
98 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

research highlights

DOI:10.1145/3299885

Distributed Strategies for
Computational Sprints
By Songchun Fan,† Seyed Majid Zahedi,† and Benjamin C. Lee

Abstract
Computational sprinting is a class of mechanisms that boost
performance but dissipate additional power. We describe a
sprinting architecture in which many, independent chip
multiprocessors share a power supply and sprints are con-
strained by the chips’ thermal limits and the rack’s power
limits. Moreover, we present the computational sprinting
game, a multi-agent perspective on managing sprints.
Strategic agents decide whether to sprint based on applica-
tion phases and system conditions. The game produces an
equilibrium that improves task throughput for data analytics
workloads by 4–6× over prior greedy heuristics and performs
within 90% of an upper bound on throughput from a globally
optimized policy.

1. INTRODUCTION
Modern datacenters oversubscribe their power supplies to
enhance performance and efficiency. A conservative data-
center that deploys servers according to their expected
power draw will under-utilize provisioned power, operate
power supplies at sub-optimal loads, and forgo opportuni-
ties for higher performance. In contrast, efficient datacen-
ters deploy more servers than it can power fully and rely on
varying computational load across servers to modulate
demand for power.4 Such a strategy requires responsive
mechanisms for delivering power to the computation that
needs it most.

Computational sprinting is a class of mechanisms that
supply additional power for short durations to enhance per-
formance. In chip multiprocessors, for example, sprints
activate additional cores and boost their voltage and frequency.
Although originally proposed for mobile systems,13, 14 sprint-
ing has found numerous applications in datacenter systems.
It can accelerate computation for complex tasks or accom-
modate transient activity spikes.16, 21

The system architecture determines sprint duration
and frequency. Sprinting multiprocessors generate extra
heat, absorbed by thermal packages and phase change
materials (PCMs),14, 16 and require time to release this heat
between sprints. At scale, uncoordinated multiprocessors
that sprint simultaneously could overwhelm a rack or
cluster’s power supply. Uninterruptible power supplies
reduce the risk of tripping circuit breakers and triggering
power emergencies. But the system requires time to
recharge batteries between sprints. Given these physical
constraints in chip multiprocessors and the datacenter
rack, sprinters require recovery time. Thus, sprinting

The original version of this paper is entitled “The
Computational Sprinting Game” and was published in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(2016), ACM, NY.

mechanisms couple performance opportunities with
management constraints.

We face fundamental management questions when
servers sprint independently but share a power supply –
which processors should sprint and when should they
sprint? Each processor’s workload derives extra perfor-
mance from sprinting that depends on its computational
phase. Ideally, sprinters would be the processors that ben-
efit most from boosted capability at any given time.
Moreover, the number of sprinters would be small enough
to avoid power emergencies, which constrain future
sprints. Policies that achieve these goals are prerequisites
for sprinting to full advantage.

We present the computational sprinting game to manage
a collection of sprinters. The sprinting architecture, which
defines the sprinting mechanism as well as power and cool-
ing constraints, determines rules of the game. A strategic
agent, representing a multiprocessor and its workload,
independently decides whether to sprint at the beginning of
an epoch. The agent anticipates her action’s outcomes,
knowing that the chip must cool before sprinting again.
Moreover, she analyzes system dynamics, accounting for
competitors’ decisions and risk of power emergencies.

We find the equilibrium in the computational sprinting
game, which permits distributed management. In an equi-
librium, no agent can benefit by deviating from her optimal
strategy. The datacenter relies on agents’ incentives to
decentralize management as each agent self-enforces her
part of the sprinting policy. Decentralized equilibria allow
datacenters to avoid high communication costs and
unwieldy enforcement mechanisms in centralized manage-
ment. Moreover, equilibria outperform prior heuristics.

2. THE SPRINTING ARCHITECTURE
We present a sprinting architecture for chip multiproces-
sors in datacenters. Multiprocessors sprint by activating
additional cores and increasing their voltage and frequency.
Datacenter applications, with their abundant task parallel-
ism, scale across additional cores as they become available.
In Figure 1, Spark benchmarks perform 2–7× better on a
sprinting multiprocessor, but dissipates 1.8× the power.
Power produces heat.

Sprinters require infrastructure to manage heat and
power. First, the chip multiprocessor’s thermal package

†  These authors contributed equally to this work.

http://dx.doi.org/10.1145/3299885

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 99

to the number of simultaneous sprints as each sprinter con-
tributes to the load above rated current. Higher currents
increase the probability of tripping the breaker.

Let nS denote the number of sprinters and let Ptrip denote
the probability of tripping the breaker. The breaker occupies
one of the following regions:

•	 Non-Tripped. Ptrip is zero when nS < Nmin

•	 Non-Deterministic. Ptrip is a non-decreasing function of
nS when Nmin ≤ nS < Nmax

•	 Tripped. Ptrip is one when nS ≥ Nmax

Note that Nmin and Nmax depend on the breaker’s trip curve and
the application’s demand for power when sprinting. For
Spark on chip multiprocessors, we find that the breaker does

and heat sink must absorb surplus heat during a sprint.14, 15
Second, the datacenter rack must employ batteries to guard
against power emergencies caused by a surplus of sprinters
on a shared power supply. Third, the system must imple-
ment management policies that determine which chips
sprint.

