);

if .𝑥𝑘 ≤ 𝑝𝑐 then
message← Generate a message;

Propagate message and 𝜎𝑘 ;

procedure Sortition(𝑘) begin
𝜎 ← SIG(𝑘,𝑄);
𝑥 ← 𝐻 (𝜎);
return (𝑥 , 𝜎);

𝜎𝑘 = SIG(𝑘,𝑄) is the committee credential. Committee members

propagate their credential alongside their generated message.

Gossip network and protocol. In Algorand, each node is provided
with an address-book file containing the IP address and the port

number of other nodes. Nodes form a gossip network by selecting

a subset of 𝑛𝑟𝑝 random peers to gossip messages to. The parameter

𝑛𝑟𝑝 depends on the number of nodes, and it is set such that the

gossip network is strongly connected. Messages are disseminated

on the gossip network using a gossip protocol. The message dis-

semination is initiated by committee members at each step. Each

committee member propagates their generated message to their

randomly selected peers. Those peers then forward the message

to their own peers. And this process continues until the message

is received by all the nodes in the network. To avoid forwarding

loops, nodes do not propagate the same message twice.

3 PRELIMINARIES
3.1 Adversary Model
The committee is guaranteed to reach Byzantine agreement [19,

22, 48] in the presence of an adversary that can corrupt nodes and

control their actions. The Algorand protocol is resilient to such

adversary as long as it cannot corrupt more than 1/3 of the nodes.

This is achieved by setting the expected size of the committee, 𝜏 ,

such that, with high probability, at least 2/3 of the committee mem-

bers are non-Byzantine nodes. In this paper, however, we consider a

slightly different adversary model. In particular, we assume that the

adversary corrupts each node with a fixed probability 𝑝𝑏 < 1/3. Un-
der our probabilistic adversarymodel, it is possible for the adversary

to corrupt more than 1/3 of nodes ex post. However, we show in §5

that for large systems, under our adversary model, non-Byzantine

nodes still constitute more than 2/3 of the committee with high

probability. Consequently, Algorand protocol is guaranteed to reach

Byzantine agreement with high probability.

Non-Byzantine supermajority. Since Algorand is a permission-

less blockchain, the adversary can easily introduce as many new

nodes as it wishes. Therefore, instead of assuming that the system

has at least a 2/3 majority of non-Byzantine nodes, it is often more

meaningful to assume that at least 2/3 of the cryptocurrency assets

are controlled by non-Byzantine nodes. In other words, instead of

assuming that the adversary can corrupt up to 1/3 of the nodes, it is

often assumed that the adversary can control up to 1/3 of the assets

in the blockchain. Algorand achieves this by assigning sub-nodes to
each node in proportion to the balance of its account. The crypto-

graphic sortition algorithm then randomly selects each sub-node as

a committee member. In this paper, we present our analysis under

the simpler assumption that each node has a single sub-node. We

then show how to modify the Algorand protocol and our analysis

to consider the more realistic assumption that each node controls

multiple sub-nodes.

3.2 Network Model
In this paper, we assume that the gossip network is strongly syn-

chronous. This is a widely adopted network assumption [6, 7, 10,

29] which states that all messages propagated initially by non-

Byzantine nodes are received by all other non-Byzantine nodes

within a known time period. We further assume that the network

remains strongly synchronous if a majority of nodes run the gossip

protocol. This means that for large systems, the adversary cannot

launch an Eclipse attack [31] with high probability.

3.3 Cost Model
Nodes running the Algorand protocol incur processing and com-

munication costs at each step of the protocol. These costs are mea-

surable in quantitative terms (e.g., energy consumption) and can

be expressed in monetary values (e.g., cryptocurrency or Dollar).

We denote the total cost incurred by any node 𝑖 at step 𝑘 by

𝐶𝑖 (𝑘). This cost has two components: (a) baseline costs,𝐶𝑏
𝑖
(𝑘), and

(b) committee costs, 𝐶𝑐 (𝑘). We model 𝐶𝑖 (𝑘) as follows.

𝐶𝑖 (𝑘) = 𝐶𝑏𝑖 (𝑘) +𝐶
𝑐 (𝑘) × 1(.𝑥𝑖,𝑘 < 𝑝𝑐)4 . (1)

𝐶𝑏
𝑖
(𝑘) represents the baseline costs that do not depend on whether

node 𝑖 is selected as a committee member at step 𝑘 . Examples

include costs of running cryptographic sortition and propagating

messages.𝐶𝑐 (𝑘) represents the committee costs incurred by a node

when it is selected as a committee member at step 𝑘 . Examples

include costs of generating blocks and votes.

4 THE ALGORAND GAME
To study nodes’ incentives, we model the participation of nodes

in the Algorand protocol as a Bayesian game. We formally define

the Algorand game and describe nodes’ strategies and utilities. We

then discuss solution concepts for our proposed game.

4.1 Game Model
We model the Algorand protocol as a Bayesian game. A Bayesian

game consists of a set of agents. Each agent has a type and a set

of available actions. Agents do not know their types before the

start of the game. They, however, know a common prior probability

distribution over types. At the beginning of the game, each agent

privately observes its own type. Agents then simultaneously take

their actions without knowing each others’ types. Finally, agents

receive a real-valued utility (a.k.a. payoff) given their joint types

and actions. A Bayesian game is formally defined as follows.

41(·) is the indicator function which returns 1 if the condition is true, and 0 otherwise.

Definition 1 (Bayesian Game [53]). A Bayesian game is repre-
sented by a tuple (𝑁,𝐴,Θ, 𝑝,𝑢) where:
• 𝑁 = {1, . . . , 𝑛} is a set of agents;
• 𝐴 = 𝐴1 × · · · ×𝐴𝑛 , where 𝐴𝑖 is a set of actions available to agent 𝑖 ;
• Θ = Θ1 × · · · × Θ𝑛 , where Θ𝑖 is the type space of agent 𝑖 ;
• 𝑃 : Θ ↦→ [0, 1] is a common prior over types; and
• 𝑢 = (𝑢1, . . . , 𝑢𝑛), where 𝑢𝑖 : 𝐴 × Θ ↦→ R is the utility for agent 𝑖 .

Agents and actions. In our setting, agents represent Algorand

nodes. Agents are assumed to be rational in the sense that they

selfishly choose an action to maximize their utility function. We

consider three actions: (i) cooperate,𝐶 , (ii) defect,𝐷 , (iii) misbehave,

𝑀 . A cooperative agent fully runs the Algorand protocol’s code and

consequently incurs all the processing and communication costs

associated with it. A defective agent does not run any code (e.g., logs

off from the system) and incurs no costs. A misbehaving agent runs

a malicious code to sabotage the system. Note that the malicious

code can imitate the behaviour of cooperating or defecting. Non-

Byzantine agents that are not corrupted by the adversary do not

misbehave. They only choose between cooperating and defecting.

They cooperate if and only if their expected rewards exceed their

expected costs. Byzantine agents, however, always misbehave (i.e.,

they run the adversary’s malicious code).

Formally, we denote the action of agent 𝑖 by 𝑎𝑖 ∈ 𝐴𝑖 = {𝐶, 𝐷,𝑀}.
A vector of actions 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴 is called an action profile.

