
REF: Resource Elasticity Fairness with Sharing
Incentives for Multiprocessors

Seyed Majid Zahedi, Benjamin C. Lee
zahedi@cs.duke.edu, benjamin.c.lee@duke.edu

Motivation

• Alvy and Ben are working on ASPLOS papers

• Each has $10K to buy clusters

• Alvy works on accelerators

• Ben works on memory systems

2 / 28

Motivation

• Alvy and Ben are working on ASPLOS papers

• Each has $10K to buy clusters

• Alvy works on accelerators

• Ben works on memory systems

2 / 28

Motivation

• Alvy and Ben are working on ASPLOS papers

• Each has $10K to buy clusters

• Alvy works on accelerators

• Ben works on memory systems

2 / 28

Motivation

• Alvy and Ben are working on ASPLOS papers

• Each has $10K to buy clusters

• Alvy works on accelerators

• Ben works on memory systems

2 / 28

Strategic Behavior

• Alvy and Ben are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alvy and Ben share

• Is allocation fair?

• Is lying beneficial?

[www.websavers.org]

3 / 28

Strategic Behavior

• Alvy and Ben are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alvy and Ben share

• Is allocation fair?

• Is lying beneficial?

[www.websavers.org]

3 / 28

Strategic Behavior

• Alvy and Ben are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alvy and Ben share

• Is allocation fair?

• Is lying beneficial?

[www.websavers.org]

3 / 28

Strategic Behavior

• Alvy and Ben are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alvy and Ben share

• Is allocation fair?

• Is lying beneficial?

[www.websavers.org]

3 / 28

Strategic Behavior

• Alvy and Ben are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alvy and Ben share

• Is allocation fair?

• Is lying beneficial?
[www.websavers.org]

3 / 28

Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

4 / 28

Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

4 / 28

Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

4 / 28

Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

4 / 28

Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

4 / 28

Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

4 / 28

Rethinking Fairness

”If an allocation is both equitable and Pareto efficient,
... it is fair.” [Varian, Journal of Economic Theory (1974)]

• Equity

• Evaluating others’ and own position on equal terms

• No user envies another’s allocation (i.e., envy-freeness)

• Pareto Efficiency

• No other allocation improves utility without harming others

5 / 28

Rethinking Fairness

”If an allocation is both equitable and Pareto efficient,
... it is fair.” [Varian, Journal of Economic Theory (1974)]

• Equity

• Evaluating others’ and own position on equal terms

• No user envies another’s allocation (i.e., envy-freeness)

• Pareto Efficiency

• No other allocation improves utility without harming others

5 / 28

Rethinking Fairness

”If an allocation is both equitable and Pareto efficient,
... it is fair.” [Varian, Journal of Economic Theory (1974)]

• Equity

• Evaluating others’ and own position on equal terms

• No user envies another’s allocation (i.e., envy-freeness)

• Pareto Efficiency

• No other allocation improves utility without harming others

5 / 28

Rethinking Fairness

”If an allocation is both equitable and Pareto efficient,
... it is fair.” [Varian, Journal of Economic Theory (1974)]

• Equity

• Evaluating others’ and own position on equal terms

• No user envies another’s allocation (i.e., envy-freeness)

• Pareto Efficiency

• No other allocation improves utility without harming others

5 / 28

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Envy-Free (EF)
No user envies another’s allocation

• Pareto-Efficient (PE)
No other allocation improves utility without harming others

• Sharing Incentives (SI)
Users perform no worse than under equal division

• Strategy-Proof (SP)
No user benefits from lying

6 / 28

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Envy-Free (EF)
No user envies another’s allocation

• Pareto-Efficient (PE)
No other allocation improves utility without harming others

• Sharing Incentives (SI)
Users perform no worse than under equal division

• Strategy-Proof (SP)
No user benefits from lying

6 / 28

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Envy-Free (EF)
No user envies another’s allocation

• Pareto-Efficient (PE)
No other allocation improves utility without harming others

• Sharing Incentives (SI)
Users perform no worse than under equal division

• Strategy-Proof (SP)
No user benefits from lying

6 / 28

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Envy-Free (EF)
No user envies another’s allocation

• Pareto-Efficient (PE)
No other allocation improves utility without harming others

• Sharing Incentives (SI)
Users perform no worse than under equal division

• Strategy-Proof (SP)
No user benefits from lying

6 / 28

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Envy-Free (EF)
No user envies another’s allocation