2.1. System architecture
Chip multiprocessors and thermal packages. The quality
of the multiprocessor’s thermal package, measured by its
thermal capacitance and conductance, determines the
chip’s maximum power level and dictates the duration of a
sprint.13, 15 More expensive heat sinks employ PCMs, which
increase thermal capacitance, and permit sprint durations
on the order of minutes if not hours. We estimate a chip
with paraffin wax can sprint with durations on the order of
150s.

After a sprint, the thermal package must release its heat
before the chip can sprint again. The average cooling dura-
tion, denoted as ∆tcool, is the time required before the PCM
returns to ambient temperature. The rate at which the PCM
dissipates heat depends on its melting point and the ther-
mal resistance between the material and the ambient. Both
factors can be engineered and, with paraffin wax, we esti-
mate a cooling duration on the order of 300s, twice the
sprint’s duration.

Power delivery and circuit breakers. Datacenter archi-
tects deploy servers and multiprocessors to oversubscribe
power distribution units for efficiency. Oversubscription
utilizes a larger fraction of the facility’s provisioned power.
But it relies on power capping and varied computational
load across servers to avoid tripping circuit breakers or vio-
lating contracts with utility providers.4 Although sprints
can boost computation, the risk of a power emergency
increases with the number of sprinters in a power capped
datacenter.

Figure 2 presents the circuit breaker’s trip curve, which
specifies how sprint duration and power combine to deter-
mine whether the breaker trips. The trip time corresponds
to the sprint’s duration. Longer sprints increase the proba-
bility of tripping the breaker. The current draw corresponds

N
or

m
al

iz
ed

 s
pe

ed
up

0

1

2

3

4

5

6

Naiv
e

Dec
isi

on

Gra
dien

t
SVM

Linea
r

Km
ea

ns
ALS

Corre
lat

ion

Pag
er

an
k CC

Tria
ngle

N
or

m
al

iz
ed

 p
ow

er
0.0

0.5

1.0

1.5

Naiv
e

Dec
isi

on

Gra
dien

t
SVM

Linea
r

Km
ea

ns
ALS

Corre
lat

ion

Pag
er

an
k CC

Tria
ngle

A
ve

ra
ge

 te
m

pe
ra

tu
re

 (°
C

)

0

10

20

30

40

50

Non−sprinting Sprinting

Naiv
e

Dec
isi

on

Gra
dien

t
SVM

Linea
r

Km
ea

ns
ALS

Corre
lat

ion

Pag
er

an
k CC

Tria
ngle

Figure 1. Normalized speedup, power, and temperature for varied Spark benchmarks when sprinting. Nominal operation supplies three cores
at 1.2GHz. Sprint supplies twelve cores at 2.7GHz.

3600

120

2

0.1

1 2 3 5 10 20

Long-delay

Conventional
tripping

Short circuit

P =0
trip

P =1
trip

Tripped

Non-deterministic

Not tripped

∆tsprint

Tolerance band

T
rip

 t
im

e
(s

ec
)

Current normalized to rated current

Figure 2. Typical trip curve of a circuit breaker.5

research highlights

100 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

parallelism when sprinting powers-on cores and tolerates
faults when cooling and recovery powers-off cores.

Agents are strategic and selfish entities that act on users’
behalf. They decide whether to sprint by continuously ana-
lyzing fine-grained application phases. Because sprints are
followed by cooling and recovery, an agent sprints judi-
ciously and targets application phases that benefit most
from extra capability. Agents use predictors that estimate
utility from sprinting based on software profiles and hard-
ware counters. Each agent represents a user and her applica-
tion on a chip multiprocessor.

Coordination. The coordinator collects profiles from
all agents and assigns tailored sprinting strategies to each
agent. The coordinator interfaces with strategic agents who
may attempt to manipulate system outcomes by misreport-
ing profiles or deviating from assigned strategies.
Fortunately, our game-theoretic mechanism guards against
such behavior.

First, agents will truthfully report their performance pro-
files. In large systems, game theory provides incentive com-
patibility, which means that agents cannot improve their
utility by misreporting their preferences. An agent who mis-
reports her profile has little influence on conditions in a
large system. Not only does she fail to affect others, an agent
who misreports suffers degraded performance as the coor-
dinator assigns her a poorly suited strategy based on inac-
curate profiles.

Second, agents will implement their assigned strategies
because the coordinator optimizes those strategies to pro-
duce an equilibrium. In equilibrium, every agent imple-
ments her strategy and no agent benefits by deviating from
it. An equilibrium has compelling implications for manage-
ment overheads. If each agent knows that every other agent
is playing her assigned strategy, she will do the same without
further communication with the coordinator. Global com-
munication between agents and the coordinator is infre-
quent and occurs only when system profiles change. In
effect, an equilibrium permits the distributed enforcement
of sprinting policies.

Equilibria are especially compelling when compared to
the centralized enforcement of coordinated policies, which
poses several challenges. First, centralized enforcement
requires frequent and global communication as each agent
decides whether to sprint by querying the coordinator at the
start of each epoch. The length of an epoch is short and cor-
responds to sprint duration. Moreover, without equilibria,
agents with kernel privileges could ignore prescribed poli-
cies, sprint at will, and cause power emergencies that harm
all agents.