An action profile 𝑎 can be written as (𝑎𝑖 , 𝑎−𝑖), where 𝑎−𝑖 is an
action profile without agent 𝑖’s action5.

Types. Type of agent 𝑖 is defined to be \𝑖 = (\𝑖,0, \𝑖,1, . . . , \𝑖,Kmax
)

where \𝑖,0 ∈ {0, 1} indicates if agent 𝑖 is corrupted by the adversary
(1 if 𝑖 is Byzantine and zero otherwise), and \𝑖,𝑘 is a number between

0 and 1 represented in binary by the hash result of the sortition

algorithm run by agent 𝑖 at step 𝑘 = 1, . . . ,Kmax (\𝑖,𝑘 = .𝑥𝑖,𝑘 , where

𝑥𝑖,𝑘 is returned by Sortition𝑖 (𝑘)). The type space of agent 𝑖 is

denoted as Θ𝑖 . At the beginning of the Algorand game, each agent

observers whether it is corrupted by the adversary. Agents also

receive a random seed for the cryptographic sortition algorithm.

Given the random seed, agents can run the sortition algorithm for

all steps to know what exactly their type vector is.

Prior probabilities. The probability that agent 𝑖 is corrupted by

the adversary is P(\𝑖,0 = 1) = 𝑝𝑏 . For 𝑘 = 1, . . . ,Kmax, \𝑖,𝑘 ’s are

drawn independently from a uniform distribution between 0 and 1.

Therefore, the probability that agent 𝑖 is selected as a committee

member is P(\𝑖,𝑘 ≤ 𝑝𝑐) = 𝑝𝑐 . The adversary corrupts agents inde-

pendently. Agents also are selected as committee members at any

given step independently.

Utility functions. For agent 𝑖 , the utility function, 𝑢𝑖 , maps action

profiles, 𝑎 = (𝑎1, . . . , 𝑎𝑛), and type vectors, \ = (\1, . . . , \𝑛), to
real-valued payoffs. If \𝑖,0 = 1, then we assume that 𝑢𝑖 (𝑎, \) is −𝐵 if

𝑎𝑖 ∈ {𝐶, 𝐷} and 0 if 𝑎𝑖 = 𝑀 where 𝐵 is a large real number. Under

this assumption, regardless of their type, Byzantine agents always

prefer𝑀 to 𝐶 and 𝐷 . To model non-Byzantine agents preferences,

we assume that if \𝑖,0 = 0, then 𝑢𝑖 (𝑎, \) = −𝐵 if 𝑎𝑖 = 𝑀 . For

𝑎𝑖 ∈ {𝐶, 𝐷}, the utility of non-Byzantine agents is equal to the

rewards they receive minus the costs they incur. We analyze utility

functions in more details in §5.

5
Throughout the paper, we use −𝑖 to denote all agents except agent 𝑖 .

4.2 Strategies and Equilibria
A strategy defines a description of how a game would be played

in every contingency. In a Bayesian game, a strategy prescribes a

distribution over actions for every type that an agent could have.

Let Δ(𝐴𝑖) be the set of all probability distributions over 𝐴𝑖 . For

agent 𝑖 , a strategy 𝑠𝑖 : Θ𝑖 ↦→ Δ(𝐴𝑖) is a mapping from agent 𝑖’s

types to distributions over agent 𝑖’s actions. The set of all strategies

for agent 𝑖 is denoted by 𝑆𝑖 . By 𝑠𝑖 (𝑎𝑖 |\𝑖), we indicate the probability
that agent 𝑖 takes action 𝑎𝑖 under 𝑠𝑖 given that agent 𝑖’s type is \𝑖 .

Similar to action profiles, a strategy profile 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆 is a

vector of strategies, where 𝑆 = 𝑆1 × · · · × 𝑆𝑛 is a set of all possible

strategy profiles.

Expected utilities. In Bayesian games, there are two main sources

of uncertainty: (i) types and (ii) actions. Types are drawn from the

prior probability distribution, 𝑃 , and actions are taken based on

agents’ strategies. To capture both sources of uncertainty, the ex

ante expected utility of agent 𝑖 is modeled as follows.

EU 𝑖 (𝑠) =E𝑎,\ [𝑢𝑖 (𝑎, \)] = 𝑝𝑏 E𝑎,\ [𝑢𝑖 (𝑎, \) | \𝑖,0 = 1]
+ (1 − 𝑝𝑏) E𝑎,\ [𝑢𝑖 (𝑎, \) | \𝑖,0 = 0] .

The expectation is taken with respect to \ and 𝑎 ∼ 𝑠 (· | \). This
formula models the expected utility of agent 𝑖 before the start of

the game and before the agent observes its type.

Given the defined expected utility model, we can define the set

of agent 𝑖’s best responses to strategy profile 𝑠−𝑖 as:

BR𝑖 (𝑠−𝑖) = argmax

𝑠𝑖 ∈𝑆𝑖
EU 𝑖 ((𝑠𝑖 , 𝑠−𝑖)) .

Intuitively, a best response is a strategy which provides the highest

expected utility given the strategy of others. Note that there may

be more than one strategy that maximizes agent 𝑖’s expected utility

for a given 𝑠−𝑖 .
Bayesian Nash equilibrium. As discussed before, a strategy

is a full contingency plan. Agents simultaneously choose their

strategies before the start of the game and do not change their

adopted strategies during the game. Once the game starts, each

agent observes its type and acts as prescribed by its strategy. Agents

strategies form a Bayesian Nash equilibrium (BNE) when the strat-

egy of each agent is a best response to the strategies adopted by

other agents. Formally, a strategy profile 𝑠∗ is a BNE if and only if

𝑠∗
𝑖
∈ BR𝑖 (𝑠∗−𝑖), for all 𝑖 . Informally, in a BNE, agent 𝑖 does not have

any incentive to unilaterally change its strategy from 𝑠∗
𝑖
if it knows

that other agents have fixed their strategies to 𝑠∗−𝑖 .

5 INCENTIVE ANALYSIS IN ALGORAND
In this section, we formulate agents’ utilities and study their BNE

strategies. We first consider Algorand’s original reward scheme.

We show that under this reward scheme, cooperation is not a BNE

strategy. We then propose a novel reward scheme and show that

under certain conditions, our proposed reward scheme incentivizes

all non-Byzantine agents to cooperate regardless of their type.

5.1 Algorand’s Original Reward Scheme
Algorand’s original reward scheme is called Participation Rewards

[28]. Under this reward scheme, The Algorand Foundation distributes
a fixed amount of cryptocurrency assets as a reward among all

agents. Agents are assigned sub-nodes in proportion to the balance

of their accounts. Under Algorand’s original reward scheme, the

fixed reward, 𝑅, is distributed equally among all sub-nodes. If agent

𝑖 is assigned 𝑤𝑖 sub-nodes, then agent 𝑖’s reward, 𝑅𝑖 , is equal to

𝑅 𝑤𝑖/𝑊 , where𝑊 is the total number of sub-nodes in the system.

The first advantage of this reward scheme is its simplicity: it is

easy to implement, and it is easy to explain to agents how they are

rewarded. The most important advantage of Algorand’s original

reward scheme is that it provides proportional rewards.