• Pareto-Efficient (PE)
No other allocation improves utility without harming others

• Sharing Incentives (SI)
Users perform no worse than under equal division

• Strategy-Proof (SP)
No user benefits from lying

6 / 28

Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations

7 / 28

Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations

7 / 28

Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations

7 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28

Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)

xr allocation for resource r
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects

9 / 28

Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)
xr allocation for resource r

αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects

9 / 28

Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)
xr allocation for resource r
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects

9 / 28

Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)
xr allocation for resource r
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects

9 / 28

Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)
xr allocation for resource r
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects

9 / 28

Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)
xr allocation for resource r
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects

9 / 28

Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements
x1, x2 allocated memory bandwidth for users 1, 2
y1, y2 allocated cache size for users 1, 2

10 / 28

Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements

x1, x2 allocated memory bandwidth for users 1, 2
y1, y2 allocated cache size for users 1, 2

10 / 28

Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements
x1, x2 allocated memory bandwidth for users 1, 2

y1, y2 allocated cache size for users 1, 2

10 / 28

Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements
x1, x2 allocated memory bandwidth for users 1, 2
y1, y2 allocated cache size for users 1, 2

10 / 28

Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations

11 / 28

Possible Allocations

• 2 users

• 12MB cache

• 24GB/s bandwidth

Memory Bandwidth

C
ac
h
e
S
iz
e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

user
2

user
1

12 / 28

Envy-Free (EF) Allocations

• Identify EF allocations
for each user

• u1(A1) ≥ u1(A2)

• u2(A2) ≥ u2(A1)

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

EF Region

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

EF Region

13 / 28

Envy-Free (EF) Allocations

• Identify EF allocations
for each user

• u1(A1) ≥ u1(A2)

• u2(A2) ≥ u2(A1)
Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

13 / 28

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

• Indifference curve: allocations that give same utility

• Contract curve: all Pareto-efficient allocations

14 / 28

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Indifference Curves

• Indifference curve: allocations that give same utility

• Contract curve: all Pareto-efficient allocations

14 / 28

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Pareto-Efficient Allocation

• Indifference curve: allocations that give same utility

• Contract curve: all Pareto-efficient allocations

14 / 28

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Contract Curve

• Indifference curve: allocations that give same utility

• Contract curve: all Pareto-efficient allocations

14 / 28

Fair Allocations

Fairness = envy-freeness + Pareto-efficiency

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Fair Allocations

Many possible fair allocations!

15 / 28

Fair Allocations

Fairness = envy-freeness + Pareto-efficiency

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Fair Allocations

Many possible fair allocations!

15 / 28

Fair Allocations

Fairness = envy-freeness + Pareto-efficiency

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Fair Allocations

Many possible fair allocations!

15 / 28

Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations

16 / 28

Resource Elasticity Fairness Mechanism

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• REF: fair allocation mechanism

• Guarantees desiderata

• Sharing incentives

• Envy-freeness

• Pareto-efficiency

• Strategy-proofness in large

17 / 28

Profiling for REF

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Off-line profiling

• Synthetic benchmarks

• Off-line simulations

• Various hardware

• On-line profiling

• α = 0.5, then update

• Statistical machine learning

18 / 28

Profiling for REF

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Off-line profiling

• Synthetic benchmarks

• Off-line simulations

• Various hardware

• On-line profiling

• α = 0.5, then update

• Statistical machine learning

18 / 28

Profiling for REF

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Off-line profiling

• Synthetic benchmarks

• Off-line simulations

• Various hardware

• On-line profiling

• α = 0.5, then update

• Statistical machine learning

18 / 28

Fitting Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• u =
∏R

r=1 xαr
r

• log(u) =
∑
αr log(xr)

• Use linear regression to find αr

19 / 28

Fitting Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• u =
∏R

r=1 xαr
r

• log(u) =
∑
αr log(xr)

• Use linear regression to find αr

19 / 28

Fitting Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• u =
∏R

r=1 xαr
r

• log(u) =
∑
αr log(xr)