3. THE SPRINTING GAME
We design a sprinting game to govern power supply and
manage system dynamics. The game divides time into
epochs and asks agents to play repeatedly. Agents represent
chip multiprocessors that share power. Each agent chooses
to sprint independently, pursuing benefits in the current
epoch and estimating repercussions in future epochs. An
agent’s utility from sprinting varies across epochs according
to her application’s phases. Multiple agents can sprint

not trip when less than 25% of the chips sprint and definitely
trips when more than 75% of the chips sprint. In other
words, Nmin = 0.25N and Nmax = 0.75N. We consider circuit
breakers that can be overloaded to 125–175% of rated current
for a 150s sprint.18, 21

Uninterruptible power supplies. When the breaker trips
and resets, power distribution switches from the branch cir-
cuit to the uninterruptible power supply (UPS).7 The rack
augments power delivery with batteries to complete sprints
in progress. Lead acid batteries support discharge times of
5–120min, long enough to support the duration of a sprint.
After completing sprints and resetting the breaker, servers
resume computation on the branch circuit.

Servers are forbidden from sprinting again until UPS bat-
teries are recharged. Sprints before recovery compromises
server availability and increases vulnerability to power emer-
gencies. Moreover, frequent discharges without recharges
shorten battery life. The average recovery duration, denoted
by ∆trecover, depends on the UPS discharge depth and recharg-
ing time. A battery can be recharged to 85% capacity in 8–10×
the discharge time, which corresponds to 8–10× the sprint
duration.

2.2 Management architecture
Figure 3 illustrates the management framework for a rack
of sprinting chip multiprocessors. The framework sup-
ports policies that pursue the performance of sprints
while avoiding system instability. Unmanaged and exces-
sive sprints may trip breakers, trigger emergencies, and
degrade performance at scale. The framework achieves its
objectives with strategic agents and coarse-grained
coordination.

Users and agents. Each user deploys three run-time com-
ponents: executor, agent, and predictor. Executors provide
clean abstractions, encapsulating applications that could
employ different software frameworks.10 The executor sup-
ports task-parallel computation by dividing an application
into tasks, constructing a task dependence graph, and
scheduling tasks dynamically based on available resources.
Task scheduling is particularly important as it increases

Coordinator

Alg 1

Profile

Stra
tegy

User

Executor engine

Task

Agent Predictor

User

Executor engine

Task

Agent Predictor

...

Figure 3. Users deploy task executors and agents that decide when
to sprint. Agents send performance profiles to a coordinator and
receives optimized sprinting strategies.

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 101

method when analyzing individual agents in a large system
is intractable.1 First, we define key probability distributions
on population behavior. Second, we optimize each agent’s
strategy in response to the population rather than individual
competitors. Third, we find an equilibrium in which no
agent can perform better by deviating from her optimal
strategy. Thus, we reason about the population and neglect
individual agents because any one agent has little impact on
overall behavior in a large system.

The mean field analysis for the sprinting game focuses on
the sprint distribution, which characterizes the number of
agents who sprint when the system is not in recovery.
In equilibrium, the sprint distribution is stationary and
does not change across epochs. In any given epoch, some
agents complete a sprint and enter the cooling state while
others leave the cooling state and begin a sprint. Yet the
number of agents who sprint is unchanged in expectation.

The stationary distribution for the number of sprinters
translates into stationary distributions for the rack’s cur-
rent draw and the probability of tripping the circuit
breaker. Given the tripping probability, which concisely
describes population dynamics, an agent can formulate
her best response and optimize her sprinting strategy to
maximize performance. We find an equilibrium by speci-
fying an initial value for the tripping probability and
iterating.

•	 Optimize sprint strategy (§4.2). Given the probability of
tripping the breaker Ptrip, each agent optimizes her
sprinting strategy to maximize her performance. She
sprints if performance gains from doing so exceed
some threshold. Optimizing her strategy means setting
her threshold uT.

•	 Characterize sprint distribution (§4.3). Given that each
agent sprints according to her threshold uT, the game
characterizes population behavior. It estimates the
expected number of sprinters nS, calculates their
demand for power, and updates the probability of trip-
ping the breaker .

•	 Check for equilibrium. The game is in equilibrium if
 = Ptrip. Otherwise, iterate with the new probability of

tripping the breaker.

4.2 Optimizing the sprint strategy
Sprinting defines a repeated game in which an agent acts in
the current epoch and encounters consequences of that
action in future epochs. An agent optimizes her sprinting
strategy accounting for the probability of tripping the circuit
breaker Ptrip, her utility from sprinting u, and her state. To
decide whether to sprint, each agent optimizes the following
Bellman equation.

� (1)

The equation quantifies value when an agent acts optimally
in every epoch. VS and V¬S are the expected values from sprint-
ing and not sprinting, respectively. If VS(u, A) > V¬S(u, A),
then sprinting is optimal. The game solves the Bellman
equation and identifies actions that maximize value with

simultaneously, but they risk tripping the circuit breaker
and triggering power emergencies that harm global
performance.

The game considers N agents who run task-parallel appli-
cations on N chip multiprocessors. Each agent computes in
either normal or sprinting mode. The normal mode uses a
fraction of the cores at low frequency whereas sprints use all
cores at high frequency. Sprints rely on the executor to
increase task parallelism and exploit extra cores. In this arti-
cle, we consider three cores at 1.2GHz in normal mode and
twelve cores at 2.7GHz in a sprint.

