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Abstract
Computational sprinting is a class of mechanisms that boost 
performance but dissipate additional power. We describe a 
sprinting architecture in which many, independent chip 
multiprocessors share a power supply and sprints are con-
strained by the chips’ thermal limits and the rack’s power 
limits. Moreover, we present the computational sprinting  
game, a multi-agent perspective on managing sprints. 
Strategic agents decide whether to sprint based on applica-
tion phases and system conditions. The game produces an 
equilibrium that improves task throughput for data analytics 
workloads by 4–6× over prior greedy heuristics and performs 
within 90% of an upper bound on throughput from a globally 
optimized policy.

1. INTRODUCTION
Modern datacenters oversubscribe their power supplies to 
enhance performance and efficiency. A conservative data-
center that deploys servers according to their expected 
power draw will under-utilize provisioned power, operate 
power supplies at sub-optimal loads, and forgo opportuni-
ties for higher performance. In contrast, efficient datacen-
ters deploy more servers than it can power fully and rely on 
varying computational load across servers to modulate 
demand for power.4 Such a strategy requires responsive 
mechanisms for delivering power to the computation that 
needs it most.

Computational sprinting is a class of mechanisms that 
supply additional power for short durations to enhance per-
formance. In chip multiprocessors, for example, sprints 
activate additional cores and boost their voltage and frequency. 
Although originally proposed for mobile systems,13, 14 sprint-
ing has found numerous applications in datacenter systems. 
It can accelerate computation for complex tasks or accom-
modate transient activity spikes.16, 21

The system architecture determines sprint duration 
and frequency. Sprinting multiprocessors generate extra 
heat, absorbed by thermal packages and phase change 
materials (PCMs),14, 16 and require time to release this heat 
between sprints. At scale, uncoordinated multiprocessors 
that sprint simultaneously could overwhelm a rack or 
cluster’s power supply. Uninterruptible power supplies 
reduce the risk of tripping circuit breakers and triggering 
power emergencies. But the system requires time to 
recharge batteries between sprints. Given these physical 
constraints in chip multiprocessors and the datacenter 
rack, sprinters require recovery time. Thus, sprinting 

The original version of this paper is entitled “The 
Computational Sprinting Game” and was published in 
Proceedings of the International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(2016), ACM, NY.

mechanisms couple performance opportunities with 
management constraints.

We face fundamental management questions when 
servers sprint independently but share a power supply – 
which processors should sprint and when should they 
sprint? Each processor’s workload derives extra perfor-
mance from sprinting that depends on its computational 
phase. Ideally, sprinters would be the processors that ben-
efit most from boosted capability at any given time. 
Moreover, the number of sprinters would be small enough 
to avoid power emergencies, which constrain future 
sprints. Policies that achieve these goals are prerequisites 
for sprinting to full advantage.

We present the computational sprinting game to manage 
a collection of sprinters. The sprinting architecture, which 
defines the sprinting mechanism as well as power and cool-
ing constraints, determines rules of the game. A strategic 
agent, representing a multiprocessor and its workload, 
independently decides whether to sprint at the beginning of 
an epoch. The agent anticipates her action’s outcomes, 
knowing that the chip must cool before sprinting again. 
Moreover, she analyzes system dynamics, accounting for 
competitors’ decisions and risk of power emergencies.

We find the equilibrium in the computational sprinting 
game, which permits distributed management. In an equi-
librium, no agent can benefit by deviating from her optimal  
strategy. The datacenter relies on agents’ incentives to 
decentralize management as each agent self-enforces her 
part of the sprinting policy. Decentralized equilibria allow 
datacenters to avoid high communication costs and 
unwieldy enforcement mechanisms in centralized manage-
ment. Moreover, equilibria outperform prior heuristics.

2. THE SPRINTING ARCHITECTURE
We present a sprinting architecture for chip multiproces-
sors in datacenters. Multiprocessors sprint by activating 
additional cores and increasing their voltage and frequency. 
Datacenter applications, with their abundant task parallel-
ism, scale across additional cores as they become available. 
In Figure 1, Spark benchmarks perform 2–7× better on a 
sprinting multiprocessor, but dissipates 1.8× the power. 
Power produces heat.

