REF: Resource Elasticity Fairness with Sharing
Incentives for Multiprocessors

Seyed Majid Zahedi, Benjamin C. Lee
zahedi@cs.duke.edu, benjamin.c.lee@duke.edu

UNIVERSITY

T

Motivation

e Alvy and Ben are working on ASPLOS papers

Motivation

. "‘.é

e Alvy and Ben are working on ASPLOS papers

e Each has $10K to buy clusters

Motivation

. "‘.é

e Alvy and Ben are working on ASPLOS papers
e Each has $10K to buy clusters

e Alvy works on accelerators

Motivation

Alvy and Ben are working on ASPLOS papers

Each has $10K to buy clusters

Alvy works on accelerators

Ben works on memory systems

Strategic Behavior

e Alvy and Ben are strategic

Strategic Behavior

e Alvy and Ben are strategic

e Which is better?

e Small, separate clusters

e large, shared cluster

[www.websavers.org]

Strategic Behavior

e Alvy and Ben are strategic

e Which is better?

e Small, separate clusters
e large, shared cluster

e Suppose Alvy and Ben share

[www.websavers.org]

Strategic Behavior

e Alvy and Ben are strategic

e Which is better?

e Small, separate clusters
e large, shared cluster

e Suppose Alvy and Ben share

e |s allocation fair?

[www.websavers.org]

Strategic Behavior

e Alvy and Ben are strategic

e Which is better?

e Small, separate clusters
e large, shared cluster

e Suppose Alvy and Ben share

e |s allocation fair?

[www.websavers.org]

e |s lying beneficial?

Conventional Wisdom in Computer Architecture

e Users must share

Conventional Wisdom in Computer Architecture

e Users must share

e Overlooks strategic behavior

Conventional Wisdom in Computer Architecture

e Users must share

e Overlooks strategic behavior

e Fairness policy is equal slowdown

Conventional Wisdom in Computer Architecture

e Users must share

e Overlooks strategic behavior

e Fairness policy is equal slowdown

e Fails to encourage envious users to share

Conventional Wisdom in Computer Architecture

e Users must share

e Overlooks strategic behavior

e Fairness policy is equal slowdown

e Fails to encourage envious users to share

e Heuristic mechanisms enforce equal slowdown

Conventional Wisdom in Computer Architecture

e Users must share

e Overlooks strategic behavior

e Fairness policy is equal slowdown

e Fails to encourage envious users to share

e Heuristic mechanisms enforce equal slowdown

e Fail to give provable guarantees

Rethinking Fairness

"If an allocation is both equitable and Pareto efficient,
. it is fair.” [Varian, Journal of Economic Theory (1974)]

Rethinking Fairness

"If an allocation is both equitable and Pareto efficient,
. it is fair.” [Varian, Journal of Economic Theory (1974)]

e Equity

e Evaluating others’ and own position on equal terms

Rethinking Fairness

"If an allocation is both equitable and Pareto efficient,
. it is fair.” [Varian, Journal of Economic Theory (1974)]

e Equity

e Evaluating others’ and own position on equal terms

e No user envies another’s allocation (i.e., envy-freeness)

Rethinking Fairness

"If an allocation is both equitable and Pareto efficient,
. it is fair.” [Varian, Journal of Economic Theory (1974)]

e Equity
e Evaluating others’ and own position on equal terms

e No user envies another’s allocation (i.e., envy-freeness)

e Pareto Efficiency

e No other allocation improves utility without harming others

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Envy-Free (EF)
No user envies another's allocation

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Envy-Free (EF)
No user envies another's allocation

¢ Pareto-Efficient (PE)
No other allocation improves utility without harming others

Lo K
\p o

ay

6/28

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Envy-Free (EF)
No user envies another's allocation

¢ Pareto-Efficient (PE)
No other allocation improves utility without harming others

¢ Sharing Incentives (SI)
Users perform no worse than under equal division

Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Envy-Free (EF)
No user envies another's allocation