In any given epoch, an agent occupies one of three states—
active (A), chip cooling (C), and rack recovery (R)—according
to her actions and those of others in the rack. An agent’s
state describes whether she can sprint, and describes how
cooling and recovery impose constraints on her actions.

Active (A) – Agent can safely sprint. An agent in the active
state operates her chip in normal mode by default. The
agent may decide to sprint by comparing benefits in the cur-
rent epoch against benefits from deferring the sprint to a
future epoch. If the agent sprints, her state in the next epoch
is cooling.

Chip cooling (C) – Agent cannot sprint. After a sprint, an
agent remains in the cooling state until excess heat has been
dissipated. Cooling requires a number of epochs ∆tcool,
which depends on the chip’s thermal package. An agent in
the cooling state stays in this state with probability pc and
returns to the active state with probability 1 − pc. Probability
pc is defined so that 1/(1 − pc) = ∆tcool.

Rack recovery (R) – Agent cannot sprint. When multiple
chips sprint simultaneously, total current draw may trip the
circuit breaker, trigger a power emergency, and require sup-
plemental current from batteries. After an emergency, all
agents remain in the recovery state until batteries recharge.
Recovery requires a number of epochs ∆trecover, which
depends on the power supply and battery capacity. Agents in
the recovery state stay in this state with probability pr and
return to the active state with probability 1 − pr. Probability
pr is defined so that 1/(1 − pr) = ∆trecover.

4. GAME DYNAMICS AND STRATEGIES
Strategic agents decide between sprinting or not to maxi-
mize utilities. Sophisticated strategies produce several
desirable outcomes. Agents sprint during the epochs that
benefit most from additional cores and higher frequencies.
Moreover, agents consider other agents’ strategies because
the probability of triggering a power emergency and enter-
ing the recovery state increases with the number of
sprinters.

We analyze the game’s dynamics to optimize each agent’s
strategy for her performance. A comprehensive approach to
optimizing strategies considers each agent—her state, util-
ity, and history—to determine whether sprinting maximizes
her performance given her competitor’s strategies and sys-
tem state. In practice, however, this optimization is intrac-
table for hundreds or thousands of agents.

4.1 Mean field equilibrium
The mean field equilibrium (MFE) is an approximation

research highlights

102 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

Markov chain that describes each agent’s behavior. As agents
play their strategies, the Markov chain converges to a station-
ary distribution in which each agent is active with probability
pA. Given N agents, the expected number of sprinters is

	 � (9)

Given the expected number of sprinters, the game
updates the probability of tripping the breaker according to
its trip curve (e.g., Figure 2).

� (10)

Ptrip may change uT and nS, which may produce a new . If
Ptrip = , then agents are playing optimized strategies that
produce an equilibrium.

4.4 Finding the equilibrium
When the game begins, agents make initial assumptions
about population behavior and the probability of tripping
the breaker. Agents optimize their strategies in response to
population behavior. Strategies produce sprints that affect
the probability of tripping the breaker. Over time, popula-
tion behavior and agent strategies converge to a stationary
distribution. The game is in equilibrium if the following
conditions hold.

•	 Given tripping probability Ptrip, the sprinting strategy
dictated by threshold uT is optimal and solves the
Bellman equation in Equations (1)–(3).

•	 Given sprinting strategy uT, the probability of tripping
the circuit breaker is Ptrip and is calculated by Equations
(8)–(10).

In equilibrium, every agent plays her optimal strategy and
no agent benefits when deviating from her strategy. In prac-
tice, the coordinator in the management framework finds
and maintains an equilibrium with a mix of offline analysis
and online play.

Offline analysis. Agents sample epochs and measure util-
ity from sprinting to produce a density function f(u), which
characterizes how often an agent sees utility u from sprint-
ing. The coordinator collects agents’ density functions, ana-
lyzes population dynamics, and tailors sprinting strategies
for each agent. Finally, the coordinator assigns optimized
strategies to support online sprinting decisions.

Algorithm 1 describes the coordinator’s offline analysis.
It initializes the probability of tripping the breaker. Then, it
iteratively analyzes population dynamics to find an equilib-
rium. Each iteration proceeds in three steps. First, the coor-
dinator optimizes sprinting threshold uT by solving the
dynamic program defined in Equations (1)–(7). Second, it
estimates the number of sprinters according to Equation (9).
Finally, it updates the probability of tripping the breaker
according to Equation (10). The algorithm terminates when
thresholds, number of sprinters, and tripping probability

dynamic programming.
Value in active state. An action’s value depends on bene-

fits in the current epoch plus the discounted value from
future epochs. Suppose an agent in the active state decides
to sprint. Her value from sprinting is her immediate utility u
plus her discounted future utility. When she sprints, future
utility is calculated for the cooling state V (C) or the recovery
state V (R) when her sprint trips the breaker.

� (2)

However, an agent who does not sprint will remain in the
active state unless other sprinting agents trip the circuit
breaker and require recovery.

� (3)

V (A) denotes an agent’s expected value from being in the
active state. The game profiles an application and its time-
varying computational phases to obtain a density function
f(u), which characterizes how often an agent derives utility u
from sprinting. With this density, the game estimates
expected value.

� (4)

Value in cooling and recovery states. An active agent transi-
tions into cooling and recovery states when she and/or oth-
ers sprint.

