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Alvy and Ben are working on ASPLOS papers

Each has $10K to buy clusters

Alvy works on accelerators

Ben works on memory systems
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Strategic Behavior

e Alvy and Ben are strategic

e Which is better?

e Small, separate clusters
e large, shared cluster

e Suppose Alvy and Ben share

e |s allocation fair?

[www.websavers.org]

e |s lying beneficial?
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Conventional Wisdom in Computer Architecture

e Users must share

e Overlooks strategic behavior

e Fairness policy is equal slowdown

e Fails to encourage envious users to share

e Heuristic mechanisms enforce equal slowdown

e Fail to give provable guarantees
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"If an allocation is both equitable and Pareto efficient,
. it is fair.” [Varian, Journal of Economic Theory (1974)]

e Equity
e Evaluating others’ and own position on equal terms

e No user envies another’s allocation (i.e., envy-freeness)

e Pareto Efficiency

e No other allocation improves utility without harming others
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Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Envy-Free (EF)
No user envies another's allocation

¢ Pareto-Efficient (PE)
No other allocation improves utility without harming others

¢ Sharing Incentives (SI)
Users perform no worse than under equal division

e Strategy-Proof (SP)
No user benefits from lying
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e Defining utility functions
e |dentifying conditions for fairness

e Devising mechanism for finding allocations
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Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing
e Memory intensity affects returns from bandwidth
e Serial portion affects returns from cores

e Model substitution effects

e Complementary resources can be traded

e E.g., cache size and memory bandwidth
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Cobb-Douglas Utility

R
U(X) - Hr:l X:‘lr

u utility (e.g., performance)
X, allocation for resource r
«y elasticity for resource r
e Cobb-Douglas fits preferences in computer architecture

e Exponents introduce non-linearity which captures DMR

e Products model substitution effects
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Example Utilities

0.6,,0.4

.2,,0.
o= =g

uy,up utilities derived from performance measurements
x1,X2 allocated memory bandwidth for users 1, 2
y1,y2 allocated cache size for users 1, 2
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Possible Allocations
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Envy-Free (EF) Allocations

e |dentify EF allocations
for each user

e uj(A1) > u(Az)

e ux(Az) > uz(Ay)

Cache Si e

Memory Bandwidth
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Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others
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e Indifference curve: allocations that give same utility

e Contract curve: all Pareto-efficient allocations
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Fair Allocations

Fairness = envy-freeness + Pareto-efficiency
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Many possible fair allocations!
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e Defining utility functions
e |dentifying conditions for fairness

e Devising mechanism for finding allocations




Resource Elasticity Fairness Mechanism

Profile preferences

-

|

Fit utility function

!

Normalize elasticities

!

Allocate proportionally

&
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e REF: fair allocation mechanism

e Guarantees desiderata

e Sharing incentives
e Envy-freeness
o Pareto-efficiency

e Strategy-proofness in large
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Profiling for REF

( 1\
Profil fi . .
I e e Off-line profiling
- J
i e Synthetic benchmarks
Fit utility function e Off-line simulations
i e Various hardware
Normalize elasticities e On-line profiling
b l g e o = 0.5, then update
Allocate proportionally e Statistical machine learning

(. J




Fitting Utilities

Profile preferences

(. l J

[ ) o u=TT%, x>
Fit utility function

- i J
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Fitting Utilities

Profile preferences

( ) o u=TI% X
Fit utility function
| J
] o log(u) = X2 o, log(x,)

Normalize elasticities
L ) e Use linear regression to find «,

!

Allocate proportionally




Cobb-Douglas Accuracy
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Cobb-Douglas Accuracy

o |PC as utility

e Cache size and
memory bandwidth

e R-squared — 1 as
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Normalizing Utilities

s N\
Profile preferences
| l J
s ) e Normalize elasticities
Fit utility function to sum to one
(. J
l o u=x02)03 5 | = x04,06
( )
Normalize elasticities e Compare users’ elasticities
N l o on same scale
' \
Allocate proportionally
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Allocating Proportional Shares

Profile preferences

!

Fit utility function

!

Normalize elasticities

!

(

&

Allocate proportionally

N\

J

e Use elasticities as weights

e Share proportionally
e E.g., lottery scheduling

e E.g., weighted fair queuing
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Example Allocations

uy = x{-6y94 up = x32y98

x1 = (528 ) x 24 = 18GB/s

Xy = (0'60420.2> x 24 = 6GB/s
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Experimental Methodology

e Simulators

e MARSSx86 for processors
e DRAMSIim2 for memory

e Benchmarks
e PARSEC

o SPLASH-2x

e Phoenix MapReduce




Fairness versus Equal Slowdown
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Fairness versus Equal Slowdown

M canneal M canneal
W barnes W barnes
100% 100%
90% 90%
=S 80% c S 80%
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g 58 %
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25 300 35 30%
S g
~ 20% ~ 20%
10% 10%
0% 0%
Cache Size  Memory Bandwidth Cache Size Memory Bandwidth
e Equal slow-down provides e Resource elasticity fairness
neither S| nor EF provides both S| and EF
e Canneal receives < half of e Canneal receives more
cache, memory cache, less memory
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Fairness versus Performance

= Max Welfare w/o Fairness Max Welfare w/ Fairness
= Equal Slowdown w/o Fairness = Proportional Elasticity w/ Fairness

4

oI|I|I|I|I|

WDI (40 WD2(2C-2M) WD3 (4M) WD4 (3C-IM) WD5 (1C-3M)

—_ o
[T

Weighted System Throughput
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e Measure weighted throughput
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= Max Welfare w/o Fairness Max Welfare w/ Fairness
= Equal Slowdown w/o Fairness = Proportional Elasticity w/ Fairness

4

oI|I|I|I|I|

WDI (40 WD2(2C-2M) WD3 (4M) WD4 (3C-IM) WD5 (1C-3M)

—_ o
[T

Weighted System Throughput

f=4
W

e Measure weighted throughput
e REF incurs < 10% penalty
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Summary

Model performance with Cobb-Douglas utility
e DMR, substitution effects

Guarantee fairness with REF

e SI, EF, PE, SPL

Apply to chip multiprocessors

e Cache size, memory bandwidth

Incur small performance penalty
e < 10% throughput loss
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Thank you

Questions?