Definition 2. Proportional rewards. Let 𝑅𝑖 denote the expected
reward of agent 𝑖 . A reward scheme provides proportional rewards if
for any agent 𝑖 and 𝑗 ∈ 𝑁 , 𝑅𝑖/𝑅 𝑗 = 𝑤𝑖/𝑤 𝑗 .

The proportional rewards property ensures that the expected

fraction of assets controlled by the adversary does not increase

by the action of the reward scheme. Although Algorand’s original

reward scheme is simple and provides proportional rewards, it

suffers from a key drawback: it fails to prevent free riding. Agents

do not have any incentive to cooperate as they receive their rewards

irrespective of their cooperation.

Theorem 3. Let 𝑠∗ be a strategy profile where for each agent 𝑖 , if
\𝑖,0 = 0, then 𝑠∗

𝑖
(𝐶 | \𝑖) = 1, and otherwise, 𝑠∗

𝑖
(𝑀 | \𝑖) = 1. Under

Algorand’s original reward scheme, 𝑠∗ is not a BNE.

Proof. Suppose agent 𝑖 is a non-Byzantine agent (i.e., \𝑖,0 = 0).

If agent 𝑖 defects, it receives its rewards without incurring any costs.

Formally,𝑢𝑖 (𝑎, \) = 𝑅/𝑛 for all \ ∈ Θ if 𝑎𝑖 = 𝐷
6
. Let 𝑠′

𝑖
be a strategy

that chooses 𝐷 regardless of the type (i.e., 𝑠′
𝑖
(𝐷 | \𝑖) = 1 for all

\𝑖 ∈ Θ𝑖). It can be easily shown that EU 𝑖 ((𝑠′𝑖 , 𝑠
∗
−𝑖)) = (1 − 𝑝𝑏) 𝑅/𝑛.

If a non-Byzantine agent 𝑖 cooperates, it receives its reward but

incurs some strictly positive costs. This means that 𝑢𝑖 (𝑎, \) < 𝑅/𝑛
if 𝑎𝑖 = 𝐶 . Let 𝑎

∗ (\) be an action profile where 𝑎∗
𝑖
is𝐶 if \𝑖,0 = 0 and

𝑀 otherwise. The expected utility of agent 𝑖 for 𝑠∗ is:

EU 𝑖 (𝑠∗) = (1 − 𝑝𝑏) E\ [𝑢𝑖 (𝑎∗ (\), \) | \𝑖,0 = 0]
< (1 − 𝑝𝑏) 𝑅/𝑛 = EU 𝑖 ((𝑠′𝑖 , 𝑠

∗
−𝑖)) .

This implies that 𝑠∗
𝑖
is not a best response to 𝑠∗−𝑖 . Therefore, 𝑠

∗
is

not a BNE under Algorand’s original reward scheme. □

5.2 Incentive-compatible Reward Scheme (IRS)
To address the free-rider problem, we propose IRS, a novel incentive-

compatible reward scheme for Algorand. Under IRS, the Algorand

Foundation distributes rewards among agents based on their cooper-

ation. The cooperation of committee members can be easily tracked

as their messages are guaranteed to reach all other agents. How-

ever, tracking the cooperation of the agents that are not selected

as a committee member is challenging as they do not initiate any

messages. To address this challenge, our proposed reward scheme

requires committee members at step 𝑘 = 2, . . . ,Kmax to include

with their vote the identities of the agents from which they have

received a valid message at step 𝑘 − 1.
Let 𝑅𝑐 (𝑘) and 𝑅𝑏 (𝑘) denote a fixed baseline reward and a fixed

committee reward at step 𝑘 , respectively. Under IRS, a cooperating

agent 𝑖 receives a committee reward of 𝑅𝑐 (𝑘) if it is selected as

6
We present the proof for the case where all agents are assigned a single sub-node.

Our proof easily extends to the case where agents are assigned different number of

sub-nodes.

a committee member at step 𝑘 . Additionally, if agent 𝑖’s identity

is included in the vote generated by agent 𝑗 ∈ 𝑁𝑖 at step 𝑘 , then
agent 𝑖 receives a baseline reward of 𝑅𝑏 (𝑘)/𝑛𝑟𝑠 . We assume that

Byzantine agents do not include the identity of non-Byzantine

agents in their vote when they are selected as committee members.

In other words, non-Byzantine agents do not receive any baseline

reward for propagating messages to their Byzantine peers. Wemake

this assumption to calculate a lower bound on the expected utility

of non-Byzantine agents. If Byzantine agents include the identity of

non-Byzantine agents, the expected utility of non-Byzantine agents

can only increase. Given this assumption, the total reward of a

cooperating agent 𝑖 at step 𝑘 given an action profile 𝑎 and a type

vector \ can be formulated as:

𝑅𝑖 (𝑎, \, 𝑘) = (𝑅𝑏 (𝑘)/𝑛𝑟𝑠)
∑︁
𝑗∈𝑁𝑖

1(\ 𝑗,𝑘 ≤ 𝑝𝑐 , 𝑎 𝑗 = 𝐶) (2)

+ 𝑅𝑐 (𝑘) 1(\𝑖,𝑘 ≤ 𝑝𝑐). (3)

To show that our reward scheme prevents the free-rider problem,

we first prove that any non-Byzantine agent cannot unilaterally

change the outcome of each step by defecting. Given that, we for-

mulate the expected utility of each non-Byzantine agent assuming

that all other non-Byzantine agents cooperate regardless of their

type. We then prove that if certain conditions are met, cooper-

ation is a best response for a non-Byzantine agent when other

non-Byzantine agents cooperate. This then shows that cooperation

is a BNE strategy for non-Byzantine agents under IRS.

Lemma 4. Let NR𝑘 and NB𝑘 be random variables indicating the
number of non-Byzantine and the number of Byzantine agents selected
as committee members at any step 𝑘 , respectively. Let `𝑟 = E(NR𝑘),
`𝑏 = E(NB𝑘), ` = `𝑏 + `𝑟 /2, 𝛿𝑟 = 1−𝑇 /(1−𝑝𝑏), and 𝛿 = 2×𝑇 /(1+
𝑝𝑏) − 1. Then we have:

• P(NR𝑘 ≤ 𝑇 𝜏) ≤ 𝑒−`𝑟 𝛿
2

𝑟 /2, and
• P(NB𝑘 + NR𝑘/2 ≥ 𝑇 𝜏) ≤ 𝑒−` 𝛿

2/(2+𝛿) .

Proof. Let 𝑋𝑖,𝑘 be a random variable that takes value 1 if agent

𝑖 is selected as a committee member and agent 𝑖 is not corrupted

by the adversary, and takes value 0 otherwise. Similarly, let 𝑌𝑖,𝑘
be a random variable that takes value 1 if agent 𝑖 is selected as a

committee member and agent 𝑖 is corrupted by the adversary, and

takes 0 otherwise. We can write NR𝑘 =
∑
𝑖 𝑋𝑖,𝑘 , and NB𝑘 =

∑
𝑖 𝑌𝑖,𝑘 .

We have E(𝑋𝑖,𝑘) = (1 − 𝑝𝑏) 𝑝𝑐 , and E(𝑌𝑖,𝑘) = 𝑝𝑏 𝑝𝑐 . Therefore,

`𝑟 = E(NR𝑘) =
∑
𝑖 E(𝑋𝑖,𝑘) = (1 − 𝑝𝑏) 𝜏 , and `𝑏 = E(NB𝑘) =∑

𝑖 E(𝑌𝑖,𝑘) = 𝑝𝑏 𝜏 . Since 𝛿𝑟 ≥ 0, according to Chernoff bound, the

following inequality holds for any 𝑘 .