¢ Pareto-Efficient (PE)
No other allocation improves utility without harming others

¢ Sharing Incentives (SI)
Users perform no worse than under equal division

e Strategy-Proof (SP)
No user benefits from lying

Lo K
\p o

6/28

Three Main Steps

e Defining utility functions

Three Main Steps

e Defining utility functions

e |dentifying conditions for fairness

Three Main Steps

e Defining utility functions
e |dentifying conditions for fairness

e Devising mechanism for finding allocations

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing

e Memory intensity affects returns from bandwidth

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing
e Memory intensity affects returns from bandwidth

e Serial portion affects returns from cores

Lo XLl
==

ap

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing
e Memory intensity affects returns from bandwidth
e Serial portion affects returns from cores

e Model substitution effects

Lo XLl
==

ap

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing
e Memory intensity affects returns from bandwidth
e Serial portion affects returns from cores

e Model substitution effects

e Complementary resources can be traded

Lo XLl
==

ap

Utility Functions in Computer Architecture

¢ Model diminishing marginal returns (DMR)

e Data locality affects returns from cache sizing
e Memory intensity affects returns from bandwidth
e Serial portion affects returns from cores

e Model substitution effects

e Complementary resources can be traded

e E.g., cache size and memory bandwidth

Lo K
\p o

ay

Cobb-Douglas Utility

R
U(X) - Hr:l X:‘lr

u utility (e.g., performance)

Cobb-Douglas Utility

R
U(X) - Hr:l X:‘lr

u utility (e.g., performance)
X, allocation for resource r

Cobb-Douglas Utility

Qy

R
U(X) - Hr:l X:‘lr

utility (e.g., performance)
allocation for resource r
elasticity for resource r

Cobb-Douglas Utility

R
U(X) - Hr:l X:‘lr

u utility (e.g., performance)
X, allocation for resource r
«y elasticity for resource r

e Cobb-Douglas fits preferences in computer architecture

Cobb-Douglas Utility

R
U(X) - Hr:l X:‘lr

u utility (e.g., performance)
X, allocation for resource r
«y elasticity for resource r

e Cobb-Douglas fits preferences in computer architecture

e Exponents introduce non-linearity which captures DMR

Cobb-Douglas Utility

R
U(X) - Hr:l X:‘lr

u utility (e.g., performance)
X, allocation for resource r
«y elasticity for resource r
e Cobb-Douglas fits preferences in computer architecture

e Exponents introduce non-linearity which captures DMR

e Products model substitution effects

Example Utilities

0.6,,0.4

.2,,0.
o= =g

Example Utilities

0.6,,0.4

.2,,0.
o= =g

uy,up utilities derived from performance measurements

Example Utilities

0.6,,0.4

.2,,0.
o= =g

uy,up utilities derived from performance measurements
x1,X2 allocated memory bandwidth for users 1, 2

Example Utilities

0.6,,0.4

.2,,0.
o= =g

uy,up utilities derived from performance measurements
x1,X2 allocated memory bandwidth for users 1, 2
y1,y2 allocated cache size for users 1, 2

Three Main Steps

e Defining utility functions
e |dentifying conditions for fairness

e Devising mechanism for finding allocations

Possible Allocations

userz

24 20 15 10 5 0

12 1 T 30

e 2 users 10 | 2

o |

&, 8f- *} ffffffffffffffffffffffffffffff 4

e 12MB cache g|° i 6
S|4 : 8

2 3 10

e 24GB/s bandwidth ok ‘i ‘ 2
user. 0 5 10 15 20 24

Memory Bandwidth

Envy-Free (EF) Allocations

24 20 15 10 5 0
12 0
10p 2
5) 8¢ EF Region 4
] S 6
& 4 8
o |dentify EF allocations N 10
for each user ok ‘ ‘ ‘ ‘ 12
0 5 10 15 20 24
Memory Bandwidth
24 20 15 10 5 0
e ui(A) > u1(A2) 12f . T ‘ 70
i 2
S gt 4
e uz(Az) > uz(Aq) i
= 6 6
S af ' 8
5 EF Region 10
ol
0 5 10 15 20

