
The Computational Sprinting Game

Songchun Fan ∗ Seyed Majid Zahedi * Benjamin C. Lee
Duke University

{songchun.fan, seyedmajid.zahedi, benjamin.c.lee}@duke.edu

Abstract
Computational sprinting is a class of mechanisms that boost
performance but dissipate additional power. We describe a
sprinting architecture in which many, independent chip mul-
tiprocessors share a power supply and sprints are constrained
by the chips’ thermal limits and the rack’s power limits.
Moreover, we present the computational sprinting game,
a multi-agent perspective on managing sprints. Strategic
agents decide whether to sprint based on application phases
and system conditions. The game produces an equilibrium
that improves task throughput for data analytics workloads
by 4-6× over prior greedy heuristics and performs within
90% of an upper bound on throughput from a globally opti-
mized policy.

1. Introduction
Modern datacenters oversubscribe their power supplies to
enhance performance and efficiency. A conservative data-
center that deploys servers according to their expected power
draw will under-utilize provisioned power, operate power
supplies at sub-optimal loads, and forgo opportunities for
higher performance. In contrast, efficient datacenters deploy
more servers than it can power fully and rely on varying
computational load across servers to modulate demand for
power [15]. Such a strategy requires responsive mechanisms
for delivering power to the computation that needs it most.

Computational sprinting is a class of mechanisms that
supply additional power for short durations to enhance per-
formance. In chip multiprocessors, for example, sprints acti-
vate additional cores and boost their voltage and frequency.
Although originally proposed for mobile systems [37, 38],
sprinting has found numerous applications in datacenter sys-

∗These authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
Copyright © 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872383

tems. It can accelerate computation for complex tasks or ac-
commodate transient activity spikes [41, 49].

The system architecture determines sprint duration and
frequency. Sprinting multiprocessors generate extra heat,
absorbed by thermal packages and phase change materi-
als [37, 41], and require time to release this heat between
sprints. At scale, uncoordinated multiprocessors that sprint
simultaneously could overwhelm a rack or cluster’s power
supply. Uninterruptible power supplies reduce the risk of
tripping circuit breakers and triggering power emergencies.
But the system requires time to recharge batteries between
sprints. Given these physical constraints in chip multipro-
cessors and the datacenter rack, sprinters require recovery
time. Thus, sprinting mechanisms couple performance op-
portunities with management constraints.

We face fundamental management questions when servers
sprint independently but share a power supply – which pro-
cessors should sprint and when should they sprint? Each pro-
cessor’s workload derives extra performance from sprinting
that depends on its computational phase. Ideally, sprinters
would be the processors that benefit most from boosted ca-
pability at any given time. Moreover, the number of sprinters
would be small enough to avoid power emergencies, which
constrain future sprints. Policies that achieve these goals are
prerequisites for sprinting to full advantage.

We present the computational sprinting game to manage
a collection of sprinters. The sprinting architecture, which
defines the sprinting mechanism as well as power and cool-
ing constraints, determines rules of the game. A strategic
agent, representing a multiprocessor and its workload, in-
dependently decides whether to sprint at the beginning of an
epoch. The agent anticipates her action’s outcomes, knowing
that the chip must cool before sprinting again. Moreover, she
analyzes system dynamics, accounting for competitors’ de-
cisions and risk of power emergencies.

We find the equilibrium in the computational sprinting
game, which permits distributed management. In an equi-
librium, no agent can benefit by deviating from her optimal
strategy. The datacenter relies on agents’ incentives to de-
centralize management as each agent self-enforces her part
of the sprinting policy. Decentralized equilibria allow dat-
acenters to avoid high communication costs and unwieldy
enforcement mechanisms in centralized management. More-

over, equilibria outperform prior heuristics. In summary, we
present the following contributions:

• Sprinting Architecture (§2). We present a system of in-
dependent sprinters that share power – a rack of chip
multiprocessors. Sprinting multiprocessors activate ad-
ditional cores and increase clock rates. Sprints are con-
strained by chips’ thermal limits and rack power limits.

• Sprinting Game (§3). We define a repeated game in
which strategic agents sprint based on application phases
and system conditions. The game divides time into
epochs and agents play repeatedly. Actions in the present
affect performance and the ability to sprint in the future.

• Dynamics and Strategies (§4). We design agents who
sprint when the expected utility from doing so exceeds a
threshold. We devise an algorithm that optimizes each
agent’s threshold strategy. The strategies produce an
equilibrium in which no agent benefits by deviating from
her optimal threshold.

• Performance (§5–§6). We evaluate the game for Spark-
based datacenter applications, which exhibit diversity in
phase behavior and utility from sprinting. The game in-
creases task throughput by 4-6× when compared to prior
heuristics in which agents sprint greedily.

2. The Sprinting Architecture
We present a sprinting architecture for chip multiprocessors
in datacenters. Multiprocessors sprint by activating addi-
tional cores and increasing their voltage and frequency. Dat-
acenter applications, with their abundant task parallelism,
scale across additional cores as they become available. We
focus on applications built atop the Spark framework, which
extends Hadoop for memory caching [46]. In Figure 1, Spark
benchmarks perform 2-7× better on a sprinting multiproces-
sor, but dissipates 1.8× the power. Power produces heat.

Sprinters require infrastructure to manage heat and power.
First, the chip multiprocessor’s thermal package and heat
sink must absorb surplus heat during a sprint [37, 40]. Sec-
ond, the datacenter rack must employ batteries to guard
against power emergencies caused by a surplus of sprinters
on a shared power supply. Third, the system must implement
management policies that determine which chips sprint.

2.1 Chip Multiprocessor Support
A chip multiprocessor’s maximum power level depends on
its thermal package and heat sink. Given conventional heat
sinks, thermal constraints are the primary determinant of
multiprocessor performance, throttling throughput and over-
riding constraints from power delivery and off-chip band-
width [29]. More expensive heat sinks employ phase change
materials (PCMs), which increase thermal capacitance, to
absorb and dissipate excess heat [38, 40]. The quality of the
thermal package, as measured by its thermal capacitance and
conductance, determines parameters of the sprinting game.

The choice of thermal package dictates the maximum du-
ration of a sprint [40]. Whereas water, air and foam enable
sprint durations on the order of seconds [38], PCMs enable
durations on the order of minutes if not hours [39, 40, 44].
Our sprint architecture employs paraffin wax, which is at-
tractive for its high thermal capacitance and tunable melt-
ing point when blended with polyolefins [36]. We estimate a
chip with paraffin wax can sprint with durations on the order
of 150 seconds.

After a sprint, the thermal package must release its heat
before the chip can sprint again. The average cooling dura-
tion, denoted as ∆tcool, is the time required before the PCM
returns to ambient temperature. The rate at which the PCM
dissipates heat depends on its melting point and the thermal
resistance between the material and the ambient [36]. Both
factors can be engineered and, with paraffin wax, we esti-
mate a cooling duration on the order of 300 seconds, twice
the sprint’s duration.

Different types of workloads may demand different sprint
durations. Sprints for online queries requires tens of mil-
liseconds or less [26]. Sprints for parallel workloads requires
seconds or more [38]. And those for warehouse-scale ther-
mal management requires support for hours [41]. In this pa-
per, we study data analytics applications that would prefer to
sprint indefinitely. In this setting, the primary determinant of
a sprint’s duration is the thermal package.