P(NR𝑘 ≤ 𝑇 𝜏) = P(NR𝑘 ≤ (1 − 𝛿𝑟) (1 − 𝑝𝑏) 𝜏)

= P(NR𝑘 ≤ (1 − 𝛿𝑟) `𝑟) ≤ 𝑒−`𝑟 𝛿
2

𝑟 /2 .

Similarly, since 𝛿 ≥ 0, we have the following inequality for any 𝑘 .

P(NB𝑘 + NR𝑘/2 ≥ 𝑇 𝜏) = P(NB𝑘 + NR𝑘/2 ≥ (1 + 𝛿) (1 + 𝑝𝑏) 𝜏/2)
= P(NB𝑘 + NR𝑘/2 ≥ (1 + 𝛿) `)

≤ 𝑒−` 𝛿
2/(2+𝛿) .

□

We assume that 𝑝𝑏 , 𝜏 , and 𝑇 are set such that NR𝑘 > 𝑇 𝜏 and

NB𝑘 + NR𝑘/2 < 𝑇 𝜏 are true with overwhelming probability. For

example, using Lemma (4), with 𝑝𝑏 = 0.2, 𝜏 = 4000 and𝑇 = 0.7, the

probability that NR𝑘 ≤ 𝑇 𝜏 is less than 10
−10

and the probability

that NB𝑘 + NR𝑘/2 ≥ 𝑇 𝜏 is less than 10
−13

. The two inequalities

imply that more than 2/3 of the selected committee members at

each step are non-Byzantine agents with overwhelming probability.

Proposition 5. Consider any agent 𝑖 ∈ 𝑁 . Suppose that the
strategy profile of all agents except agent 𝑖 is 𝑠∗−𝑖 where for each agent
𝑗 ∈ 𝑁 \𝑖 , if \ 𝑗,0 = 0, then 𝑠∗

𝑗
(𝐶 |\ 𝑗) = 1, and 𝑠∗

𝑗
(𝑀 |\ 𝑗) = 1 otherwise.

In a large system (i.e., 𝑛 →∞), the safety and liveness guarantees of
the Algorand protocol are met with high probability regardless of the
strategy of agent 𝑖 .

Proof. Assume that 𝑝𝑏 , 𝜏 , and𝑇 are set such thatNR𝑘 > 𝑇 𝜏 and

NB𝑘 +NR𝑘/2 < 𝑇 𝜏 with overwhelming probability. Consider a new

system consisting of all agents except agent 𝑖 . For large systems,

it is easy to modify Lemma (4) to show that the two inequalities

still hold for the new system with the same 𝑝𝑏 , 𝜏 , and 𝑇 . Moreover,

the Chernoff bound can be applied to show that with 𝑝𝑏 ≤ 1/3, the
network is synchronous with high probability regardless of agent

𝑖’s cooperation. Given that the network is synchronous, and the two

inequalities hold with high probability, Theorem 1 from [15] can

be applied to the new system to guarantee safety and liveness. □

We next formulate the expected utility of each agent. The Algo-

rand protocol implements a randomized algorithm. As discussed in

§2, the algorithm runs in multiple steps. We use 𝐾 (𝑎, \) to denote

the total number of steps it takes the algorithm to complete as a

function of agents’ types and their actions. Given 𝑎 and \ , the total

utility of agent 𝑖 with \𝑖,0 = 0 can be formulated as:

𝑢𝑖 (𝑎, \) =
𝐾 (𝑎,\)∑︁
𝑘=1

𝑢𝑖 (𝑎, \, 𝑘),

where𝑢𝑖 (𝑎, \, 𝑘) is 𝑅𝑖 (𝑎, \, 𝑘)−𝐶𝑖 (𝑎, \, 𝑘)7 if 𝑎𝑖 = 𝐶 and 0 otherwise.

Lemma 6. Consider any agent 𝑖 ∈ 𝑁 . Suppose that the strategy
profile of all agents except agent 𝑖 is 𝑠∗−𝑖 where for each agent 𝑗 ∈ 𝑁 \𝑖 ,
if \ 𝑗,0 = 0, then 𝑠∗

𝑗
(𝐶 | \ 𝑗) = 1, and 𝑠∗

𝑗
(𝑀 | \ 𝑗) = 1 otherwise. Suppose

further that agent 𝑖 adopts strategy 𝑠𝑖 which plays𝑀 if \𝑖,0 = 1 and
plays𝐶 with probability 𝑠𝑐 and𝐷 with probability 1−𝑠𝑐 if \𝑖,0 = 0. Let
𝑎∗ (\) be an action profile where 𝑎∗

𝑖
is 𝐶 if \𝑖,0 = 0 and𝑀 otherwise.

Define 𝐾 (\) = 𝐾 (𝑎∗ (\), \). The expected utility of agent 𝑖 is:

EU 𝑖 ((𝑠𝑖 , 𝑠∗−𝑖)) = 𝑠𝑐 (1 − 𝑝𝑏)
Kmax∑︁
ℓ=1

P(𝐾 (\) = ℓ)
ℓ∑︁
𝑘=1

𝑢 (𝑘),

where 𝑢 (𝑘) = 𝑅𝑏 (𝑘) 𝑝𝑐 (1 − 𝑝𝑏) −𝐶𝑏 (𝑘) + (𝑅𝑐 (𝑘) −𝐶𝑐 (𝑘)) 𝑝𝑐 .

The proof is presented in Appendix B of [41]. Next, we prove that

𝑠∗ is a BNE under certain conditions. These conditions are derived

simply by requiring that the expected rewards should outweigh the

expected costs.

Theorem 7. Let 𝑠∗ be a strategy profile where for each agent 𝑖 , if
\𝑖,0 = 0, then 𝑠∗

𝑖
(𝐶 | \𝑖) = 1, and otherwise, 𝑠∗

𝑖
(𝑀 | \𝑖) = 1. Given 𝑝𝑐 ,

𝑝𝑏 , 𝐶𝑏 (𝑘), and 𝐶𝑐 (𝑘) for 𝑘 = 1, . . . ,Kmax, 𝑠∗ is a BNE under IRS if:

𝑅𝑏 (𝑘) (1 − 𝑝𝑏) + 𝑅𝑐 (𝑘) ≥ 𝐶𝑏 (𝑘)/𝑝𝑐 +𝐶𝑐 (𝑘), ∀𝑘 = 1, . . . ,Kmax .

7
In Equation (1),𝐶𝑖 depends on \ through .𝑥𝑖,𝑘 , and it is formulated assuming that

agent 𝑖 cooperates.

Proof. To prove that 𝑠∗ is a BNE, it suffices to show that 𝑠∗
𝑖
is

a best response to 𝑠∗−𝑖 for all agent 𝑖 ∈ 𝑁 . Recall that 𝑠∗
𝑖
is a best

response to 𝑠∗−𝑖 when EU 𝑖 ((𝑠∗𝑖 , 𝑠
∗
−𝑖)) ≥ EU 𝑖 ((𝑠𝑖 , 𝑠∗−𝑖)) for all 𝑠𝑖 ∈ 𝑆𝑖 .