Memory Bandwidth

13 /28

Envy-Free (EF) Allocations

e |dentify EF allocations
for each user

e uj(A1) > u(Az)

e ux(Az) > uz(Ay)

Cache Si e

Memory Bandwidth

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

24 20 15 10 5 0

Indifference Curves 2
8 4
6 6
4f 8
2r 10
0

0 5 10 15 20 24
Memory Bandwidth

Cache Si e

e Indifference curve: allocations that give same utility

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

24 20 15 10 5 0
12F : - - - =0
10f Pareto-Efficient Allocation 2

£ \\

» 8t \ 4

@ F \

§ 6 \ 6

O 4 M 8
2r 10
0L 12

0 5 10 15 20 24

Memory Bandwidth

e Indifference curve: allocations that give same utility

Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

24 20 15 10 5 0

Contract Curve

Cache Si e

0 5 10 15 20 24
Memory Bandwidth

e Indifference curve: allocations that give same utility

e Contract curve: all Pareto-efficient allocations

Fair Allocations

Fairness = envy-freeness + Pareto-efficiency

Fair Allocations

Fairness = envy-freeness + Pareto-efficiency

24 20 15 10 5 0
12 0
10 2
@
E/E; 8 Fair Allocations 4
2 6 6
2
o 4 8
2 10
0 1
0 5 10 15 20 24

Memory Bandwidth

Fair Allocations

Fairness = envy-freeness + Pareto-efficiency

24 20 15 10 5 0
12 0
10 2
@
E,E) 8 Fair Allocations 4
2 6 6
2
o 4 8
2 10
0 1
0 5 10 15 20 24

Memory Bandwidth

Many possible fair allocations!

Three Main Steps

e Defining utility functions
e |dentifying conditions for fairness

e Devising mechanism for finding allocations

Resource Elasticity Fairness Mechanism

Profile preferences

-

|

Fit utility function

!

Normalize elasticities

!

Allocate proportionally

&

N\

J

e REF: fair allocation mechanism

e Guarantees desiderata

e Sharing incentives
e Envy-freeness
o Pareto-efficiency

e Strategy-proofness in large

Profiling for REF

Profil fi . ..
FOILEIPIEtETEnces e Off-line profiling

i e Synthetic benchmarks

Fit utility function

!

Normalize elasticities

!

4 1\

Allocate proportionally

(. J

Profiling for REF

Profil fi . ..
FOILEIPIEtETEnces e Off-line profiling

i e Synthetic benchmarks
Fit utility function e Off-line simulations
i e Various hardware

Normalize elasticities

!

4 1\

Allocate proportionally

(. J

Profiling for REF

(1\
Profil fi . .
I e e Off-line profiling
- J
i e Synthetic benchmarks
Fit utility function e Off-line simulations
i e Various hardware
Normalize elasticities e On-line profiling
b l g e o = 0.5, then update
Allocate proportionally e Statistical machine learning

(. J

Fitting Utilities

Profile preferences

(. l J

[) o u=TT%, x>
Fit utility function

- i J

4 1\

Normalize elasticities

!

Allocate proportionally

19/28

Fitting Utilities

Profile preferences

() o u=TI% X
Fit utility function
| J
] o log(u) = X2 o, log(x,)

Normalize elasticities

!

Allocate proportionally

(. J

Fitting Utilities

Profile preferences

() o u=TI% X
Fit utility function
| J
] o log(u) = X2 o, log(x,)

Normalize elasticities
L) e Use linear regression to find «,

!