Sprinters require infrastructure to manage heat and 
power. First, the chip multiprocessor’s thermal package 
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to the number of simultaneous sprints as each sprinter con-
tributes to the load above rated current. Higher currents 
increase the probability of tripping the breaker.

Let nS denote the number of sprinters and let Ptrip denote 
the probability of tripping the breaker. The breaker occupies 
one of the following regions:

•	 Non-Tripped. Ptrip is zero when nS < Nmin

•	 Non-Deterministic. Ptrip is a non-decreasing function of 
nS when Nmin ≤ nS < Nmax

•	 Tripped. Ptrip is one when nS ≥ Nmax

Note that Nmin and Nmax depend on the breaker’s trip curve and 
the application’s demand for power when sprinting. For 
Spark on chip multiprocessors, we find that the breaker does 

and heat sink must absorb surplus heat during a sprint.14, 15 
Second, the datacenter rack must employ batteries to guard 
against power emergencies caused by a surplus of sprinters 
on a shared power supply. Third, the system must imple-
ment management policies that determine which chips 
sprint.

2.1. System architecture
Chip multiprocessors and thermal packages. The quality 
of the multiprocessor’s thermal package, measured by its 
thermal capacitance and conductance, determines the 
chip’s maximum power level and dictates the duration of a 
sprint.13, 15 More expensive heat sinks employ PCMs, which 
increase thermal capacitance, and permit sprint durations 
on the order of minutes if not hours. We estimate a chip 
with paraffin wax can sprint with durations on the order of 
150s.

After a sprint, the thermal package must release its heat 
before the chip can sprint again. The average cooling dura-
tion, denoted as ∆tcool, is the time required before the PCM 
returns to ambient temperature. The rate at which the PCM 
dissipates heat depends on its melting point and the ther-
mal resistance between the material and the ambient. Both 
factors can be engineered and, with paraffin wax, we esti-
mate a cooling duration on the order of 300s, twice the 
sprint’s duration.

Power delivery and circuit breakers. Datacenter archi-
tects deploy servers and multiprocessors to oversubscribe 
power distribution units for efficiency. Oversubscription 
utilizes a larger fraction of the facility’s provisioned power. 
But it relies on power capping and varied computational 
load across servers to avoid tripping circuit breakers or vio-
lating contracts with utility providers.4 Although sprints 
can boost computation, the risk of a power emergency 
increases with the number of sprinters in a power capped 
datacenter.

Figure 2 presents the circuit breaker’s trip curve, which 
specifies how sprint duration and power combine to deter-
mine whether the breaker trips. The trip time corresponds 
to the sprint’s duration. Longer sprints increase the proba-
bility of tripping the breaker. The current draw corresponds 
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Figure 1. Normalized speedup, power, and temperature for varied Spark benchmarks when sprinting. Nominal operation supplies three cores 
at 1.2GHz. Sprint supplies twelve cores at 2.7GHz.
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parallelism when sprinting powers-on cores and tolerates 
faults when cooling and recovery powers-off cores.

Agents are strategic and selfish entities that act on users’ 
behalf. They decide whether to sprint by continuously ana-
lyzing fine-grained application phases. Because sprints are 
followed by cooling and recovery, an agent sprints judi-
ciously and targets application phases that benefit most 
from extra capability. Agents use predictors that estimate 
utility from sprinting based on software profiles and hard-
ware counters. Each agent represents a user and her applica-
tion on a chip multiprocessor.

Coordination. The coordinator collects profiles from 
all agents and assigns tailored sprinting strategies to each 
agent. The coordinator interfaces with strategic agents who 
may attempt to manipulate system outcomes by misreport-
ing profiles or deviating from assigned strategies. 
Fortunately, our game-theoretic mechanism guards against 
such behavior.

First, agents will truthfully report their performance pro-
files. In large systems, game theory provides incentive com-
patibility, which means that agents cannot improve their 
utility by misreporting their preferences. An agent who mis-
reports her profile has little influence on conditions in a 
large system. Not only does she fail to affect others, an agent 
who misreports suffers degraded performance as the coor-
dinator assigns her a poorly suited strategy based on inac-
curate profiles.