2.2 Datacenter Support
At scale, servers within the same rack share a power sup-
ply. Chip multiprocessors draw current from a shared power
distribution unit (PDU) that is connected to a branch circuit
and protected by a circuit breaker (CB). Datacenter archi-
tects deploy servers to oversubscribe branch circuits for ef-
ficiency. Oversubscription utilizes a larger fraction of the fa-
cility’s provisioned power for computation. But it relies on
power capping and varied computational load across servers
to avoid tripping circuit breakers or violating contracts with
utility providers [15, 16]. Although sprints boost computa-
tion for complex queries and during peak loads [26, 49],
the risk of a power emergency increases with the number
of sprinters in a power capped datacenter.

Circuit Breakers and Trip Curves. Figure 2 presents
the circuit breaker’s trip curve, which specifies how sprint
duration and power combine to determine whether the
breaker trips. The trip time corresponds to the sprint’s dura-
tion. Longer sprints increase the probability of tripping the
breaker. The current draw corresponds to the number of si-
multaneous sprints as each sprinter contributes to the load
above rated current. Higher currents increase the probability
of tripping the breaker. Thus, the tolerance for sprints de-
pends on their duration and power. The breaker dictates the
number of sprinters supported by the datacenter rack.

Figure 3 associates the number of sprinters to the tripping
probability for a given trip time. Let nS denote the number

N
or

m
al

iz
ed

 S
pe

ed
up

0

1

2

3

4

5

6

na
ive

de
cis

ion

gr
ad

ien
t
sv

m
lin

ea
r

km
ea

ns als

co
rre

lat
ion

pa
ge

ra
nk cc

tri
an

gle

N
or

m
al

iz
ed

 P
ow

er

0.0

0.5

1.0

1.5

na
ive

de
cis

ion

gr
ad

ien
t
sv

m
lin

ea
r

km
ea

ns als

co
rre

lat
ion

pa
ge

ra
nk cc

tri
an

gle

A
ve

ra
ge

 T
em

pe
ra

tu
re

 (
°C

)

0

10

20

30

40

50

Non−sprinting Sprinting

na
ive

de
cis

ion

gr
ad

ien
t
sv

m
lin

ea
r

km
ea

ns als

co
rre

lat
ion

pa
ge

ra
nk cc

tri
an

gle

Figure 1. Normalized speedup, power, and temperature for varied Spark benchmarks when sprinting. Nominal operation
supplies three cores at 1.2GHz. Sprint supplies twelve cores at 2.7GHz.

3600

120

 2

0.1

1 2 3 5 10 20

Long-delay

Conventional
Tripping

Short Circuit

P =0trip

P =1
trip

Tripped

Non-deterministic

Not Tripped

tsprint

Tolerance Band

Tr
ip

 T
im

e
 (

s
e
c
)

Current normalized to rated current

Figure 2. Typical trip curve of a circuit breaker [16].

of sprinters and let Ptrip denote the probability of tripping the
breaker. The breaker occupies one of the following regions:

• Non-Tripped. Ptrip is zero when nS < Nmin

• Non-Deterministic. Ptrip is a non-decreasing function of
nS when Nmin ≤ nS < Nmax

• Tripped. Ptrip is one when nS ≥ Nmax

Note thatNmin andNmax depend on the breaker’s trip curve
and the application’s demand for power when sprinting.

Number of sprinters

P
ro

ba
bi

lit
y

of
 tr

ip
pi

ng
 b

re
ak

er

0%
40

%
80

%

N_min N_max

Figure 3. Probability of tripping the rack’s circuit breaker.

Suppose a sprinter dissipates twice as much power as a
non-sprinter, as in Spark applications on chip multiproces-
sors. We find that the breaker does not trip when less than
25% of the chips sprint and definitely trips when more than
75% of the chips sprint. In other words, Nmin = 0.25N and
Nmax = 0.75N . We consider UL489 circuit breakers from
Rockwell Automation, which can be overloaded to 125-
175% of rated current for a 150 second sprint [6, 45, 49].

Uninterruptible Power Supplies. When the breaker
trips and resets, power distribution switches from the branch
circuit to the uninterruptible power supply (UPS) [19, 20].
The rack augments power delivery with batteries to complete
sprints in progress. Lead acid batteries support discharge
times of 5-120 minutes, long enough to support the dura-
tion of a sprint. After completing sprints and resetting the
breaker, servers resume computation on the branch circuit.

However, servers are forbidden from sprinting again un-
til UPS batteries have been recharged. Sprints before re-
covery would compromise server availability and increase
vulnerability to power emergencies. Moreover, frequent dis-
charges without recharges would shorten battery life. The
average recovery duration, denoted by ∆trecover, depends on
the UPS discharge depth and recharging time. A battery

User

Executor Engine

Task

Agent Predictor

User

Executor Engine

Task

Agent Predictor

User

Executor Engine

Task

Agent Predictor

. . .

Coordinator

Alg 1

Profile

Strategy

Figure 4. Users deploy task executors and agents that decide when to sprint. Agents send performance profiles to a coordinator
and receives optimized sprinting strategies.

can be recharged to 85% capacity in 8-10× the discharge
time [7], which corresponds to 8-10× the sprint duration.

Servers are permitted to sprint again after recharge and
recovery. However, if every chip multiprocessor in the rack
were to sprint simultaneously and immediately after recov-
ery, they would trigger another power emergency. The rack
must stagger the distribution of sprinting permissions to
avoid dI/dt problems.

2.3 Power Management
Figure 4 illustrates the management framework for a rack
of sprinting chip multiprocessors. The framework supports
policies that pursue the performance of sprints while avoid-
ing system instability. Unmanaged and excessive sprints
may trip breakers, trigger emergencies, and degrade perfor-
mance at scale. The framework achieves its objectives with
strategic agents and coarse-grained coordination.

Users and Agents. Each user deploys three run-time
components: executor, agent, and predictor. Executors pro-
vide clean abstractions, encapsulating applications that could
employ different software frameworks [25]. The executor
supports task-parallel computation by dividing an applica-
tion into tasks, constructing a task dependence graph, and
scheduling tasks dynamically based on available resources.
Task scheduling is particularly important as it increases par-
allelism when sprinting powers-on cores and tolerates faults
when cooling and recovery powers-off cores.

Agents are strategic and selfish entities that act on users’
behalf. They decide whether to sprint by continuously ana-
lyzing fine-grained application phases. Because sprints are
followed by cooling and recovery, an agent sprints judi-
ciously and targets application phases that benefit most from
extra capability. Agents use predictors that estimate util-
ity from sprinting based on software profiles and hardware

counters. Each agent represents a user and her application on
a chip multiprocessor.

Coordination. The coordinator collects profiles from all
agents and assigns tailored sprinting strategies to each agent.
The coordinator interfaces with strategic agents who may at-
tempt to manipulate system outcomes by misreporting pro-
files or deviating from assigned strategies. Fortunately, our
game-theoretic mechanism guards against such behavior.

First, agents will truthfully report their performance pro-
files. In large systems, game theory provides incentive com-
patibility, which means that agents cannot improve their util-
ity by misreporting their preferences. The coordinator as-
signed a tailored strategy to each agent based on system con-
ditions. An agent who misreports her profile has little influ-
ence on conditions in a large system. Not only does she fail
to affect others, an agent who misreports suffers degraded
performance as the coordinator assigns her a poorly suited
strategy based on inaccurate profiles.

Second, agents will implement their assigned strategies
because the coordinator optimizes those strategies to pro-
duce an equilibrium. In equilibrium, every agent implements
her strategy and no agent benefits when deviating from it.
An equilibrium has compelling implications for manage-
ment overheads. If each agent knows that every other agent
is playing her assigned strategy, she will do the same without
further communication with the coordinator. Global commu-
nication between agents and the coordinator is infrequent
and occurs only when system profiles change. Local com-
munication between each user’s run-time components (i.e.,
executor, agent, predictor) is frequent but employs inex-
pensive, inter-process mechanisms. In effect, an equilibrium
permits the distributed enforcement of sprinting policies.