Allocate proportionally

Cobb-Douglas Accuracy

e 0~ UES00
EEEE—— U[O)EW BuL)S
E——— dNpOp
—— U|SO0E)
—— O)EWIUEPIN]
—— GO N|
—— \OIAL
I |COUUED

2

I 1))
—— S5|040SY0E(]
—— 97X
I]O.19)
——— SOU.Eq
—— LU}
——— SUOldemS
——)UJ[0A
e (5/S9]0y0
—— U100 PJOM
—— /)iSOIDEJ
S 3{0E.)ApOq
—— D5./eNbSUJo)eM
E—— OU|WDO.
S L0ISS9.601 Jeaul|
EE—— COU N|
I ENLmOuw_E
I eljedS1o)em
—— 50E.1AE)

@O~ QLY ON QO
PR G R S DI
uoneujwiglaq
40 JuBIdYR09
<
])
o ©
23 7
©
..WJ c o % n
= o @ 0]
= 0 o >
5 N o B
n > P
n = T o
v O 3
(g0} = m
S E o £
N c @ Qo
L O E x&E
° ° °

20/28

Cobb-Douglas Accuracy

o |PC as utility

e Cache size and
memory bandwidth

e R-squared — 1 as
fit improves

IPC

mFerret Sim.+Ferret Est.
vFmm Sim. 4Fmm Est.
1.2

1.0
° F
v LAY ol
o_a“.l."', ’,! nt® L
| |

0.6
A
0.4 1 x'. “v
* XXX xxx xX x

02‘.‘ x

0.0
DodTobhodTobhodYTobodYTwbOoNT @
BRIy RRYysReYyggoyy
SErS3YKnSINE 83V EY8583
S8 8 s 9S8 S0 099966 % BB 5
2838338883838 8g8%38%g33aa3%
SSS8 58S 888558885

Normalizing Utilities

Profile preferences

(. i J

r N e Normalize elasticities
Fit utility function to sum to one

(. l J

(1\

Normalize elasticities

!

Allocate proportionally

Normalizing Utilities

Profile preferences

(. J
s l 3 e Normalize elasticities
Fit utility function to sum to one
(. J
l o u=x02,03
()

Normalize elasticities

!

Allocate proportionally

Normalizing Utilities

Profile preferences

| l J
s 3 e Normalize elasticities
Fit utility function to sum to one
(. J
l o u=x02)03 5 | = x04,06
()

Normalize elasticities

!

Allocate proportionally

Normalizing Utilities

s N\
Profile preferences
| l J
s) e Normalize elasticities
Fit utility function to sum to one
(. J
l o u=x02)03 5 | = x04,06
()
Normalize elasticities e Compare users’ elasticities
N l o on same scale
' \
Allocate proportionally

21/28

Allocating Proportional Shares

Profile preferences

!

- N e Use elasticities as weights

Fit utility function

!

Normalize elasticities

!

(N\

Allocate proportionally

& J

Allocating Proportional Shares

Profile preferences

- i N e Use elasticities as weights
Fit utility function
\ i J e Share proportionally

Normalize elasticities

!

(N\

Allocate proportionally

& J

Allocating Proportional Shares

Profile preferences

!

Fit utility function

!

Normalize elasticities

!

(

&

Allocate proportionally

N\

J

e Use elasticities as weights

e Share proportionally

e E.g., lottery scheduling

Allocating Proportional Shares

Profile preferences

!

Fit utility function

!

Normalize elasticities

!