If 𝑅𝑏 (𝑘) (1−𝑝𝑏)+𝑅𝑐 (𝑘) ≥ 𝐶𝑏 (𝑘)/𝑝𝑐 +𝐶𝑐 (𝑘) for all 𝑘 = 1, . . . ,Kmax,

then 𝑢 (𝑘) in Lemma (6) is greater than or equal to zero for all

𝑘 = 1, . . . ,Kmax. Consequently, EU 𝑖 ((𝑠𝑖 , 𝑠∗−𝑖)) is maximized when

𝑠𝑐 = 1. In this case, we have 𝑠 = 𝑠∗ which means 𝑠∗ is a BNE. □

6 IMPLEMENTATION DETAILS
6.1 Gossip Protocol in IRS
To implement IRS, we make three main modifications to Algorand’s

default gossip protocol. First, we require the randomness of the

peer-selection mechanism to be verifiable (e.g., through verifiable

pseudo-random peer selection [40]). This requirement prevents

the adversary from gaining unauthorized awards. Byzantine nodes

cannot be rewarded for propagating messages to nodes that are

not among their randomly selected peers. Byzantine committee

members also cannot refer other Byzantine nodes that are not

randomly connected to them.

Second, we require nodes to disable selective propagation. Selec-

tive propagation is an optimization technique that prevents nodes

from propagating low-priority block proposals [15, 29]. Although

this technique reduces network congestion, it prevents low-priority

block proposals from reaching all nodes in the gossip network. This

in turn prevents the Algorand Foundation from tracking coopera-

tion of some committee members at step 1. One optimization that

could be implemented to replace selective propagation is to only

send the committee member’s credential for the low-priority block

proposals without sending the entire block proposal.

Third, we require nodes to track the identity of all nodes from

which they have received a valid message, even if the message is

a duplicate message. For example, suppose that agent 𝑖 receives

message 𝑚 at step 𝑘 first from agent 𝑗 and later from agent 𝑗 ′.
Agent 𝑖 propagates message 𝑚 to its peers only the first time it

receives it from agent 𝑗 . However, it saves the identity of both

agents 𝑗 and 𝑗 ′ as propagators for𝑚 at step 𝑘 . If agent 𝑖 becomes

a committee member at step 𝑘 + 1, it includes the identity of both

agents 𝑗 and 𝑗 ′ in its generated vote. This allows the Algorand

Foundation to not only track the cooperation of the committee

members but also the cooperation of their peers. Since committee

members are selected randomly, their cooperating peers can be

considered random samples of non-voting agents that cooperate.

6.2 Consideration of Assets in IRS
Algorand assigns sub-nodes to each node in proportion to the bal-

ance of its account. For simplicity, in our analysis so far, we have

considered a single sub-node per node. We now discuss the neces-

sary changes needed to allow multiple sub-nodes per node.

Cryptographic sortition. The sortition algorithm can be easily

extended to consider node with more than one sub-node. Suppose

that node 𝑖 has𝑤𝑖 sub-nodes. A simple way to extend sortition is for

node 𝑖 to run the sortition algorithm (see Algorithm (1)) on each of

its𝑤𝑖 sub-nodes. Although simple, this method is computationally

expensive. An alternative method, proposed in [15], is to use the

inverse transform sampling. In this method, the interval of [0, 1) is

partitioned into consecutive intervals of the following form.

𝐼𝑀𝑤𝑖 ,𝑝
=
[
𝐵(𝑀 ;𝑤𝑖 , 𝑝), 𝐵(𝑀 + 1;𝑤𝑖 , 𝑝)

)
, ∀𝑀 ∈ {0, 1, . . . ,𝑤𝑖 − 1}.

If .𝑥𝑖 falls in the 𝐼𝑀𝑤𝑖 ,𝑝
interval, node 𝑖 has𝑀 selected sub-nodes.

Adversary model. So far, we have assumed that the adversary

corrupts each node with probability 𝑝𝑏 < 1/3. We can extend this

assumption by allowing the adversary to corrupt each sub-node

with probability 𝑝𝑏 . Suppose that the total number of sub-nodes

is𝑊 =
∑
𝑖∈𝑁 𝑤𝑖 . We define𝑊−𝑖 =

∑
𝑗∈𝑁 \𝑖 𝑤 𝑗 for all agents 𝑖 . For

our results to hold under the new adversary model, we require

𝑊−𝑖 to go to infinity as 𝑛 goes to infinity. We further require that

𝑤𝑖/𝑊 < (1−3×𝑝𝑏) for all nodes 𝑖 . This requirement ensures that if

any single node is removed from the set of nodes, in expectation, the

adversary does not control more than one-third of the remaining

sub-nodes. For example, if 𝑝𝑏 = 0.3, then no single agent should

have greater than or equal to one-tenth of all sub-nodes. Under

these assumptions, it can be easily verified that our results in §5 hold

for the new adversary model because non-Byzantine sub-nodes still

constitute more than 2/3 of the committee with high probability.

Gossip network and protocol.When each agent has more than

one sub-node, instead of forming the random gossip network among

nodes, we require the gossip network to be constructed among sub-

nodes. This means that nodes need to select a subset of random

sub-nodes as peers for each of their sub-nodes. This can be achieved

by including indexes of sub-nodes as an extra input for the verifiable

pseudo-random peer selection procedure [40]. When a sub-node

propagates a message to another sub-node, it is required to include

the indexes of both the sender and the receiver sub-nodes in the

message.When a node receives a message, it will verify if the sender

sub-node and the receiver sub-node are indeed connected.

IRS rewards. The simplest way to extend IRS to consider multiple

sub-nodes per node is to distribute rewards on a per-sub-node basis.

In other words, IRS rewards each sub-node independently. In this

way, the expected total reward of a node is the sum of the expected

rewards of its sub-nodes. The expected total cost depends on the

implementation of the sortition process and the gossip protocol.

With the simple extensions presented above, the total expected cost

is the sum of the expected costs of its sub-nodes.

7 EXPERIMENTS
In this section, we estimate the costs of running an Algorand node

for two real-world deployment scenarios. Based on the costs, we

identify the baseline reward, 𝑅𝑏 , and committee reward, 𝑅𝑐 , for

the two scenarios to guarantee participation as a BNE strategy. We

also simulate the extended gossip protocol outlined in §6 for IRS

and measure its overheads in terms of computation, storage and

networking.

7.1 Estimated Costs and Rewards
Compared to PoW blockchains, Algorand nodes require much less

computation power to participate in the consensus protocol. Any

tentative participant can run an Algorand node with commodity

machines. We consider two deployment scenarios. First, the par-

ticipant runs an Algorand node on a virtual machine from a cloud

service provider such as Amazon Web Services (AWS) [5]. Second,

Comp. & Storage Cost 72.54 $/mon 8.2 × 10−5 Algo/s
Networking Cost 0.09 $/GB 0.2647 Algo/GB

Table 1: Costs of an AWS EC2 instance

Step 𝐶𝑏 𝑅𝑏 𝐶𝑐 𝑅𝑐

1 1.77 × 10−3 18603 8.47 × 10−5 8.5 × 10−5
2 6.4 × 10−3 133891 2.12 × 10−6 2.2 × 10−6
3 3.26 × 10−3 20408 2.12 × 10−6 2.2 × 10−6

4 to Kmax 0.011 66823 2.12 × 10−6 2.2 × 10−6

Table 2: Estimated costs and rewards (Algo/block) on AWS.

the participant runs the Algorand protocol on a personal computer.