� (5)

� (6)

Parameters pc and pr are technology-specific probabilities of
an agent in cooling and recovery states staying in those
states. The game tunes these parameters to reflect the time
required for chip cooling after a sprint and for rack recovery
after a power emergency.

Threshold strategy. An agent should sprint if her utility
from doing so is greater than not. Equation (7), which fol-
lows from Equations (2) and (3), states that an agent should
sprint if her utility u is greater than her optimal threshold for
sprinting uT. Applying this strategy in every epoch maximizes
expected value across time in the repeated game.

� (7)

4.3 Characterizing the sprint distribution
Given threshold uT, an agent estimates the probability that
she sprints, ps, in a given epoch.

	 � (8)

The probabilities of sprinting (ps) and cooling (pc) define a

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 103

modes and we estimate speedups by comparing the two
traces, epoch by epoch. In a practical system, online pro-
filing and heuristics would be required to estimate
speedups.

Datacenter simulation. We simulate 1000 users and eval-
uate their performance in the sprinting game. The simula-
tor uses server traces and models system dynamics as agents
sprint, cool, and recover. Simulations evaluate homoge-
neous agents who arrive randomly and launch the same type
of Spark application; randomized arrivals cause application
phases to overlap in diverse ways. Diverse phase behavior
exercises the sprinting game as agents optimize strategies
in response to varied competitors’.

Table 1 summarizes technology and system parameters.
Parameters Nmin and Nmax are set by the circuit breaker’s trip-
ping curve. Parameters pc and pr are set by the chip’s cooling
mechanism and the system’s batteries. These probabilities
decrease as cooling efficiency and recharge speed increase.

6. EVALUATION
We evaluate the sprinting game and its equilibrium thresh-
old against several alternatives that represent broader per-
spectives on power management. First, greedy heuristics
focus on the present and neglect the future.21 Second, control-
theoretic heuristics are reactive rather than proactive.2
Third, centralized heuristics focus on the system and neglect
individual users. Unlike these approaches, the sprinting
game anticipates the future and models strategic agents in a
shared system.

Greedy (G) permits agents to sprint as long as the chip is
not cooling and the rack is not recovering. This mechanism
may frequently trip the breaker and require rack recovery.
Greedy produces a poor equilibrium—knowing that every-
one is sprinting, an agent’s best response is to sprint as well.

Exponential Backoff (E-B) throttles the frequency at which
agents sprint. An agent sprints greedily until the breaker
trips. After the t-th trip, agents wait for some number of
epochs drawn randomly from [0, 2t − 1] before sprinting
again. The waiting interval contracts by half if the breaker
has not been tripped in the past 100 epochs.

Cooperative Threshold (C-T) assigns each agent the globally
optimal sprinting threshold. The coordinator identifies and
enforces thresholds that maximize system performance.
Although these thresholds provide an upper bound on perfor-
mance, they do not produce an equilibrium because thresh-
olds do not reflect agents’ best responses to system dynamics.

Equilibrium Threshold (E-T) assigns each agent her opti-
mal threshold from the sprinting game. The coordinator
collects performance profiles and finds thresholds that

are stationary.
The analysis runs periodically to update sprinting strate-

gies and the tripping probability as application mix and sys-
tem conditions evolve. The analysis does not affect an
application’s critical path as agents use updated strategies
when they become available but need not wait for them. On
an Intel® Core™ i5 processor with 4GB of memory, the analy-
sis completes in less than 10s, on average.

Online play. An agent decides whether to sprint at the
start of each epoch by estimating a sprint’s utility and com-
paring it against her threshold. Estimation could be imple-
mented in several ways. An agent could use the first few
seconds of an epoch to profile her normal and sprinting per-
formance. Alternatively, an agent could use heuristics to
estimate utility from additional cores and higher clock rates.
For example, task queue occupancy and cache misses are
associated with a sprint’s impact on task parallelism and
instruction throughput, respectively. Comparisons with a
threshold are trivial.

5. EXPERIMENTAL METHODOLOGY
Server measurements. The agent and its application are
pinned to a chip multiprocessor, an Intel® Xeon® E5-2697 v2.
In normal mode, the agent uses three 1.2GHz cores. In
sprinting mode, the agent uses twelve 2.7GHz cores. We turn
cores on and off with Linux sysfs. In principle, sprinting
represents any mechanism that performs better but con-
sumes more power.

We evaluate Apache Spark workloads. The Spark run-
time engine dynamically schedules tasks to use available
cores and maximize parallelism, adapting as sprints cause
the number of available cores to vary across epochs. We pro-
file workloads by modifying Spark (v1.3.1) to log the IDs of
jobs, stages, and tasks as they complete. We profile system
and power temperature using the Intel® Performance
Counter Monitor 2.8.

We measure workload performance in terms of tasks
completed per second (TPS). The total number of tasks in
a job is constant and independent of the available hard-
ware resources such that TPS measures performance for a
fixed amount of work. In our experiments, we trace TPS
during application execution in normal and sprinting

Table 1. Experimental Parameters.

Description Symbol Value

Min # sprinters Nmin 250
Max # sprinters Nmax 750
Prob. of staying in cooling pc 0.50
Prob. of staying in recovery pr 0.88
Discount factor δ 0.99

Algorithm 1: Optimizing the Sprint Strategy

input : Density for sprinting utilities (f (u) )
output: Optimal sprinting threshold (uT)
j ← 1
P0

lstrip ← 1
while P j

trip not converged do

end

research highlights

104 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

reflect agents’ best responses to system dynamics. These
thresholds produce an equilibrium and agents cannot ben-
efit by deviating from their assigned strategy.

