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Motivation

• Alvy and Ben are working on ASPLOS papers

• Each has $10K to buy clusters

• Alvy works on accelerators

• Ben works on memory systems
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Strategic Behavior

• Alvy and Ben are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alvy and Ben share

• Is allocation fair?

• Is lying beneficial?
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Conventional Wisdom in Computer Architecture

• Users must share

• Overlooks strategic behavior

• Fairness policy is equal slowdown

• Fails to encourage envious users to share

• Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees
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Rethinking Fairness

”If an allocation is both equitable and Pareto efficient,
... it is fair.” [Varian, Journal of Economic Theory (1974)]

• Equity

• Evaluating others’ and own position on equal terms

• No user envies another’s allocation (i.e., envy-freeness)

• Pareto Efficiency

• No other allocation improves utility without harming others
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Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Envy-Free (EF)
No user envies another’s allocation

• Pareto-Efficient (PE)
No other allocation improves utility without harming others

• Sharing Incentives (SI)
Users perform no worse than under equal division

• Strategy-Proof (SP)
No user benefits from lying
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Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations
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Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Utility Functions in Computer Architecture

• Model diminishing marginal returns (DMR)

• Data locality affects returns from cache sizing

• Memory intensity affects returns from bandwidth

• Serial portion affects returns from cores

• Model substitution effects

• Complementary resources can be traded

• E.g., cache size and memory bandwidth

8 / 28



Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)

xr allocation for resource r
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents introduce non-linearity which captures DMR

• Products model substitution effects
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Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements
x1, x2 allocated memory bandwidth for users 1, 2
y1, y2 allocated cache size for users 1, 2

10 / 28



Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements

x1, x2 allocated memory bandwidth for users 1, 2
y1, y2 allocated cache size for users 1, 2

10 / 28



Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements
x1, x2 allocated memory bandwidth for users 1, 2

y1, y2 allocated cache size for users 1, 2

10 / 28



Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 utilities derived from performance measurements
x1, x2 allocated memory bandwidth for users 1, 2
y1, y2 allocated cache size for users 1, 2

10 / 28



Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations
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Possible Allocations

• 2 users

• 12MB cache

• 24GB/s bandwidth
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Envy-Free (EF) Allocations

• Identify EF allocations
for each user

• u1(A1) ≥ u1(A2)

• u2(A2) ≥ u2(A1)
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Pareto-Efficient (PE) Allocations

No other allocation improves utility without harming others

• Indifference curve: allocations that give same utility

• Contract curve: all Pareto-efficient allocations
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Fair Allocations

Fairness = envy-freeness + Pareto-efficiency
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Three Main Steps

• Defining utility functions

• Identifying conditions for fairness

• Devising mechanism for finding allocations
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Resource Elasticity Fairness Mechanism

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• REF: fair allocation mechanism

• Guarantees desiderata

• Sharing incentives

• Envy-freeness

• Pareto-efficiency

• Strategy-proofness in large
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Profiling for REF

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Off-line profiling

• Synthetic benchmarks

• Off-line simulations

• Various hardware

• On-line profiling

• α = 0.5, then update

• Statistical machine learning
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Fitting Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• u =
∏R

r=1 xαr
r

• log(u) =
∑
αr log(xr )

• Use linear regression to find αr
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Cobb-Douglas Accuracy

• IPC as utility

• Cache size and
memory bandwidth

• R-squared → 1 as
fit improves ra
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Cobb-Douglas Accuracy

• IPC as utility

• Cache size and
memory bandwidth

• R-squared → 1 as
fit improves
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Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3 → u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28



Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3

→ u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28



Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3 → u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28



Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Normalize elasticities
to sum to one

• u = x0.2y0.3 → u = x0.4y0.6

• Compare users’ elasticities
on same scale

21 / 28



Allocating Proportional Shares

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Use elasticities as weights

• Share proportionally

• E.g., lottery scheduling

• E.g., weighted fair queuing
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Example Allocations

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

x1 =
(

0.6
0.6+0.2

)
× 24 = 18GB/s

x2 =
(

0.2
0.6+0.2

)
× 24 = 6GB/s
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Experimental Methodology

• Simulators

• MARSSx86 for processors

• DRAMSim2 for memory

• Benchmarks

• PARSEC

• SPLASH-2x

• Phoenix MapReduce
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Fairness versus Equal Slowdown
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neither SI nor EF

• Canneal receives < half of
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• Resource elasticity fairness
provides both SI and EF

• Canneal receives more
cache, less memory
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Fairness versus Performance
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• Measure weighted throughput

• REF incurs < 10% penalty
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Summary

• Model performance with Cobb-Douglas utility

• DMR, substitution effects

• Guarantee fairness with REF

• SI, EF, PE, SPL

• Apply to chip multiprocessors

• Cache size, memory bandwidth

• Incur small performance penalty

• < 10% throughput loss
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Thank you

Questions?
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