We estimate the costs in Algo
8
(1 Algo = 0.34 USD).

Cloud-hosted Algorand node. Consider an AWS EC2 instance

with 4 vCPU, 8GB memory, and 256GB SSD storage. The costs asso-

ciated with renting such instance are listed in Table 1. The average

size of each block in Algorand ledger is about 40KB [4]. We estimate

the size of a vote message to be about 1KB based on the official

implementation of Algorand in Go programming language [26].

On average, it takes about 5 seconds for the Algorand protocol to

commit a block [3]. We assume that each round takes 5 steps, which

means that each step takes about 1 second. We further assume that

each Algorand node has 8 peers in the gossip network. This is the

default value in Algorand [29]. According to current specification of

Algorand [25], 𝑝𝑏 = 1/5 and 𝜏 = 20, 2990, 1500, 5000, 5000, . . . , 5000

for step 1 to Kmax. As of July 24th, 2022, according to the AlgoEx-

plorer [36], there are 550 nodes with a total of more than 25 billion

sub-nodes actively participating in running the Algorand protocol.

We estimate the baseline cost at each step as computation and

storage costs plus communication costs. Computation and storage

costs are listed in Table 1 and are fixed across steps. The communi-

cation cost per step is calculated as a linear function of the number

of neighbours per node and the per GB networking cost listed in

Table 1. Similarly, the committee cost at each step is estimated as

the sum of computation and storage costs and communication costs.

The computation and storage costs are covered in our estimated

baseline cost (the same rented AWS EC2 instance executes both

baseline and committee related potions of the Algorand protocol).

The communication cost per step is calculated similarly as before.

Given the costs, we derive the baseline rewards and committee

rewards at each step by ensuring that 𝑅𝑏 (𝑘) (1 − 𝑝𝑏) ≥ 𝐶𝑏 (𝑘)/𝑝𝑐
and 𝑅𝑐 (𝑘) ≥ 𝐶𝑐 (𝑘) according to Theorem (7). The estimated costs

and derived IRS rewards per block are listed in Table 2.

Self-hosted Algorand node. Next, we consider the costs and

associated IRS rewards when an Algorand node runs on a personal

computer (PC). We consider the energy consumption of a typical

PC to be about 200W [1]. We consider an average energy price of

0.0944 USD/kWh [2]. We further consider an average price of an

Internet plan with unlimited traffic to be around 100 USD/month.

Given these costs, the overall cost of running an Algorand node on

a personal computer is about 0.00013 Algo/s. Similar to our cost

estimation for the AWS scenario, the baseline cost covers the total

computation and storage costs. Since there is no limit on the traffic,

8
Algo is the unit of Algorand’s cryptocurrency.

Step 1 Step 2 Step 3 Steps 4 to Kmax

𝑅𝑏 1362 2627 815 815

Table 3: Estimated baseline rewards (Algo/block) on PC.

we can simply set𝐶𝑏 = 0.00013 Algo and𝐶𝑐 = 0 Algo. The baseline

IRS rewards are listed in Table 3.

Comparison against Algorand’s original reward scheme. Al-
gorand’s Participation Rewards only distributes about 20 to 30

Algos for each block. In comparison, our calculated rewards might

seem prohibitively large for a practical implementation and deploy-

ment of IRS. We note that most blocks are generated within the

first 5 steps. This means that for most blocks, no reward is given

for steps 6 to Kmax. Second, our calculations are based on the as-

sumption that each agent has a single sub-node, which leads to a

worst-case analysis (unlike expected rewards, expected costs do

not necessarily increase linearly as a function of sub-nodes). In the

real-world deployment of Algorand, each agent has on average 40

million sub-nodes. Restricting the analysis to such agents could

lead to more feasible rewards. Finally, in real-world settings, some

agents are altruistic (i.e., they participate regardless of the rewards).

Inclusion of such agents in the analysis would lead to lower rewards.

Extending IRS to include altruistic agents would be an interesting

future work, both theoretically and in practice.

7.2 Overhead of Gossip Protocol in IRS
The overhead of the extended gossip protocol in IRS consists of

three main parts: (i) computational overhead of running verifiable

random peer selection, (ii) networking overhead of disabling selec-

tive propagation, and (iii) storage overhead of storing identities of

all valid message propagators.

Computation overhead. The verifiable random peer selection

procedure randomly connects sub-nodes to each other. To imple-

ment this procedure, the inverse transform sampling technique in

Algorand’s sortition procedure can be used (see §6.2). To measure

the overhead of this implementation, we run the benchmark of

the sortition function in the official implementation of Algorand

[26] on a machine powered by AMD EPYC 7H12 processors. The

average execution time to run the sortition once is about 0.2 ms.

Algorand reconstructs the gossip network for each new block [29],

so the overall computation overhead is then 0.0002× (𝑁 −1) ≈ 0.11

seconds per block for 𝑁 = 550. Given that each block is committed

to the ledger every 5 seconds, this is an overhead of 2.2%. One way

to reduce this overhead is to reduce the network reconstruction

frequency (e.g., reconstruct the gossip network every 4 or 5 blocks).

Network and storage overhead. To measure the network and

the storage overheads, we implement a simulator of the gossip

protocol in IRS. The simulator has 132 lines of Python code and is

available at https://anonymous.4open.science/r/IRS-Simulator/. We

run our simulator on real-world data extracted from AlgoExplorer

[36]. We randomly connect each sub-node to 8 other sub-nodes.

According to our simulation results, on average, each Algorand

node is connected to 252 peers (each node has on average more

than 45 million sub-nodes). Moreover, our results show that each

node has to gossip the hashes of low-priority blocks 18 times (on

average 20 selected sub-nodes as block proposers). Assuming that

https://anonymous.4open.science/r/IRS-Simulator/

the size of each block hash is 1KB, the network bandwidth overhead

for each node is about 252 × 18 × 1KB = 4536KB per committed

block. For storage overhead, each node needs to store the public

keys of all valid message propagators. The size of the public key in

Algorand is 32 bytes [26], so the storage overhead is about 252×32B
= 8.064KB per committed block. Regarding networking and storage,

IRS has limited carbon footprint because networking and storage

are energy disproportional (i.e., the energy consumption does not

proportionally change as a function of network/storage utilization).

8 RELATEDWORKS
Incentives in blockchains. Incentive compatibility of reward

schemes is crucial to the security of blockchains. Eyal and Sirer

[21] prove negative results with regard to incentive compatibility

of Bitcoin. They model the competitive mining among the miners

as a strategic game and propose a novel mining strategy called

selfish mining. The authors examine the profitable threshold of

selfish mining, which is the computation power needed to gain

more revenue. The authors then propose a modification to the

Bitcoin chain-selection protocol to increase the profitable threshold

of selfish mining to 1/4. Selfish mining has been studied extensively

ever since [33, 45, 47, 51, 57].