(

&

Allocate proportionally

N\

J

e Use elasticities as weights

e Share proportionally
e E.g., lottery scheduling

e E.g., weighted fair queuing

Example Allocations

uy = x{-6y94 up = x32y98

Example Allocations

uy = x{-6y94 up = x32y98

x1 = (528) x 24 = 18GB/s

Example Allocations

uy = x{-6y94 up = x32y98

x1 = (528) x 24 = 18GB/s

Xy = (0'60420.2> x 24 = 6GB/s

Lo XLl
Ng I w/

Experimental Methodology

e Simulators

e MARSSx86 for processors

Experimental Methodology

e Simulators

e MARSSx86 for processors

e DRAMSIim2 for memory

Experimental Methodology

e Simulators

e MARSSx86 for processors
e DRAMSIim2 for memory

e Benchmarks

Lo XLl
Ng I w/

Experimental Methodology

e Simulators

e MARSSx86 for processors
e DRAMSIim2 for memory

e Benchmarks
e PARSEC

Lo XLl
Ng I w/

Experimental Methodology

e Simulators

e MARSSx86 for processors
e DRAMSIim2 for memory

e Benchmarks
e PARSEC

o SPLASH-2x

Experimental Methodology

e Simulators

e MARSSx86 for processors
e DRAMSIim2 for memory

e Benchmarks
e PARSEC

o SPLASH-2x

e Phoenix MapReduce

Fairness versus Equal Slowdown

M canneal
M barnes

\‘
=]
X

Resource Allocation
% of Total Capacity)

(
N
Q

2
B

Cache Size Memory Bandwidth
e Equal slow-down provides
neither Sl nor EF

e Canneal receives < half of
cache, memory

25 /28

Fairness versus Equal Slowdown

M canneal M canneal
W barnes W barnes
100% 100%
90% 90%
=S 80% c S 80%
28 70% £ 70%
g 58 %
2 & 60% k-] § 60%
ST 50% <2 o
SC 0% S 40%
25 300 35 30%
S g
~ 20% ~ 20%
10% 10%
0% 0%
Cache Size Memory Bandwidth Cache Size Memory Bandwidth
e Equal slow-down provides e Resource elasticity fairness
neither S| nor EF provides both S| and EF
e Canneal receives < half of e Canneal receives more
cache, memory cache, less memory

25 /28

Fairness versus Performance

= Max Welfare w/o Fairness Max Welfare w/ Fairness
= Equal Slowdown w/o Fairness = Proportional Elasticity w/ Fairness

4

oI|I|I|I|I|

WDI (40 WD2(2C-2M) WD3 (4M) WD4 (3C-IM) WD5 (1C-3M)

—_ o
[T

Weighted System Throughput

f=4
W

e Measure weighted throughput

26 /28

Fairness versus Performance

= Max Welfare w/o Fairness Max Welfare w/ Fairness
= Equal Slowdown w/o Fairness = Proportional Elasticity w/ Fairness

4

oI|I|I|I|I|

WDI (40 WD2(2C-2M) WD3 (4M) WD4 (3C-IM) WD5 (1C-3M)

—_ o
[T

Weighted System Throughput

f=4
W

e Measure weighted throughput
e REF incurs < 10% penalty

26 /28

Summary

e Model performance with Cobb-Douglas utility

Summary

e Model performance with Cobb-Douglas utility
e DMR, substitution effects

Summary

e Model performance with Cobb-Douglas utility
e DMR, substitution effects

e Guarantee fairness with REF

Lo XLl
Ng I w/

Summary

e Model performance with Cobb-Douglas utility
e DMR, substitution effects

e Guarantee fairness with REF

e SI, EF, PE, SPL

Summary

e Model performance with Cobb-Douglas utility
e DMR, substitution effects

e Guarantee fairness with REF

e SI, EF, PE, SPL

e Apply to chip multiprocessors

Lo XLl
==

ap

27 /28

Summary

e Model performance with Cobb-Douglas utility
e DMR, substitution effects

e Guarantee fairness with REF

e SI, EF, PE, SPL

e Apply to chip multiprocessors

e Cache size, memory bandwidth

Lo XLl
==

ap

27 /28

Summary

Model performance with Cobb-Douglas utility
e DMR, substitution effects

Guarantee fairness with REF

e SI, EF, PE, SPL

Apply to chip multiprocessors

e Cache size, memory bandwidth

Incur small performance penalty

Lo K
\p o

ay

27 /28

Summary

Model performance with Cobb-Douglas utility
e DMR, substitution effects

Guarantee fairness with REF

e SI, EF, PE, SPL

Apply to chip multiprocessors

e Cache size, memory bandwidth

Incur small performance penalty
e < 10% throughput loss

Lo K
\p o

ay

27 /28

Thank you

Questions?