• Use linear regression to find αr

19 / 28

Cobb-Douglas Accuracy

• IPC as utility

• Cache size and
memory bandwidth

• R-squared → 1 as
fit improves ra

yt
ra
ce

w
a
te
r_
sp
a
tia
l

h
is
to
g
ra
m

lu
_
n
cb

lin
e
a
r_
re
g
re
ss
io
n

fr
e
q
m
in
e

w
a
te
r_
n
sq
u
a
re
d

b
o
d
yt
ra
ck

ra
d
io
si
ty

w
o
rd
_
co
u
n
t

ch
o
le
sk
y

vo
lr
e
n
d

sw
a
p
tio
n
s

fm
m

b
a
rn
e
s

fe
rr
e
t

x2
6
4

b
la
ck
sc
h
o
le
s ff
t

st
re
a
m
cl
u
st
e
r

ca
n
n
e
a
l

rt
vi
e
w

lu
_
cb

flu
id
a
n
im
a
te

fa
ce
si
m

d
e
d
u
p

st
ri
n
g
_
m
a
tc
h

o
ce
a
n
_
cp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o

e
ff

ic
ie

n
t

o
f

D
e
te

rm
in

a
ti

o
n

20 / 28

Cobb-Douglas Accuracy

• IPC as utility

• Cache size and
memory bandwidth

• R-squared → 1 as
fit improves

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ferret Sim. Ferret Est.

Fmm Sim. Fmm Est.

IP
C

20 / 28

Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3 → u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28

Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3

→ u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28

Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3 → u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28

Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3 → u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28

Allocating Proportional Shares

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Use elasticities as weights

• Share proportionally

• E.g., lottery scheduling

• E.g., weighted fair queuing

22 / 28

Allocating Proportional Shares

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Use elasticities as weights

• Share proportionally

• E.g., lottery scheduling

• E.g., weighted fair queuing

22 / 28

Allocating Proportional Shares

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Use elasticities as weights

• Share proportionally

• E.g., lottery scheduling

• E.g., weighted fair queuing

22 / 28

Allocating Proportional Shares

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Use elasticities as weights

• Share proportionally

• E.g., lottery scheduling

• E.g., weighted fair queuing

22 / 28

Example Allocations

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

x1 =
(

0.6
0.6+0.2

)
× 24 = 18GB/s

x2 =
(

0.2
0.6+0.2

)
× 24 = 6GB/s

23 / 28

Example Allocations

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

x1 =
(

0.6
0.6+0.2

)
× 24 = 18GB/s

x2 =
(

0.2
0.6+0.2

)
× 24 = 6GB/s

23 / 28

Example Allocations

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

x1 =
(

0.6
0.6+0.2

)
× 24 = 18GB/s

x2 =
(

0.2
0.6+0.2

)
× 24 = 6GB/s

23 / 28

Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce

24 / 28

Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce

24 / 28

Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce

24 / 28

Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce

24 / 28

Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce

24 / 28

Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce

24 / 28

Fairness versus Equal Slowdown
R

e
s
o
u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

• Equal slow-down provides
neither SI nor EF

• Canneal receives < half of
cache, memory

R
e
so

u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

• Resource elasticity fairness
provides both SI and EF

• Canneal receives more
cache, less memory

25 / 28

Fairness versus Equal Slowdown
R

e
s
o
u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

• Equal slow-down provides
neither SI nor EF

• Canneal receives < half of
cache, memory

R
e
so

u
rc

e
 A

llo
c
a
tio

n
(%

 o
f
To

ta
l C

a
p
a
ci

ty
)

• Resource elasticity fairness
provides both SI and EF

• Canneal receives more
cache, less memory

25 / 28

Fairness versus Performance

WD1 (4C) WD2 (2C-2M) WD3 (4M) WD4 (3C-1M) WD5 (1C-3M)
0

0.5

1

1.5

2

2.5

3

3.5

4

Max Welfare w/ Fairness
Proportional Elasticity w/ Fairness

Max Welfare w/o Fairness
Equal Slowdown w/o Fairness

W
ei

g
ht

ed
 S

ys
te

m
 T

hr
ou

gh
p
ut

• Measure weighted throughput

• REF incurs < 10% penalty

26 / 28

Fairness versus Performance

WD1 (4C) WD2 (2C-2M) WD3 (4M) WD4 (3C-1M) WD5 (1C-3M)
0

0.5

1

1.5

2

2.5

3

3.5

4

Max Welfare w/ Fairness
Proportional Elasticity w/ Fairness

Max Welfare w/o Fairness
Equal Slowdown w/o Fairness

W
ei

g
ht

ed
 S

ys
te

m
 T

hr
ou

gh
p
ut

• Measure weighted throughput

• REF incurs < 10% penalty

26 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss

27 / 28

Thank you

Questions?

28 / 28