In contrast, the centralized enforcement of coordinated
policies poses several challenges. First, it requires frequent

and global communication as each agent decides whether to
sprint by querying the coordinator at the start of each epoch.
The length of an epoch is short and corresponds to sprint
duration. Moreover, without equilibria, agents with kernel
privileges could ignore prescribed policies, sprint at will,
and cause power emergencies that harm all agents. Avoiding
such outcomes in a multi-tenant datacenter would require
a distributed runtime. The runtime, not the agent, would
have kernel privileges for power management, introducing
an abstraction layer and overheads.

3. The Sprinting Game
We present a computational sprinting game, which governs
demands for power and manages system dynamics. We de-
sign a dynamic game that divides time into epochs and asks
agents to play repeatedly. Agents represent chip multipro-
cessors that share a power supply. Each agent chooses to
sprint independently, pursuing benefits in the current epoch
and estimating repercussions in future epochs. Multiple
agents can sprint simultaneously, but they risk tripping the
circuit breaker and triggering power emergencies that harm
global performance.

3.1 Game Formulation
The game considers N agents who run task-parallel appli-
cations on N chip multiprocessors. Each agent computes in
either normal or sprinting mode. The normal mode uses a
fraction of the cores at low frequency whereas sprints use all
cores at high frequency. Sprints rely on the executor to in-
crease task parallelism and exploit extra cores. In this paper,
for example, we consider three cores at 1.2GHz in normal
mode and twelve cores at 2.7GHz in a sprint.

The repeated game divides time into epochs. The dura-
tion of an epoch corresponds to the duration of a safe sprint,
which neither overheats the chip nor trips the circuit breaker.
An agent’s utility from a sprint varies across epochs accord-
ing to her application’s phases. Agents apply a discount fac-
tor δ < 1 to future utilities as, all else being equal, they
prefer performance sooner rather than later.

3.2 Agent States
At any given time, an agent occupies one of three states—
active (A), chip cooling (C), and rack recovery (R)—according
to her actions and those of others in the rack. An agent’s state
describes whether she can sprint, and describes how cooling
and recovery impose constraints on her actions.

Active (A) – Agent can safely sprint. By default, an
agent in an active state operates her chip in normal mode,
with a few processor cores running at low frequency. The
agent has an option to sprint, which deploys additional cores
and raises the frequency. She decides whether to sprint by
comparing a sprint’s benefits in the current epoch against
benefits from deferring the sprint to a future epoch. If the
agent sprints, her state in the next epoch is cooling.

Chip Cooling (C) – Agent cannot sprint. After a sprint,
an agent remains in the cooling state until excess heat has
been dissipated. Cooling requires a number of epochs ∆tcool,
which depends on the chip’s thermal conductance and re-
sistance, the heat sink and cooling technology, and the am-
bient temperature. An agent in the cooling state stays in
this state with probability pc and returns to the active state
with probability 1 − pc. Probability pc is defined so that
1/(1− pc) = ∆tcool.

Rack Recovery (R) – Agent cannot sprint. When mul-
tiple chips sprint simultaneously, their total current draw
may trip the rack’s circuit breaker, trigger a power emer-
gency, and require supplemental current from batteries. Af-
ter an emergency, all agents remain in the recovery state un-
til batteries recharge. Recovery requires a number of epochs
∆trecover, which depends on the rack’s power supply and
its battery capacity. Agents in the recovery state stay in
this state with probability pr and return to the active state
with probability 1 − pr. Probability pr is defined so that
1/(1− pr) = ∆trecover.

In summary, the states describe and enforce system con-
straints. A chip that sprints must cool before sprinting again.
A rack that supports sprints with batteries must recharge
those batteries before doing so again. Agents in cooling or
recovery states are constrained, but those in active states will
sprint strategically.

3.3 Agent Actions and Strategies
Agents have two possible actions — sprint or do not sprint.
Strategic agents decide between these actions to maximize
their utilities. Each agent’s sprinting strategy depends on
various factors, including

• agent’s state and her utility from sprinting,

• agent’s history of sprinting,

• other agents’ states,

• other agents’ utilities, strategies, and histories.

Sprinting strategies determine the game’s performance.
Agents that greedily sprint at every opportunity produce
several sub-optimal outcomes. First, chips and racks would
spend many epochs in cooling and recovery states, respec-
tively, degrading system throughput. Moreover, agents who
sprint at the first opportunity constrain themselves in future
epochs, during which sprints may be even more beneficial.

In contrast, sophisticated strategies improve agent utility
and system performance. Strategic agents sprint during the
epochs that benefit most from additional cores and higher
frequencies. Moreover, they consider other agents’ strate-
gies because the probability of triggering a power emergency
and entering the recovery state increases with the number of
sprinters. We analyze the game’s governing dynamics to op-
timize each agent’s strategy and maximize her performance.

4. Game Dynamics and Agent Strategies
A comprehensive approach to optimizing strategies consid-
ers each agent—her state, utility, and history—to determine
whether sprinting maximizes her performance given her
competitor’s strategies and system state. In practice, how-
ever, this optimization does not scale to hundreds or thou-
sands of agents.

For tractability, we analyze the population of agents by
defining key probability distributions on population behav-
ior. This approach has several dimensions. First, we reason
about population dynamics in expectation and consider an
“average” agent. Second, we optimize each agent’s strategy
in response to the population rather than individual competi-
tors. Third, we find an equilibrium in which no agent can
perform better by deviating from her optimal strategy.

4.1 Mean Field Equilibrium
The mean field equilibrium (MFE), a concept drawn from
economic game theory, is an approximation method used
when analyzing individual agents in a large system is in-
tractable [3–5, 23, 27]. With the MFE, we can characterize
expected behavior for a population of agents and then opti-
mize each agent’s strategy against that expectation. We can
reason about the population and neglect individual agents
because any one agent has little impact on overall behavior
in a large system.

The mean field analysis for the sprinting game focuses
on the sprint distribution, which characterizes the number of
agents who sprint when the rack is not in the recovery state.
In equilibrium, the sprint distribution is stationary and does
not change across epochs. In any given epoch, some agents
complete a sprint and enter the cooling state while others
leave the cooling state and begin a sprint. Yet the number of
agents who sprint is unchanged in expectation.

The stationary distribution for the number of sprinters
translates into stationary distributions for the rack’s current
draw and the probability of tripping the circuit breaker – see
Figure 3. Given the rack’s tripping probability, which con-
cisely describes population dynamics, an agent can formu-
late her best response and optimize her sprinting strategy to
maximize performance.

We find an equilibrium by characterizing a population’s
statistical distributions, optimizing agents’ responses, and
simulating game play to update the population. We specify
an initial value for the probability of tripping the breaker and
iterate as follows.

• Optimize Sprint Strategy (§4.2). Given the probabil-
ity of tripping the breaker Ptrip, each agent optimizes
her sprinting strategy to maximize her performance. She
sprints if performance gains from doing so exceed some
threshold. Optimizing her strategy means setting her
threshold uT .

• Characterize Sprint Distribution (§4.3). Given that
each agent sprints according to her threshold uT , the
game characterizes population behavior. It estimates the
expected number of sprinters nS , calculates their demand
for power, and updates the probability of tripping the
breaker P ′trip.

• Check for Equilibrium. The game is in equilibrium if
P ′trip = Ptrip. Otherwise, iterate with the new probability
of tripping the breaker.