Incentives for information propagation.Most permissionless

blockchains [29, 44, 56] rely on a peer-to-peer gossip protocol to

propagate transactions. However, these protocols do not provide

an incentive for the nodes in the blockchains to participate in

propagating the transactions. In fact, Babaioff et al. [9] argue that

these protocols incentivize nodes not to propagate transactions.

The authors in [9] propose a reward scheme to incentivize trans-

action propagation. They prove that under the proposed reward

scheme, the strategy where all nodes propagate transactions and

do not create fake identities (Sybil attacks) is a Nash equilibrium. In

addition, the proposed scheme guarantees that most of the nodes

in the network will be aware of the transaction. The additional

rewards required to implement the scheme are a constant in expec-

tation and the user only needs to send the transaction to a small

number of nodes in the beginning. A main drawback of the model

in [9] is that it is highly restricted. The model only considers net-

works in the form of a forest of 𝑑-ary directed trees with height 𝐻

and assumes that each node has the same hashing power.

Ersoy et al. [20] propose another incentive mechanism for trans-

action propagation under a network model with minimal restric-

tions. The resulting reward scheme encourages propagating with-

out creating fake identities.

Incentives in committee-based protocols. Amoussou-Guenou

et al. [6, 7] analyze a simplified committee-based consensus proto-

col. They propose to make some committee members pivotal such

that they have incentives to participate. In this case, a rational node

can unilaterally determine the result of the consensus protocol. If

a pivotal node does not follow the protocol, consensus is not be

reached and a penalty is applied. As a result, all pivotal nodes partic-

ipating in the protocol as required by the protocol becomes a Nash

equilibrium. Nevertheless, the solution is not practical in Algorand

because the assumptions in [6, 7] do not hold. For example, the

solution proposed by [7] assumes that all nodes are treated equally

and have the same voting power, which is not the case in Algorand.

Also, the solution assumes that all the committee members are or-

dered by publicly known indexes, while the membership is private

in Algorand until nodes publish it. In addition, each node communi-

cates with all other nodes directly in the simplified protocol while

Algorand adopts a gossip protocol to disseminate messages.

Fooladgar et al. [23] analyze the Algorand protocol as a static

non-cooperative game. They demonstrate that all nodes partici-

pating the protocol is not a Nash equilibrium under Algorand’s

original reward scheme. If all other nodes participate in the proto-

col, a node can free-ride to get its reward without paying the costs

of running an Algorand node. To address the free-rider problem,

the authors propose a new reward scheme where only participating

nodes are rewarded. In this work, the analysis is limited to the

rational-agent-only case. In addition, the proposed reward scheme

only incentivizes committee members and fails to incentivize mes-

sage propagation by all nodes. Under the proposed method, only

nodes whose participation is necessary (for the network to remain

synchronous) are incentivized to propagate messages.

We extend the prior work in two main aspects. First, our model

preserves important features of the Algorand protocol, such as

randomized membership selection and private membership infor-

mation. Second, we propose a new reward scheme and prove that

all nodes participating faithfully is a Bayesian Nash equilibrium

under certain conditions even in the presence of an adversary.

9 CONCLUSION & FUTUREWORKS
In this paper, we model the Algorand protocol as a Bayesian game.

We propose a reward-distribution scheme and derive necessary con-

ditions such that all nodes participating in the protocol is a Bayesian

Nash equilibrium. Our work highlights some open problems in

designing incentive-compatible reward schemes for randomized,

committee-based consensus protocols that depend on nodes for

message propagation. In particular, like Algorand’s original reward

scheme, our proposed reward scheme relies on a central authority to

collect messages to identify the role of nodes and to verify the partic-

ipation of nodes. A more decentralized reward scheme is preferred

where nodes in Algorand network determine how the rewards are

distributed without a central authority. Moreover, although our

model captures some important features of Algorand, modeling

the protocol as a sequential game is an interesting direction for

future work. Finally, our analysis is based on the assumption that

the network is synchronous. Extending the analysis to a setting

where the network is not synchronous would be a possible future

direction.

ACKNOWLEDGMENTS
This work was partially supported by the NSERC-RGPIN-2019-

04936, CFI-JELF-38850, ORF-RI-38850, Ripple, and NSERC Discov-

ery grants.

REFERENCES
[1] 2018. Power Management Statistics. https://www.it.northwestern.edu/hardware/

eco/stats.html.

[2] 2021. State Electricity Profiles. https://www.eia.gov/electricity/state/.

[3] Algorand. 2022. Algorand Developer Portal. https://metrics.algorand.org/.

[4] Algoscan. 2022. Developer | Algoscan. https://developer.algoscan.app/.

[5] Amazon. 2006. Cloud Computing Services - Amazon Web Services (AWS). https:

//aws.amazon.com/.

https://www.it.northwestern.edu/hardware/eco/stats.html
https://www.it.northwestern.edu/hardware/eco/stats.html
https://www.eia.gov/electricity/state/
https://metrics.algorand.org/
https://developer.algoscan.app/
https://aws.amazon.com/
https://aws.amazon.com/

[6] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara

Tucci-Piergiovanni. 2020. Rational Behaviors in Committee-Based Blockchains.

In Proceedings of the 24th International Conference on Principles of Distributed
Systems (OPODIS). 12:1–12:16.

[7] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara

Tucci-Piergiovanni. 2020. Rational vs Byzantine Players in Consensus-Based

Blockchains. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). 43–51.

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-

perledger Fabric: A Distributed Operating System for Permissioned Blockchains.

In Proceedings of the 13th EuroSys Conference. 1–15.
[9] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2012. On Bit-

coin and Red Balloons. In Proceedings of the 13th ACM Conference on Electronic
Commerce (EC). 56.

[10] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2019. The Latest Gossip on BFT

Consensus. arXiv:1807.04938 [cs] (2019).
[11] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.

https://doi.org/10.48550/ARXIV.1710.09437

[12] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. 2020. Combining

GHOST and Casper. https://doi.org/10.48550/ARXIV.2003.03052

[13] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios Piliouras.

2019. Incentives in Ethereum’s Hybrid Casper Protocol. In 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). 236–244. https://doi.org/

10.1109/BLOC.2019.8751241

[14] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

Proceedings of the Symposium on Operating Systems Design and Implementation
(OSDI). 173–186.

[15] Jing Chen and Silvio Micali. 2019. Algorand: A Secure and Efficient Distributed

Ledger. Theoretical Computer Science 777 (2019), 155–183.
[16] Lin William Cong, Zhiguo He, and Jiasun Li. 2021. Decentralized Mining in

Centralized Pools. The Review of Financial Studies 34, 3 (2021), 1191–1235.
[17] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. InAdvances in Cryptology – EUROCRYPT 2018. Springer International
Publishing, 66–98.

[18] Diem. 2020. The Diem Association. https://www.diem.com/en-us/.

[19] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.
[20] Oguzhan Ersoy, Zhijie Ren, Zekeriya Erkin, and Reginald L. Lagendijk. 2018.

Transaction Propagation on Permissionless Blockchains: Incentive and Rout-

ing Mechanisms. In Proceedings of the Crypto Valley Conference on Blockchain
Technology (CVCBT). 20–30.

[21] Ittay Eyal and Emin Gün Sirer. 2014. Majority Is Not Enough: Bitcoin Min-

ing Is Vulnerable. In Proceedings of the International Conference on Financial
Cryptography and Data Security (FC). 436–454.