6.1 Sprinting behavior
Figure 4 compares sprinting policies and resulting system
dynamics as 1000 instances of Decision Tree, a representa-
tive application, computes across over time. Sprinting poli-
cies determine how often agents sprint and whether sprints
trigger emergencies. Ideally, policies would permit agents
to sprint up until they trip the circuit breaker. In this exam-
ple, 250 of the 1000 agents can sprint before triggering a
power emergency.

Greedy heuristics are aggressive and inefficient. A
sprint in the present precludes a sprint in the near future,
harming subsequent tasks that could have benefited more
from the sprint. Moreover, frequent sprints risk power
emergencies and require rack-level recovery. G produces
an unstable system, oscillating between full-system
sprints that trigger emergencies and idle recovery that
harms performance.

Control-theoretic approaches are more conservative,
throttling sprints in response to power emergencies. E-B
adaptively responds to feedback, producing a more stable
system with fewer sprints and emergencies. Indeed, E-B may
be too conservative, throttling sprints beyond what is neces-
sary to avoid tripping the circuit breaker. The number of
sprinters is consistently lower than Nmin, which is safe but
leaves sprinting opportunities unexploited. In neither G nor
E-B do agents sprint to full advantage.

In contrast, the computational sprinting game performs

well by embracing agents’ strategies. E-T produces an equi-
librium in which agents play their optimal strategies and
converge to a stationary distribution. In equilibrium, the
number of sprinters is just slightly above Nmin, the number
that causes a breaker to transition from the non-tripped
region to the tolerance band. After emergency and recovery,
the system quickly returns to equilibrium.

Figure 5 shows the percentage of time an agent spends in
each state. E-T and C-T sprints are timely as strategic agents
sprint only when estimated benefits exceed an optimized
threshold. A sprint in E-T or C-T contributes more to perfor-
mance than one in G or E-B. Moreover, G and E-B ignore the
consequences of a sprint. With G, an agent spends more
than 50% of its time in recovery, waiting for batteries to
recharge after an emergency. With E-B, an agent spends
nearly 40% of its time in active mode but not sprinting.

6.2 Sprinting performance
Figure 6 shows task throughput under varied policies. The
sprinting game outperforms greedy heuristics and is com-
petitive with globally optimized heuristics. Rather than
sprinting greedily, E-T uses equilibrium thresholds to select
more profitable epochs for sprinting. E-T outperforms G
and E-B by up to 6.8× and 4.8×, respectively. Agents who use
their own strategies to play the game competitively produce
outcomes that rival expensive cooperation. E-T’s task
throughput is 90% that of C-T’s for most applications.

Linear Regression and Correlation are outliers, achieving
only 36% and 65% of cooperative performance. For these
applications, E-T performs as badly as G and E-B because
the applications’ performance profiles exhibit little variance

Figure 4. Sprinting behavior for a representative application, Decision Tree. Black line denotes number of sprinters. Gray line denotes the
point at which sprinters risk a power emergency, Nmin.

N
um

be
r

of
 s

pr
in

tin
g

us
er

s
0

0 200 400
Epoch index

Equilibrium threshold

Cooperative threshold

Exponential backoff

Greedy

600 800 1000

30
0

60
0

0
30

0
60

0
0

30
0

60
0

0
30

0
60

0

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 105

and all epochs benefit similarly from sprinting. When an
agent cannot distinguish between epochs, she sets a low
threshold and sprints for every epoch. In effect, for such
applications, E-T produces a greedy equilibrium.

6.3 Sprinting strategies
Figure 7 uses density plots for two representative applica-
tions, Linear Regression and PageRank, to show how often and
how much their tasks benefit from sprinting. Linear Regression
presents a narrower distribution and performance gains
from sprinting vary in a band between 3× and 5×. In contrast,
PageRank’s performance gains can often exceed 10×.

The coordinator uses density plots to optimize threshold
strategies. Linear Regression’s strategy is aggressive and uses a
low threshold that often induces sprints. This strategy arises
from its relatively low variance in performance gains. If sprint-
ing’s benefits are indistinguishable across tasks and epochs,
an agent sprints indiscriminately and at every opportunity.
PageRank’s strategy is more nuanced and uses a high thresh-
old, which cuts her bimodal distribution and implements
judicious sprinting. She sprints for tasks and epochs that
benefit most (i.e., those that see performance gains greater
than 10×).

Figure 8 illustrates diversity in agents’ strategies by
reporting their propensities to sprint. Linear Regression and
Correlation’s narrow density functions and low thresholds
cause these applications to sprint at every opportunity. The

 P
er

fo
rm

an
ce

 (N
or

m
al

iz
ed

 t
o

G
re

ed
y)

0
1

2
3

4
5

6

Naiv
e

Dec
isi

on

Gra
dien

t
SVM

Linea
r

Km
ea

ns
ALS

Corre
lat

ion

Pag
er

an
k CC

Tria
ngle

Greedy
Exponential backoff
Equilibrium threshold
Cooperative threshold

Figure 6. Performance, measured in tasks per second and
normalized against greedy, for a single application type.