4.2 Optimizing the Sprint Strategy
An agent considers three factors when optimizing her sprint-
ing strategy: the probability of tripping the circuit breaker
Ptrip, her utility from sprinting u, and her state. An agent oc-
cupies either the active (A), cooling (C), or recovery (R)
state. To maximize expected value and decide whether to
sprint, each agent optimizes the following Bellman equation.

V (u, A) = max{VS(u, A), V¬S(u, A)} (1)

The Bellman equation quantifies value when an agent acts
optimally in every epoch. VS and V¬S are the expected
values from sprinting and not sprinting, respectively. If
VS(u, A) > V¬S(u, A), then sprinting is optimal. The
game solves the Bellman equation and identifies actions that
maximize value with dynamic programming.

Value in Active State. Sprinting defines a repeated game
in which an agent acts in the current epoch and encounters
consequences of that action in future epochs. Accordingly,
the Bellman equation is recursive and expresses an action’s
value in terms of benefits in the current epoch plus the
discounted value from future epochs.

Suppose an agent in the active state decides to sprint.
Her value from sprinting is her immediate utility u plus her
discounted utility from future epochs. When she sprints, her
future utility is calculated for the chip cooling state V (C) or
calculated for the rack recovery state V (R) when her sprint
trips the circuit breaker.

VS(u, A) = u+ δ [V (C)(1− Ptrip) + V (R)Ptrip] (2)

On the other hand, an agent who does not sprint will remain
in the active state unless other sprinting agents trip the circuit
breaker and trigger a power emergency that requires recov-
ery.

V¬S(u, A) = δ [V (A)(1− Ptrip) + V (R)Ptrip] (3)

We use V (A) to denote an agent’s expected value from
being in the active state, which depends on an agent’s utility
from sprinting. The game profiles an application and its
time-varying computational phases to obtain a probability
density function f(u), which characterizes how often an
agent derives utility u from sprinting. With this density, the
game estimates expected value.

V (A) =

∫
V (u, A) f(u) du (4)

A C

PS

1− pc

1− PS pc

Figure 5. State transitions when agent sprints, chip cools.
Assumes an agent is not in recovery.

Value in Cooling and Recovery States. An active agent
transitions into cooling and recovery states when she and/or
others sprint. Because agents cannot sprint while cooling or
recovering, their expected values from these states do not
depend on their utility from sprinting.

V (C) = δ [V (C)pc + V (A)(1− pc)] (1− Ptrip) +

δ V (R)Ptrip (5)
V (R) = δ [V (R)pr + V (A)(1− pr)] (6)

Parameters pc and pr are technology-specific probabilities
of an agent in cooling and recovery states staying in those
states. An agent in cooling will remain in this state with
probability pc and become active with probability 1 − pc,
assuming the rack avoids a power emergency. If the circuit
breaker trips, an agent enters recovery. An agent remains
in recovery with probability pr and becomes active with
probability 1−pr. The game tunes these parameters to reflect
the time required for chip cooling after a sprint and for rack
recovery after a power emergency – see §2.

Threshold Strategy. An agent should sprint if her utility
from doing so is greater than not. But when is this the case?
Equation (8), which follows from Equations (2)–(3), states
that an agent should sprint if her utility u is greater than her
optimal threshold for sprinting uT .

VS(u, A) > V¬S(u, A) (7)
u > δ (V (A)− V (C)) (1− Ptrip)︸ ︷︷ ︸

uT

(8)

Thus, an agent uses threshold uT to test a sprint’s utility. If
sprinting improves performance by more than the threshold,
an agent should sprint. Applying this strategy in every epoch
maximizes expected value across time in the repeated game.

4.3 Characterizing the Sprint Distribution
Given threshold uT for her strategy, an agent uses her den-
sity function on utility to estimate the probability that she
sprints, ps, in a given epoch.

ps =

∫ umax

uT

f(u) du (9)

The probabilities of sprinting (ps) and cooling (pc) define
a Markov chain that describes each agent’s behavior – see

Algorithm 1: Optimizing the Sprint Strategy
input : Probability density function for sprinting utilities

(f(u))
output: Optimal sprinting threshold (uT)
j← 1
P 0

trip ← 1
while P j

trip not converged do
uj
T ← DP solution for Equations (1)–(8) with P j

trip

pjS ← Equation (9) with f(u), uj
T

nj
S ← Equation (10) with MC solution and P j

S

P j+1
trip ← Equation (11)

j← j + 1
end

Figure 5, which assumes the agent is not in recovery. As
agents play their strategies, the Markov chain converges to
a stationary distribution in which each agent is active with
probability pA. If N agents play the game, the expected
number of sprinters is

nS = ps×pA×N (10)

As the number of sprinters increases, so does the rack’s
current draw and the probability of tripping the breaker.
Given the expected number of sprinters, the game updates
the probability of tripping the breaker according to its trip
curve (e.g., Figure 3). Mathematically, the curve is described
as follows.

Ptrip =

0 if nS < Nmin

nS−Nmin

Nmax−Nmin
if Nmin ≤ nS ≤ Nmax

1 if nS > Nmax

(11)

Ptrip determines nS , which determines P ′trip. If Ptrip = P ′trip,
then agents are playing optimized strategies that produce an
equilibrium.

4.4 Finding the Equilibrium
When the game begins, agents make initial assumptions
about population behavior and the probability of tripping the
breaker. Agents optimize their strategies in response to pop-
ulation behavior. Strategies produce sprints that affect the
probability of tripping the breaker. Over time, population
behavior and agent strategies converge to a stationary dis-
tribution, which is consistent across epochs. The game is in
equilibrium if the following conditions hold.

• Given tripping probabilityPtrip, the sprinting strategy dic-
tated by threshold uT is optimal and solves the Bellman
equation in Equations (1)–(3).

• Given sprinting strategy uT , the probability of tripping
the circuit breaker is Ptrip and is calculated by Equations
(9)–(11).

In equilibrium, every agent plays her optimal strategy and no
agent benefits when deviating from her strategy. In practice,

Table 1. Spark Workloads

Benchmark Category Dataset Data Size

NaiveBayesian Classification kdda2010 [43] 2.5G
DecisionTree Classification kdda2010 2.5G
GradientBoostedTrees Classification kddb2010 [43] 4.8G
SVM Classification kdda2010 2.5G
LinearRegression Classification kddb2010 4.8G
Kmeans Clustering uscensus1990 [30] 327M
ALS Collaborative Filtering movielens2015 [24] 325M
Correlation Statistics kdda2010 2.5G
PageRank Graph Processing wdc2012 [34] 5.3G
ConnectedComponents Graph Processing wdc2012 5.3G
TriangleCounting Graph Processing wdc2012 5.3G

the coordinator in the management framework finds and
maintains an equilibrium with a mix of offline and online
analysis.

Offline Analysis. Agents sample epochs and measure
utility from sprinting to produce a density function f(u),
which characterizes how often an agent sees utility u from
sprinting. The coordinator collects agents’ density functions,
analyzes population dynamics, and tailors sprinting strate-
gies for each agent. Finally, the coordinator assigns opti-
mized strategies to support online sprinting decisions.

Algorithm 1 describes the coordinator’s offline analysis.
It initializes the probability of tripping the breaker. Then it
iteratively analyzes population dynamics to find an equilib-
rium. Each iteration proceeds in three steps. First, the coor-
dinator optimizes sprinting threshold uT by solving the dy-
namic program defined in Equations (1)–(8). Second, it es-
timates the number of sprinters according to Equation (10).
Finally, it updates the probability of tripping the breaker ac-
cording to Equation (11). The algorithm terminates when
thresholds, number of sprinters, and tripping probability are
stationary.

