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Computational Sprinting

e Supply extra power to enhance performance for short durations

e Activate more cores, boost voltage/frequency




Computational Sprinting

Normalized Speedup

e Supply extra power to enhance performance for short durations
e Activate more cores, boost voltage/frequency
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Sprinting Architecture

e Power for sprints supplied by shared rack

e Heat from sprints absorbed by thermal packages

Die Thermal Interface Material
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Fig. www.fortlax.se and Raghavan, Arun, et al. " Computational sprinting on a hardware/software testbed.”



Power Emergencies
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Fig. Fu, Wang, and Lefurgy. "How much power oversubscription is safe and allowed in data centers.”



Uninterruptible Power Supplies
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Example — Private Clouds

Google Apps
ORECOTSEM
e Applications compute on servers that share power

e Processors sprint independently

e Processors sprint selfishly for performance

Fig. Google, www.lasknet.net



Sprinting Management

When should processors sprint?

e Phases with higher performance from sprints

e But sprints prohibited as chip cools

Which processors should sprint?

e Processors that benefit most from sprints

e But sprints prohibited as batteries recover




Management Desiderata

Individual Performance

e Sprints account for phase behavior

e Sprints now constrain future sprints

System Stability

e Sprints account for others’ sprinting strategies

e Sprints risk power emergencies




Sprinting Strategy

e Optimize sprints given constraints
e Sprint, wait Acogjing for chip cooling

e Sprint, wait Ayecovery for rack recovery if breaker trips
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Sprinting Strategy

e Optimize sprints given constraints
e Sprint, wait Acogjing for chip cooling

e Sprint, wait Ayecovery for rack recovery if breaker trips

Utility from Sprint

Epoch




Game Theory

Study strategic agents

o Agents selfishly maximize individual utility

Optimize responses

e Response maximizes utility, given others’ strategies

Find equilibrium

e State where all agents play their best responses
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Sprinting Game

States
e Active — can sprint
e Cooling — cannot sprint, chip cooling

e Recovery — cannot sprint, batteries recharging

Actions

e Sprint or not, when active

Strategies
e Agent's state, app's phase, history, ...

e Others' strategies, utilities, and states, ...




Mean Field Equilibrium (MFE)

Challenges
e Large system with many agents
e Complex strategies and many competitors

e Intractable optimization for best response

Solution
e Abstract many agents with statistical distributions

e Optimize agents' strategies against expectations




Equilibrium Strategy

Agents maximize expected value of (not) sprinting
e Current state
e Utility from sprinting, u
e Probability of tripping, Pgip

Agents employ threshold strategy
e If active and u > uT, then sprint
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Find Equilibrium — Offline

Initialize probability of breaker trip Py,

Given Py, optimize threshold strategy ur

e Given uT, estimate number of sprinters N

Given N, update probability P;r,-p

[terate if P;r,-p # Puip




Execute Strategy — Online

If active and v > uT, then sprint
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Sprinting Thresholds
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e Thresholds are optimal and diverse

e Agents behave strategically to maximize performance




Management Architecture

Coordinator
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Offline: coordinator profiles utility, optimizes thresholds

Online: predictors estimate sprint utility

Online: agents apply threshold strategy

Online: executor adapts computation




Experimental Methodology

Sprinting
e 3 cores ©1.2GHz — 12 cores @ 2.7GHz

Workloads
e Apache Spark

e Spark engine dynamically schedules tasks on active cores

Performance Metric
e Tasks completed per second (TPS)

Simulation Method
e R-based simulator using traces of Spark computation




Management Policies

Greedy
e Sprint if neither cooling nor recovering

Exponential Back-off
e Sprint if neither cooling nor recovering

e Wait randomly for U[0, 2] epochs after k" trip

Cooperative Threshold
e Enforce globally optimized threshold

Equilibrium Threshold
e Announce decentralized, strategic threshold
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Case for Equilibria

Equilibrium Cooperative

Performance +
Stability +

o Cooperative (+): maximize global performance

e Equilibrium (+4): remove incentives to deviate
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Case for Equilibria

Equilibrium Cooperative

Performance +
Stability + —

o Cooperative (+): maximize global performance

e Equilibrium (+4): remove incentives to deviate

e Cooperative (-): enforce strategies globally




Case for Equilibria

Equilibrium Cooperative

Performance + +
Stability + —

Cooperative (+): maximize global performance

Equilibrium (4): remove incentives to deviate

Cooperative (-): enforce strategies globally

Equilibrium (4): maximize individual performance




Sprinting Behavior
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Sprinting Performance
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Greedy — aggressive, incurs emergencies
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Exponential — conservative, untimely sprints

Equilibrium — strategic, produces equilibrium

Cooperative — optimal, requires enforcement




Game States

= Active (not sprinting) ® Global recovery
® |ocal cooling = Sprinting
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Greedy — time in recovery

Exponential — untimely sprints

Equilibrium — timely sprints

Cooperative — timely sprints




Conclusion

Management with game theory
e Agents sprint according to threshold — inexpensive

e Agents have no incentives to deviate — stable

e Agents optimize response — high performance

Future directions
e Use game theory to manage scarce resources

e E.g., big/small processors, accelerators




Thank you

Questions?
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