2 3 4 5 6

0
.0

0
.1

0
.2

0
.3

0
.4

Linear regression

Normalized TPS

D
en

si
ty

0 5 10 15

0
.0

0
0

.1
0

0
.2

0

Pagerank

Normalized TPS

D
en

si
ty

Figure 7. Probability density for sprinting speedups.

P
ro

ba
bi

lit
y

of
 s

pr
in

tin
g

0.0

0.2

0.4

0.6

0.8

1.0

Naiv
e

Dec
isi

on

Gra
dien

t
SVM

Linea
r

Km
ea

ns
ALS

Corre
lat

ion

Pag
er

an
k CC

Tria
ngle

Figure 8. Probability of sprinting.Greedy Exponential Equilibrium Cooperative
0%

25%

50%

75%

100%

Active (not sprinting)
Local cooling

Global recovery
Sprinting

Figure 5. Percentage of time spent in agent states for a representative
application, Decision Tree.

majority of applications, however, resemble PageRank with
higher thresholds and judicious sprints.

6.4 Equilibrium versus cooperation
Equilibrium thresholds are robust to strategic behavior and
perform well, but cooperative thresholds can perform even
better. The sprinting game’s equilibrium delivers 90% of the
performance from cooperation because the penalties from
non-cooperative behavior are low. Figure 9 shows how effi-
ciency falls as recovery from power emergencies become
increasingly expensive. Recall that pr is the probability an
agent in recovery stays in that state.

The sprinting game fails when an emergency requires indefi-
nite recovery and pr is one. This game has no equilibrium that
avoids tripping the breaker and triggering indefinite recovery.
If a strategic agent were to observe system dynamics that avoid
tripping the breaker, which means Ptrip is zero, she would realize
that other agents have set high thresholds to avoid sprints. Her
best response would be lowering her threshold and sprinting
more often. Others would behave similarly and drive Ptrip
higher. In equilibrium, Ptrip would rise above zero and agents
would eventually trip the breaker, putting the system into
indefinite recovery. Thus, selfish agents would produce inef-
ficient equilibria—the Prisoner’s Dilemma in which each
agent’s best response performs worse than a cooperative one.

The Folk theorem guides agents to a more efficient equilib-
rium by punishing agents whose responses harm the system.
The coordinator would assign agents the best cooperative
thresholds to maximize system performance from sprinting.
When an agent deviates, she is punished such that

research highlights

106 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Pr

E
ffi

ci
en

cy
 o

f e
qu

ili
br

iu
m

Figure 9. Efficiency of equilibrium thresholds.

performance lost exceeds performance gained. In our exam-
ple, punishments would allow the system to escape inefficient
equilibria as agents are compelled to increase their thresholds
and ensure Ptrip remains zero. The coordinator could monitor
sprints, detect deviations from assigned strategies, and forbid
agents who deviate from ever sprinting again. Note that threat
of punishment is sufficient to shape the equilibrium.

7. CONCLUSION
Economics and game theory have proven effective in data-
center power and resource management. Game-theoretic
notions of fairness can incentivize strategic users when shar-
ing hardware.6,12,19,20 Markets and price theory can allocate and
manage heterogeneous servers.8,9,17 Demand response mod-
els can handle power emergencies.3,11

We link system architecture and algorithmic economics
to decentralize the allocation of shared resources to strate-
gic users. The computational sprinting game is a manage-
ment architecture that governs how independent chip
multiprocessors share a power supply. The approach gener-
alizes beyond datacenters and is relevant to systems that are
distributed, heterogeneous, and dynamic. The game’s
approach to sprinting applies to any mechanism that briey
accelerates performance using additional resources be they
processor, memory, network, or power. The game’s equilib-
rium highlights a path to scalable management because
mean field analysis provides tractability when the number
of system components is large. However, finding the equi-
librium requires statistical distributions of agent behaviors
and further research is needed to reduce offline profiling
costs and accelerate online utility prediction.

Acknowledgments
This work is supported by National Science Foundation grants
CCF-1149252, CCF-1337215, SHF-1527610, and AF-1408784.
This work is also supported by STARnet, a SRC program,
sponsored by MARCO and DARPA.�

© 2019 ACM 0001-0782/19/2 $15.00

References
	 1.	 Adlakha, S., Johari, R. Mean

field equilibrium in dynamic
games with strategic
complementarities. Oper. Res. 61, 4
(2013), 971–989.

	 2.	 Brooks, D. Martonosi, M. Dynamic

thermal management for
high-performance microprocessors.
In Proceedings of the 7th IEEE
International Symposium on High
Performance Computer Architecture
(HPCA) (Monterrey, Nuevo Leon,
Mexico, 2001), 171–182.

Songchun Fan† (songchun.fan@duke.
edu), Duke University, California, USA.

Seyed Majid Zahedi† and Benjamin C. Lee
({seyedmajid.zahedi, benjamin.c.lee}@duke.
edu), Duke University, Durham, NC, USA.

	 3.	 Chase, J.S., Anderson, D.C., Thakar, P.N.,
Vahdat, A.M., Doyle, R.P. Managing
energy and server resources in
hosting centers. In Proceedings of the
18th Symposium on Operating
Systems Principles (SOSP) (Banff,
Alberta, Canada, 2001), 103–116.

	 4.	 Fan, X., Weber, W.-D., Barroso, L.A.
Power provisioning for a warehouse-
sized computer. In Proceedings of the
34th Annual International
Symposium on Computer
Architecture (ISCA) (San Diego, CA,
USA, 2007), 13–23.