The offline algorithm has no performance overhead. The
analysis runs periodically to update sprinting strategies and
the tripping probability as application mix and system con-
ditions evolve. It does not affect an application’s critical path
as agents use updated strategies when they become available
but need not wait for them.

The algorithm requires little computation. It solves the
dynamic program with value-iteration, which has a conver-
gence rate that depends on the discount factor δ. The number
of iterations grows polynomially in (1−δ)−1. We implement
and run the algorithm on an Intel® Core™ i5 processor with
4GB of memory. The algorithm completes in less than 10s,
on average.

Online Strategy. An agent decides whether to sprint at
the start of each epoch by estimating a sprint’s utility and
comparing it against her threshold. Estimation could be im-
plemented in several ways. An agent could use the first few

seconds of an epoch to profile her normal and sprinting per-
formance. Alternatively, an agent could use heuristics to esti-
mate utility from additional cores and higher clock rates. For
example, task queue occupancy and cache misses are asso-
ciated with a sprint’s impact on task parallelism and instruc-
tion throughput, respectively. Comparisons with a threshold
are trivial. If an agent decides to sprint, it turns on otherwise
disabled cores using CPU-hotplug and increases clock rates
using ACPI [35].

5. Experimental Methodology
Servers and Sprints. The agent and its application are
pinned to a chip multiprocessor, an Intel® Xeon® E5-2697
v2 that can run at 2.70GHz. Two multiprocessors share
128GB of main memory within a server. An agent runs in
normal or sprinting mode. In normal mode, the agent uses
three 1.2GHz cores. In sprinting mode, the agent uses twelve
2.7GHz cores. We turn cores on and off with Linux sysfs.
In principle, sprinting represents any mechanism that per-
forms better but consumes more power.

Workloads. We evaluate Apache Spark workloads [46].
The Spark run-time engine dynamically schedules tasks to
use available cores and maximize parallelism, adapting as
sprints cause the number of available cores to vary across
epochs. Each agent runs a Spark application on representa-
tive datasets as shown in Table 1.

Profiling Methods. We collect system profiles that mea-
sure power and temperature, using the Intel® Performance
Counter Monitor 2.8 to read MSR registers once every
second. We collect workload profiles by modifying Spark
(v1.3.1) to log the IDs of jobs, stages, and tasks upon their
completion.

We measure application performance in terms of the
number of tasks completed per second (TPS). Each appli-
cation defines a number of jobs, and each job is divided
into tasks that compute in parallel. Jobs are completed in
sequence while tasks can be completed out of order. The
total number of tasks in a job is constant and independent

Table 2. Experimental Parameters

Description Symbol Value

Min # sprinters Nmin 250
Max # sprinters Nmax 750
Prob. of staying in cooling pc 0.50
Prob. of staying in recovery pr 0.88
Discount factor δ 0.99

of the available hardware resources. Thus, TPS measures
performance for a fixed amount of work.

We trace TPS during an application’s end-to-end execu-
tion in normal and sprinting modes. Since execution times
differ in the two modes, comparing traces requires some ef-
fort. For every second in normal mode, we measure the num-
ber of tasks completed and estimate the number of tasks that
would have been completed in the sprinting mode. For our
evaluation, we estimate a sprint’s speedup by comparing the
measured non-sprinting trace and the interpolated sprinting
trace. In a practical system, online profiling and heuristics
would be required.

Simulation Methods. We simulate 1000 users and eval-
uate their performance in the sprinting game. The R-based
simulator uses traces of Spark computation collected in both
normal and sprinting modes. The simulator models system
dynamics as agents sprint, cool, and recover.

One set of simulations evaluates homogeneous agents
who arrive randomly and launch the same type of Spark ap-
plication; randomized arrivals cause application phases to
overlap in diverse ways. A second set of simulations eval-
uates heterogeneous agents who launch different types of
applications, further increasing the diversity of overlapping
phases. Diverse phase behavior exercises the sprinting game
as agents and their processors optimize strategies in response
to varied competitors’.

Table 2 summarizes technology and system parameters.
Parameters Nmin and Nmax are set by the circuit breaker’s
tripping curve. Parameters pc and pr are set by the chip’s
cooling mechanism and the rack’s UPS batteries. These
probabilities decrease as cooling efficiency and recharge
speed increase – see §2.

6. Evaluation
We evaluate the sprinting game and its equilibrium thresh-
old against several alternatives. Although there is little prior
work in managing sprints, we compare against three heuris-
tics that represent broader perspectives on power manage-
ment. First, greedy heuristics focus on the present and ne-
glect the future [49]. Second, control-theoretic heuristics
are reactive rather than proactive [1, 2]. Third, centralized
heuristics focus on the system and neglect individuals. Un-
like these approaches, the sprinting game anticipates the fu-

ture and emphasizes strategic agents who participate in a
shared system.

Greedy (G) permits agents to sprint as long as the chip is
not cooling and the rack is not recovering. This mechanism
may frequently trip the breaker and require rack recovery.
After recovery, agent wake-ups and sprints are staggered
across two epochs. Greedy produces a poor equilibrium—
knowing that everyone is sprinting, an agent’s best response
is to sprint as well.

Exponential Backoff (E-B) throttles the frequency at
which agents sprint. An agent sprints greedily until the
breaker trips. After the first trip, agents wait 0 – 1 epoch
before sprinting again. After the second trip, agents wait 0
– 3 epochs. After the t-th trip, agents wait for some number
of epochs drawn randomly from [0, 2t − 1]. The waiting
interval contracts by half if the breaker has not been tripped
in the past 100 epochs.

Cooperative Threshold (C-T) assigns each agent the
globally optimal threshold for sprinting. The coordinator ex-
haustively searches for the threshold that maximizes system
performance. The coordinator enforces these thresholds al-
though they do not reflect agents’ best responses to system
dynamics. These thresholds do not produce an equilibrium
but do provide an upper bound on performance.

Equilibrium Threshold (E-T) assigns each agent her
optimal threshold from the sprinting game. The coordinator
collects performance profiles and implements Algorithm 1
to produce thresholds that reflect agents’ best responses to
system dynamics. These thresholds produce an equilibrium
and agents cannot benefit by deviating from their assigned
strategy.

6.1 Sprinting Behavior
Figure 6 compares sprinting policies and resulting system
dynamics as 1000 instances of Decision Tree, a representa-
tive application, computes for a sequence of epochs. Sprint-
ing policies determine how often agents sprint and whether
sprints trigger emergencies. Ideally, policies would permit
agents to sprint up until they trip the circuit breaker. In this
example, 250 of the 1000 agents for Decision Tree can sprint
before triggering a power emergency.

Greedy heuristics are aggressive and inefficient. A sprint
in the present precludes a sprint in the near future, harm-
ing subsequent tasks that could have benefited more from
the sprint. Moreover, frequent sprints risk power emergen-
cies and require rack-level recovery. G produces an unsta-
ble system, oscillating between full-system sprints that trig-
ger emergencies and idle recovery that harms performance.
G staggers the distribution of sprinting permissions after re-
covery to avoids dI/dt problems, which reduces but does not
eliminate instability.