[22] Michael J Fischer. 1983. The consensus problem in unreliable distributed systems

(a brief survey). In Proceedings of the International Conference on Fundamentals of
Computation Theory (FCT). 127–140.

[23] Mehdi Fooladgar, Mohammad Hossein Manshaei, Murtuza Jadliwala, and Mo-

hammad Ashiqur Rahman. 2020. On Incentive Compatible Role-Based Reward

Distribution in Algorand. In Proceedings of the 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 452–463.

[24] Cambridge Centre for Alternative Finance. 2022. Cambridge Bitcoin Electricity

Consumption Index (CBECI). https://ccaf.io/cbeci/index/.

[25] Algorand Foundation. 2019. Algorand Blockchain Features Specifica-

tion Version 1.0. https://github.com/algorandfoundation/specs/blob/

5615adc36bad610c7f165fa2967f4ecfa75125f0/overview/Algorand_v1_spec-

2.pdf.

[26] Algorand Foundation. 2019. Algorand’s official implementation in Go. - GitHub.

https://github.com/algorand/go-algorand.

[27] Algorand Foundation. 2021. Algorand Pledges to be the Greenest Blockchain

with a Carbon-Negative Network Now and in the Future. https://www.algorand.

com/resources/algorand-announcements/carbon_negative_announcement.

[28] Algorand Foundation. 2021. Introducing Governance: Earn rewards for your

participation in the decision making. https://algorand.foundation/governance.

[29] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principles (SOSP). 51–68.
[30] Oded Goldreich. 2007. Foundations of cryptography: Volume 1, basic tools. Cam-

bridge university press.

[31] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

Attacks on Bitcoin’s Peer-to-Peer Network. In Proceedings of the 24th USENIX
Security Symposium (USENIX Security). 129–144.

[32] Christine V Helliar, Louise Crawford, Laura Rocca, Claudio Teodori, and Monica

Veneziani. 2020. Permissionless and permissioned blockchain diffusion. Interna-
tional Journal of Information Management 54 (2020), 102–136.

[33] Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramèr, Giulia Fanti, and

Ari Juels. 2021. SquirRL: Automating Attack Analysis on Blockchain Incentive

Mechanisms with Deep Reinforcement Learning. In Proceedings of the Network
and Distributed System Security Symposium (NDSS).

[34] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology – CRYPTO 2017. Springer International Publishing, 357–388.

[35] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. (2012).

[36] Rand Labs. 2020. Algorand (ALGO) Blockchain Explorer. https://algoexplorer.io/.

[37] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121) (2001).

[38] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-

als Problem. ACM Transactions on Programming Languages and Systems (1982),
382–401.

[39] Jacob Leshno and Philipp Strack. 2019. Bitcoin: An Impossibility Theorem for

Proof-of-Work Based Protocols. SSRN Electronic Journal (2019).
[40] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy, Lorenzo

Alvisi, andMichael Dahlin. 2006. BARGossip. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI). 191–204.

[41] Maizi Liao, Wojciech Golab, and Seyed Majid Zahedi. 2023. IRS: An Incentive-

compatible Reward Scheme for Algorand. arXiv:2302.11178 [cs.GT]

[42] Ziyao Liu, Nguyen Cong Luong, Wenbo Wang, Dusit Niyato, Ping Wang, Ying-

Chang Liang, and Dong In Kim. 2019. A survey on blockchain: A game theoretical

perspective. IEEE Access 7 (2019), 47615–47643.
[43] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random functions.

In Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 120–130.

[44] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.

[45] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn

Mining: Generalizing Selfish Mining and Combining with an Eclipse Attack. In

2016 IEEE European Symposium on Security and Privacy (EuroS&P). 305–320.
[46] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable

Consensus Algorithm. In Proceedings of the USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC). 305–320.

[47] Rafael Pass and Elaine Shi. 2017. FruitChains: A Fair Blockchain. In Proceedings
of the ACM Symposium on Principles of Distributed Computing (PODC). 315–324.

[48] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement

in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980), 228–234.
[49] QuantumMechanic. 2011. Proof of Stake Instead of Proof of Work. https://

bitcointalk.org/index.php?topic=27787.0.

[50] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün

Sirer. 2019. Scalable and Probabilistic Leaderless BFT Consensus throughMetasta-

bility. https://doi.org/10.48550/ARXIV.1906.08936

[51] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal Selfish

Mining Strategies in Bitcoin. In Proceedings of the International Conference on
Financial Cryptography and Data Security (FC). 515–532.

[52] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. 2016.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions. In Proceedings
of the International Conference on Financial Cryptography and Data Security (FC).
477–498.

[53] Yoav Shoham and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press.

[54] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction

Processing in Bitcoin. In Financial Cryptography and Data Security. Springer
Berlin Heidelberg, Berlin, Heidelberg, 507–527.

[55] Alistair Stewart and Eleftherios Kokoris-Kogia. 2020. GRANDPA: a Byzantine

Finality Gadget. https://doi.org/10.48550/ARXIV.2007.01560

[56] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[57] Shiquan Zhang, Kaiwen Zhang, and Bettina Kemme. 2020. A Simulation-Based

Analysis of Multiplayer Selfish Mining. In Proceedings of the IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). 1–5.

https://doi.org/10.48550/ARXIV.1710.09437
https://doi.org/10.48550/ARXIV.2003.03052
https://doi.org/10.1109/BLOC.2019.8751241
https://doi.org/10.1109/BLOC.2019.8751241
https://www.diem.com/en-us/
https://ccaf.io/cbeci/index/
https://github.com/algorandfoundation/specs/blob/5615adc36bad610c7f165fa2967f4ecfa75125f0/overview/Algorand_v1_spec-2.pdf
https://github.com/algorandfoundation/specs/blob/5615adc36bad610c7f165fa2967f4ecfa75125f0/overview/Algorand_v1_spec-2.pdf
https://github.com/algorandfoundation/specs/blob/5615adc36bad610c7f165fa2967f4ecfa75125f0/overview/Algorand_v1_spec-2.pdf
https://github.com/algorand/go-algorand
https://www.algorand.com/resources/algorand-announcements/carbon_negative_announcement
https://www.algorand.com/resources/algorand-announcements/carbon_negative_announcement
https://algorand.foundation/governance
https://algoexplorer.io/
https://arxiv.org/abs/2302.11178
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.48550/ARXIV.1906.08936
https://doi.org/10.48550/ARXIV.2007.01560

	Abstract
	1 Introduction
	2 Algorand Protocol
	3 Preliminaries
	3.1 Adversary Model
	3.2 Network Model
	3.3 Cost Model

	4 The Algorand Game
	4.1 Game Model
	4.2 Strategies and Equilibria

	5 Incentive Analysis in Algorand
	5.1 Algorand's Original Reward Scheme
	5.2 Incentive-compatible Reward Scheme (IRS)

	6 Implementation Details
	6.1 Gossip Protocol in IRS
	6.2 Consideration of Assets in IRS

	7 Experiments
	7.1 Estimated Costs and Rewards
	7.2 Overhead of Gossip Protocol in IRS

	8 Related Works
	9 Conclusion & Future Works
	Acknowledgments
	References