	 5.	 Fu, X., Wang, X., Lefurgy, C. How much
power oversubscription is safe and
allowed in data centers. In Proceedings
of the 8th ACM International
Conference on Autonomic Computing
(ICAC) (Karlsruhe, Germany, 2011),
21–30.

	 6.	 Ghodsi, A., Zaharia, M., Hindman, B.,
Konwinski, A., Shenker, S., Stoica, I.
Dominant resource fairness: Fair
allocation of multiple resource types.
In Proceedings of the 8th USENIX
Conference on Networked Systems
Design and Implementation (NSDI)
(Boston, MA, USA, 2011), 323–336.

	 7.	 Govindan, S., Sivasubramaniam, A.,
Urgaonkar, B. Benefits and limitations
of tapping into stored energy for
datacenters. In Proceeding of the
38th Annual International
Symposium on Computer
Architecture (ISCA) (San Jose, CA,
USA, 2011), 341–351.

	 8.	 Guevara, M., Lubin, B., Lee, B.C..
Navigating heterogeneous processors
with market mechanisms. In
Proceeding of the 19th IEEE
International Symposium on High
Performance Computer Architecture
(HPCA) (Shenzhen, China, 2013),
95–106.

	 9.	 Guevara, M., Lubin, B., Lee, B.C.
Strategies for anticipating risk in
heterogeneous system design. In
Proceeding of the 20th IEEE
International Symposium on High
Performance Computer Architecture
(HPCA) (Orlando, FL, USA, 2014),
154–164.

	10.	 Hindman, B., Konwinski, A.,
Zaharia, M., Ghodsi, A., Joseph, A.D.,
Katz, R., Shenker, S., Stoica, I. Mesos:
A platform for fine-grained resource
sharing in the data center. In
Proceedings of the 8th USENIX
Conference on Networked Systems
Design and Implementation (NSDI)
(Boston, MA, USA, 2011), 295–308.

	11.	 Liu, Z., Wierman, A., Chen, Y., Razon,
B., Chen, N. Data center demand
response: Avoiding the coincident
peak via workload shifting and local
generation. Perform. Eval. 70, 10
(2013), 770–791.

	12.	 Llull, Q., Fan, S., Zahedi, S.M.,
Lee, B.C. Cooper: Task colocation with
cooperative games. In Proceedings of
the 23rd IEEE International
Symposium on High-Performance
Computer Architecture (HPCA)

(Austin, TX, USA, 2017), 421–432.
	13.	 Raghavan, A., Emurian, L., Shao, L.,

Papaefthymiou, M., Pipe, K.P.,
Wenisch, T.F., Martin, M.M.
Computational sprinting on a
hardware/software testbed. In
Proceedings of the 18th International
Conference on Architectural Support
for Programming Languages and
Operating Systems (ASPLOS)
(Houston, TX, USA, 2013), 155–166.

	14.	 Raghavan, A., Luo, Y., Chandawalla, A.,
Papaefthymiou, M., Pipe, K.P.,
Wenisch, T.F., Martin, M.M.K.
Computational sprinting. In
Proceedings of the 18th IEEE
International Symposium on High
Performance Computer Architecture
(HPCA) (New Orleans, LA, USA,
2012), 1–12.

	15.	 Shao, L., Raghavan, A., Emurian, L.,
Papaefthymiou, M.C., Wenisch, T.F.,
Martin, M.M., Pipe, K.P. On-chip phase
change heat sinks designed for
computational sprinting. In
Proceedings of the 30th Annual
Semiconductor Thermal
Measurement and Management
Symposium (San Jose, CA, USA,
2014),29–34.

	16.	 Skach, M., Arora, M., Hsu, C.-H., Li, Q.,
Tullsen, D., Tang, L., Mars, J.
Thermal time shifting: Leveraging
phase change materials to reduce
cooling costs in warehouse-scale
computers. In Proceedings of the
42nd Annual International
Symposium on Computer
Architecture (ISCA) (Portland, OR,
USA, 2015), 439–449.

	17.	 Somu Muthukaruppan, T., Pathania, A.,
Mitra, T. Price theory based power
management for heterogeneous
multi-cores. In Proceedings of the
19th International Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS) (Salt Lake City, UT, USA,
2014), 161–176.

	18.	 Wang, X., Chen, M., Lefurgy, C., Keller, T.W.
Ship: A scalable hierarchical power
control architecture for large-scale
data centers. IEEE Trans. Parallel
Distrib. Syst. 23, 1 (2012), 168–176.

	19.	 Zahedi, S.M., Lee, B.C. Sharing
incentives and fair division for
multiprocessors. IEEE Micro 35, 3
(2015), 92–100.

	20.	 Zahedi, S.M., Llull, Q., Lee, B.C.
Amdahl’s Law in the datacenter
era: A market for fair processor
allocation. In Proceedings of the 24rd
IEEE International Symposium on
High-Performance Computer
Architecture (HPCA) (Vienna,
Austria, 2018).

	21.	 Zheng, W., Wang, X. Data center
sprinting: Enabling computational
sprinting at the data center level. In
Proceedings of the 35th International
Conference on Distributed Computing
Systems (ICDCS) (Columbus, OH,
USA, 2015), 175–184.