Control-theoretic approaches are more conservative, throt-
tling sprints in response to power emergencies. E-B adap-
tively responds to feedback, producing a more stable system
with fewer sprints and emergencies. Indeed, E-B may be too

0
30

0
60

0
Greedy

0
30

0
60

0

N
um

be
r

of
 S

pr
in

tin
g

U
se

rs

Exponential Backoff

0
30

0
60

0

Cooperative Threshold

0 200 400 600 800 1000

0
30

0
60

0

Epoch Index

Equilibirum Threshold

Figure 6. Sprinting behavior for a representative application, Decision Tree. Black line denotes number of sprinters. Grey line
denotes the point at which sprinters risk a power emergency, Nmin.

conservative, throttling sprints beyond what is necessary to
avoid tripping the circuit breaker. The number of sprinters
is consistently lower than Nmin, which is safe but leaves
sprinting opportunities unexploited. Thus, in neither G nor
E-B do agents sprint to full advantage.

In contrast, the computational sprinting game performs
well by embracing agents’ strategies. E-T produces an equi-
librium in which agents play their optimal strategies and
converge to a stationary distribution. In equilibrium, the
number of sprinters is just slightly above Nmin = 250,
the number that causes a breaker to transition from the non-
tripped region to the tolerance band. After emergency and
recovery, the system quickly returns to equilibrium. Note
that E-T’s system dynamics are similar to those from the
high-performance, cooperative C-T policy.

Figure 7 shows the percentage of time an agent spends in
active, cooling, and recovery states. The analysis highlights
G and E-B’s limitations. With G, an agent spends more than
50% of its time in recovery, waiting for batteries to recharge
after an emergency. With E-B, an agent spends nearly 40%
of its time in active mode but not sprinting.

Agents spend comparable shares of their time sprinting
in each policy. However, this observation understates the
sprinting game’s advantage. G and E-B sprint at every op-
portunity and ignore transitions into cooling states, which
preclude sprints in future epochs. In contrast, E-T and C-T’s
sprints are more timely as strategic agents sprint only when

Greedy Exponential Equilibrium Cooperative
0%

25%

50%

75%

100%

Active (not sprinting)
Local cooling

Global recovery
Sprinting

Figure 7. Percentage of time spent in agent states for a
representative application, Decision Tree.

estimated benefits exceed an optimized threshold. Thus, a
sprint in E-T or C-T contributes more to performance than
one in G or E-B.

6.2 Sprinting Performance
Figure 8 shows task throughput under varied policies. The
sprinting game outperforms greedy heuristics and is compet-
itive with globally optimized heuristics. Rather than sprint-
ing greedily, E-T uses equilibrium thresholds to select more
profitable epochs for sprinting. E-T outperforms G and E-B
by up to 6.8× and 4.8×, respectively. Agents who use their

 P
er

fo
rm

an
ce

 (N
or

m
al

iz
ed

 to
 G

re
ed

y)
0

1
2

3
4

5
6

na
ive

de
cis

ion

gra
die

nt svm line
ar

km
ea

ns als

co
rre

lat
ion

pa
ge

ran
k cc

tria
ng

le

Greedy
Exponential Backoff
Equilibrium Threshold
Coorperative Threshold

Figure 8. Performance, measured in tasks per second and
normalized against greedy, for a single application type.

1 2 3 4 5 6 7 8 9 10 11
Number of Applications

Pe
rfo

rm
an

ce
 (N

or
m

al
iz

ed
 to

 G
re

ed
y)

0

1

2

3

4

5

6 Greedy
Exponential Backoff
Equilibrium Threshold

Figure 9. Performance, measured in tasks per second and
normalized against greedy, for multiple application types.

own strategies to play the game competitively produce out-
comes that rival expensive cooperation. E-T’s task through-
put is 90% that of C-T’s for most applications.

Linear Regression and Correlation are outliers, achieving
only 36% and 65% of cooperative performance. For these
applications, E-T performs as badly as G and E-B because
the applications’ performance profiles exhibit little variance
and all epochs benefit similarly from sprinting. When an
agent cannot distinguish between epochs, she sets a low
threshold and sprints for every epoch. In effect, for such
applications, E-T produces a greedy equilibrium.

Thus far, we have considered agents for applications of
the same type that compute together. When agents represent
different types of applications, E-T assigns different sprint-
ing thresholds for each type. Figure 9 shows performance as
the number of application types increases. We evaluate per-
formance for a system with k types by randomly selecting
k applications, finding each agent’s strategy under an E-T
policy, and repeating ten times to report an average. As be-
fore, E-T performs much better than G and E-B. We do not
evaluate C-T because searching for optimal thresholds for
multiple types of agents is computationally hard.

2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4 Linear Regression

Normalized TPS

D
en

si
ty

0 5 10 15

0.
00

0.
10

0.
20

PageRank

Normalized TPS

D
en

si
ty

Figure 10. Probability density for sprinting speedups.

P
ro

ba
bi

lit
y

of
 S

pr
in

tin
g

0.0

0.2

0.4

0.6

0.8

1.0

na
ive

de
cis

ion

gr
ad

ien
t

sv
m

lin
ea

r

km
ea

ns als

co
rre

lat
ion

pa
ge

ra
nk cc

tri
an

gle

Figure 11. Probability of sprinting.

●
●

●

●
● ● ●

●
●

● ●
● ●

● ●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Pr

E
ffi

ci
en

cy
 o

f E
qu

ili
br

iu
m

Figure 12. Efficiency of equilibrium thresholds.

6.3 Sprinting Strategies
Figure 10 uses kernel density plots for two representative
applications, Linear Regression and PageRank, to show how
often and how much their tasks benefit from sprinting. Lin-
ear Regression presents a narrower distribution and perfor-
mance gains from sprinting vary in a band between 3× and
5×. In contrast, PageRank’s performance gains can often ex-
ceed 10×.

The coordinator uses performance profiles to optimize
threshold strategies. Linear Regression’s strategy is aggres-
sive and uses a low threshold that often induces sprints.
This strategy arises from its relatively low variance in per-

●●●●●●●●●●●
●●●●

●
●

●

●

●

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

Pc

T
hr

es
ho

ld

●●●●●●●●●●●●●●●●●●●●

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

Pr

●●●●●●●●●●●●●●●●●●●●

0 200 400 600

0.
0

1.
0

2.
0

3.
0

N_min

●●●

●
●

●●●●●●●●●●●●●●●

400 600 800

0.
0

1.
0

2.
0

3.
0

N_max

Figure 13. Sensitivity of sprinting threshold to architectural parameters—probability of staying in cooling and recovery pc, pr
and the tripping curve Nmin, Nmax.

formance gains. If sprinting’s benefits are indistinguishable
across tasks and epochs, an agent sprints indiscriminately
and at every opportunity. PageRank’s strategy is more nu-
anced and uses a high threshold, which cuts her bimodal dis-
tribution and implements judicious sprinting. She sprints for
tasks and epochs that benefit most (i.e., those that see perfor-
mance gains greater than 10×).

Figure 11 illustrates diversity in agents’ strategies by
reporting their propensities to sprint. Linear Regression and
Correlation’s narrow density functions and low thresholds
cause these applications to sprint at every opportunity. The
majority of applications, however, resemble PageRank with
higher thresholds and judicious sprints.

6.4 Equilibrium versus Cooperation
Sprinting thresholds from equilibria are robust to strategic
behavior and perform well. However, cooperative thresholds
that optimize system throughput can perform even better.
Our evaluation has shown that the sprinting game delivers
90% of the performance from cooperation. But we find that
the game performs well only when the penalties from non-
cooperative behavior are low. To understand this insight, let
us informally define efficiency as the ratio of game perfor-
mance from equilibrium thresholds (E-T) to optimal perfor-
mance from cooperative thresholds (C-T).*

The sprinting game produces efficient equilibria because
the penalty for non-cooperative behavior is triggering a
power emergency. In the sprinting architecture, recovery is
relatively inexpensive as batteries recharge and normal sys-
tem operation resumes in ten epochs or less. However, higher
penalties for non-cooperative behavior would degrade the
game’s performance from equilibrium strategies. Figure 12
shows how efficiency falls as recovery from power emer-
gencies become increasingly expensive. Recall that pr is the
probability an agent in recovery stays in that state.

Prisoner’s Dilemma. The sprinting game fails when an
emergency requires indefinite recovery and pr is one. In this

*We are informal because the domain of strategies is huge and we con-
sider only the best cooperative threshold. A non-threshold strategy might
provide even better performance.

extreme scenario, we would like the game to produce an
equilibrium in which agents sprint yet avoid tripping the
breaker. Unfortunately, the game has no equilibrium that
avoids tripping the breaker and triggering indefinite recov-
ery. If a strategic agent were to observe system dynamics
that avoid tripping the breaker, which means Ptrip is zero,
she would realize that other agents have set high thresholds
to avoid sprints. Her best response would be lowering her
threshold and sprinting more often. Others would behave
similarly and drive Ptrip higher.

In equilibrium, Ptrip would rise above zero and agents
would eventually trip the breaker, putting the system into
indefinite recovery. Thus, selfish agents would produce in-
efficient equilibria—the Prisoner’s Dilemma in which each
agent’s best response performs worse than a cooperative one.

Enforcing Non-Equilibrium Strategies. The Folk the-
orem guides agents to a more efficient equilibrium by pun-
ishing agents whose responses harm the system. The coor-
dinator would assign agents the best cooperative thresholds
to maximize system performance from sprinting. When an
agent deviates, she is punished such that performance lost
exceeds performance gained. When applied to our previous
example, punishments would allow the system to escape in-
efficient equilibria as agents are compelled to increase their
thresholds and ensure Ptrip remains zero.

Note that threat of punishment is sufficient to shape the
equilibrium. Agents would adapt strategies based on the
threat to avoid punishment. The coordinator could monitor
sprints, detect deviations from assigned strategies, and for-
bid agents who deviate from ever sprinting again. Alterna-
tively, agents could impose collective punishment by contin-
uously sprinting, triggering emergencies, and degrading ev-
eryone’s performance. The threat of collective action deters
agents who would deviate from the cooperative strategy.

6.5 Sensitivity Analysis
Figure 13 shows the sprinting threshold’s sensitivity to
the game’s parameters. In practice, server engineering af-
fects cooling and recovery durations (pc, pr) as well as the
breaker’s trip curve (Nmin, Nmax).

As cooling duration increases, thresholds increase and
agents sprint less. Agents are more cautious because sprint-
ing in the current epoch requires many more epochs for cool-
ing. The opportunity cost of sprinting mistakenly rises. As
recovery duration increases, the cost of tripping the breaker
increases. However, because each agent sprints to pursue
her own performance while hoping others do not trip the
breaker, thresholds are insensitive to recovery cost. When pr
is one, we have shown how agents encounter the Prisoner’s
Dilemma – see §6.4.

When Nmin and Nmax are small, the probability of trip-
ping the breaker is high. Ironically, agents sprint more ag-
gressively and extract performance now because emergen-
cies that forbid future sprints are likely. WhenNmin andNmax
are big, each agent sprints more judiciously as a sprint now
affects the ability to sprint in the future.

7. Related Work
The sprinting problem falls into the general category of
datacenter power management, but we are the first to identify
the problem and propose a game-theoretic approach. The
sprinting problem is made interesting by modern approaches
to datacenter provisioning.

To minimize total cost of ownership and maximize return
on investment, datacenters oversubscribe their servers [9,
14], bandwidth [8], branch circuits [16], cooling and power
supplies [15, 20]. In datacenters, dynamic power capping [12]
adjusts the power allocation to individual servers, enabling
a rich policy space for power and energy management. In
servers, managers could pursue performance while min-
imizing operating costs, which are incurred from energy
and cooling [10, 11, 18, 31]. Researchers have sought to
allocate server power to performance critical services via
DVFS [26, 33].

Economics and game theory have proven effective in
datacenter power and resource management [13]. Mar-
kets [21, 22] and price theory [42] have been applied to
manage heterogeneous server cores. Demand response mod-
els have been proposed to handle power emergencies [32].
In addition to performance, fairness in game theory has
been studied to incentivize users when sharing hardware
in a cloud environment [17, 47, 48].

In this paper, we treat the sprinting management prob-
lem as a repeated game and seek an equilibrium that leads
sprinting servers to expected behavior. Similar approaches
have been applied to power control in wireless communi-
cation systems [28]. But we are the first to consider game
theory for datacenter management, especially in the context
of computational sprinting and power capping.

8. Conclusions
We present a sprinting architecture in which many, indepen-
dent chip multiprocessors share a power supply. When an in-
dividual chip sprints, its excess heat constrains future sprints.

When a collection of chips sprint, its additional power de-
mands raise the risk of power emergencies. For such an ar-
chitecture, we present a management framework that deter-
mines when each chip should sprint.

We formalize sprint management as a repeated game.
Agents represent chip multiprocessors and their workloads,
executing sprints strategically on their behalf. Strategic be-
haviors produce an equilibrium in the game. We show that, in
equilibrium, the computational sprinting game outperforms
prior, greedy mechanisms by 4-6× and delivers 90% of the
performance achieved from a more expensive, globally en-
forced mechanism.

Acknowledgments
This work is supported by NSF grants CCF-1149252 (CA-
REER), CCF-1337215 (XPS-CLCCA), SHF-1527610, and
AF-1408784. This work is also supported by STARnet, a
Semiconductor Research Corporation program, sponsored
by MARCO and DARPA. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of these sponsors.

References
[1] Dynamic thermal management for high-performance micro-

processors. In Proceedings of the 7th IEEE International Sym-
posium on High Performance Computer Architecture (HPCA),
pages 171–182. IEEE Computer Society, 2001.

[2] Control-theoretic techniques and thermal-RC modeling for
accurate and localized dynamic thermal management. In
Proceedings of the 8th IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 17–
28. IEEE Computer Society, 2002.

[3] S. Adlakha and R. Johari. Mean field equilibrium in dy-
namic games with strategic complementarities. Operations
Research, 61(4):971–989, 2013.

[4] S. Adlakha, R. Johari, G. Y. Weintraub, and A. Goldsmith. On
oblivious equilibrium in large population stochastic games. In
Proceedings of the 49th IEEE Conference on Decision and
Control (CDC), pages 3117–3124. IEEE, 2010.

[5] S. Adlakha, R. Johari, and G. Y. Weintraub. Equilibria of
dynamic games with many players: Existence, approximation,
and market structure. Journal of Economic Theory, 2013.

[6] Allen-Bradley. Bulletin 1489 UL489 circuit breakers.
URL http://literature.rockwellautomation.com/

idc/groups/literature/documents/td/1489-td001_

-en-p.pdf, 2016. Online; accessed: 12-29-2016.

[7] Ametek. Selection and sizing of batter-
ies for UPS backup. URL http://www.

solidstatecontrolsinc.com/knowledgecenter/~/

media/85b8e51754c446bda1f38449f444471c.ashx,
2016. Online; accessed: 12-29-2016.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-
wards predictable datacenter networks. In Proceedings of the

ACM SIGCOMM Conference (SIGCOMM), pages 242–253.
ACM, 2011.

[9] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as
a computer: An introduction to the design of warehouse-scale
machines. Synthesis Lectures on Computer Architecture, 8(3):
1–154, 2013.

[10] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware
resource allocation heuristics for efficient management of data
centers for cloud computing. Future Generation Computer
Systems, 28(5):755–768, 2012.

[11] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà,
and J. Torres. Towards energy-aware scheduling in data cen-
ters using machine learning. In Proceedings of the 1st Inter-
national Conference on Energy-Efficient Computing and Net-
working, pages 215–224. ACM, 2010.

[12] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and
S. Sankar. The need for speed and stability in data center
power capping. Sustainable Computing: Informatics and Sys-
tems, 3(3):183–193, 2013.

[13] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle. Managing energy and server resources in hosting
centers. In Proceedings of the 18th Symposium on Operating
Systems Principles (SOSP), pages 103–116. ACM, 2001.

[14] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load dispatch-
ing for connection-intensive internet services. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 337–350. USENIX Asso-
ciation, 2008.

[15] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning
for a warehouse-sized computer. In Proceedings of the 34th
Annual International Symposium on Computer Architecture
(ISCA), pages 13–23. ACM, 2007.

[16] X. Fu, X. Wang, and C. Lefurgy. How much power oversub-
scription is safe and allowed in data centers. In Proceedings
of the 8th ACM International Conference on Autonomic Com-
puting (ICAC), pages 21–30. ACM, 2011.

[17] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: Fair al-
location of multiple resource types. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Im-
plementation (NSDI), pages 323–336. USENIX Association,
2011.

[18] Í. Goiri, T. D. Nguyen, R. Bianchini, and Í. G. Presa.
Coolair: Temperature-and variation-aware management for
free-cooled datacenters. In Proceedings of the 20th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 253–
265. ACM, 2015.

[19] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Bene-
fits and limitations of tapping into stored energy for datacen-
ters. In Proceeding of the 38th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 341–351. IEEE,
2011.

[20] S. Govindan, D. Wang, A. Sivasubramaniam, and B. Ur-
gaonkar. Leveraging stored energy for handling power emer-

gencies in aggressively provisioned datacenters. In Proceed-
ings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 75–86. ACM, 2012.

[21] M. Guevara, B. Lubin, and B. C. Lee. Navigating heteroge-
neous processors with market mechanisms. In Proceeding of
the 19th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 95–106. IEEE, 2013.

[22] M. Guevara, B. Lubin, and B. C. Lee. Strategies for antici-
pating risk in heterogeneous system design. In Proceeding of
the 20th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 154–164. IEEE, 2014.

[23] R. Gummadi, R. Johari, and J. Y. Yu. Mean field equilibria of
multiarmed bandit games. In Proceedings of the 13th ACM
Conference on Electronic Commerce (EC), pages 655–655.
ACM, 2012.

[24] F. M. Harper and J. A. Konstan. The movielens datasets: His-
tory and context. ACM Transactions on Interactive Intelligent
Systems (TiiS), 5(4):19, 2015.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A plat-
form for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (NSDI), pages 295–308.
USENIX Association, 2011.

[26] C.-H. Hsu, Y. Zhang, M. Laurenzano, D. Meisner, T. Wenisch,
J. Mars, L. Tang, R. G. Dreslinski, et al. Adrenaline: Pin-
pointing and reining in tail queries with quick voltage boost-
ing. In Proceedings of the 21st IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages
271–282. IEEE, 2015.

[27] K. Iyer, R. Johari, and M. Sundararajan. Mean field equilibria
of dynamic auctions with learning. ACM SIGecom Exchanges,
10(3):10–14, 2011.

[28] M. Le Treust and S. Lasaulce. A repeated game formulation of
energy-efficient decentralized power control. Wireless Com-
munications, IEEE Transactions on, 9(9):2860–2869, 2010.

[29] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP
design space exploration subject to physical constraints. In
Proceedings of the 12th IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 17–
28. IEEE, 2006.

[30] M. Lichman. UCI machine learning repository. URL http:

//archive.ics.uci.edu/ml, 2013.

[31] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska. Dynamic
right-sizing for power-proportional data centers. IEEE/ACM
Transactions on Networking (TON), 21(5):1378–1391, 2013.

[32] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen. Data
center demand response: Avoiding the coincident peak via
workload shifting and local generation. Performance Eval-
uation, 70(10):770–791, 2013.

[33] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proceeding of the 41st Annual
International Symposium on Computer Architecture (ISCA),
pages 301–312. IEEE, 2014.

[34] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer.
Web data commons - hyperlink graphs. URL http:

//webdatacommons.org/hyperlinkgraph/index.html,
2012. Online; accessed: 12-29-2016.

[35] Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vadda-
giri. Linux kernel hotplug cpu support. In Linux Symposium,
volume 2, 2004.

[36] A. Raghavan. Computational sprinting: Exceeding sustain-
able power in thermally constrained systems. PhD thesis, Uni-
versity of Pennsylvania, 2013.

[37] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou,
K. P. Pipe, T. F. Wenisch, and M. M. K. Martin. Computa-
tional sprinting. In Proceedings of the 18th IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), pages 1–12. IEEE Computer Society, 2012.

[38] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P.
Pipe, T. F. Wenisch, and M. M. Martin. Computational sprint-
ing on a hardware/software testbed. In Proceedings of the
18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 155–166. ACM, 2013.

[39] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P.
Pipe, T. F. Wenisch, and M. M. Martin. Utilizing dark silicon
to save energy with computational sprinting. IEEE Micro, 33
(5):20–28, 2013.

[40] L. Shao, A. Raghavan, L. Emurian, M. C. Papaefthymiou, T. F.
Wenisch, M. M. Martin, and K. P. Pipe. On-chip phase change
heat sinks designed for computational sprinting. In Proceed-
ings of the 30th Annual Semiconductor Thermal Measurement
and Management Symposium (SEMI-THERM), pages 29–34.
IEEE, 2014.

[41] M. Skach, M. Arora, C.-H. Hsu, Q. Li, D. Tullsen, L. Tang,
and J. Mars. Thermal time shifting: Leveraging phase change
materials to reduce cooling costs in warehouse-scale comput-
ers. In Proceedings of the 42nd Annual International Sympo-

sium on Computer Architecture (ISCA), pages 439–449. IEEE,
2015.

[42] T. Somu Muthukaruppan, A. Pathania, and T. Mitra. Price the-
ory based power management for heterogeneous multi-cores.
In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pages 161–176. ACM, 2014.

[43] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and
K. Koedinger. Algebra I 2006-2007. Challenge data
set from KDD Cup 2010 educational data mining chal-
lenge. URL http://pslcdatashop.web.cmu.edu/

KDDCup/downloads.jsp, 2010.

[44] F. Volle, S. V. Garimella, M. Juds, et al. Thermal management
of a soft starter: Transient thermal impedance model and per-
formance enhancements using phase change materials. Power
Electronics, IEEE Transactions on, 25(6):1395–1405, 2010.

[45] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller. Ship:
A scalable hierarchical power control architecture for large-
scale data centers. Parallel and Distributed Systems, IEEE
Transactions on, 23(1):168–176, 2012.

[46] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, volume 10, page 10, 2010.

[47] S. M. Zahedi and B. C. Lee. REF: Resource elasticity fairness
with sharing incentives for multiprocessors. In Proceedings
of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 145–160. ACM, 2014.

[48] S. M. Zahedi and B. C. Lee. Sharing incentives and fair divi-
sion for multiprocessors. IEEE Micro, 35(3):92–100, 2015.

[49] W. Zheng and X. Wang. Data center sprinting: Enabling com-
putational sprinting at the data center level. In Proceedings of
the 35th International Conference on Distributed Computing
Systems (ICDCS), pages 175–184. IEEE, 2015.