Second, agents will implement their assigned strategies 
because the coordinator optimizes those strategies to pro-
duce an equilibrium. In equilibrium, every agent imple-
ments her strategy and no agent benefits by deviating from 
it. An equilibrium has compelling implications for manage-
ment overheads. If each agent knows that every other agent 
is playing her assigned strategy, she will do the same without 
further communication with the coordinator. Global com-
munication between agents and the coordinator is infre-
quent and occurs only when system profiles change. In 
effect, an equilibrium permits the distributed enforcement 
of sprinting policies.

Equilibria are especially compelling when compared to 
the centralized enforcement of coordinated policies, which 
poses several challenges. First, centralized enforcement 
requires frequent and global communication as each agent 
decides whether to sprint by querying the coordinator at the 
start of each epoch. The length of an epoch is short and cor-
responds to sprint duration. Moreover, without equilibria, 
agents with kernel privileges could ignore prescribed poli-
cies, sprint at will, and cause power emergencies that harm 
all agents.

3. THE SPRINTING GAME
We design a sprinting game to govern power supply and 
manage system dynamics. The game divides time into 
epochs and asks agents to play repeatedly. Agents represent 
chip multiprocessors that share power. Each agent chooses 
to sprint independently, pursuing benefits in the current 
epoch and estimating repercussions in future epochs. An 
agent’s utility from sprinting varies across epochs according 
to her application’s phases. Multiple agents can sprint 

not trip when less than 25% of the chips sprint and definitely 
trips when more than 75% of the chips sprint. In other 
words, Nmin = 0.25N and Nmax = 0.75N. We consider circuit 
breakers that can be overloaded to 125–175% of rated current 
for a 150s sprint.18, 21

Uninterruptible power supplies. When the breaker trips 
and resets, power distribution switches from the branch cir-
cuit to the uninterruptible power supply (UPS).7 The rack 
augments power delivery with batteries to complete sprints 
in progress. Lead acid batteries support discharge times of 
5–120min, long enough to support the duration of a sprint. 
After completing sprints and resetting the breaker, servers 
resume computation on the branch circuit.

Servers are forbidden from sprinting again until UPS bat-
teries are recharged. Sprints before recovery compromises 
server availability and increases vulnerability to power emer-
gencies. Moreover, frequent discharges without recharges 
shorten battery life. The average recovery duration, denoted 
by ∆trecover, depends on the UPS discharge depth and recharg-
ing time. A battery can be recharged to 85% capacity in 8–10× 
the discharge time, which corresponds to 8–10× the sprint 
duration.

2.2 Management architecture
Figure 3 illustrates the management framework for a rack 
of sprinting chip multiprocessors. The framework sup-
ports policies that pursue the performance of sprints 
while avoiding system instability. Unmanaged and exces-
sive sprints may trip breakers, trigger emergencies, and 
degrade performance at scale. The framework achieves its 
objectives with strategic agents and coarse-grained 
coordination.

Users and agents. Each user deploys three run-time com-
ponents: executor, agent, and predictor. Executors provide 
clean abstractions, encapsulating applications that could 
employ different software frameworks.10 The executor sup-
ports task-parallel computation by dividing an application 
into tasks, constructing a task dependence graph, and 
scheduling tasks dynamically based on available resources. 
Task scheduling is particularly important as it increases 
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Figure 3. Users deploy task executors and agents that decide when 
to sprint. Agents send performance profiles to a coordinator and 
receives optimized sprinting strategies.
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method when analyzing individual agents in a large system 
is intractable.1 First, we define key probability distributions 
on population behavior. Second, we optimize each agent’s 
strategy in response to the population rather than individual 
competitors. Third, we find an equilibrium in which no 
agent can perform better by deviating from her optimal 
strategy. Thus, we reason about the population and neglect 
individual agents because any one agent has little impact on 
overall behavior in a large system.

The mean field analysis for the sprinting game focuses on 
the sprint distribution, which characterizes the number of 
agents who sprint when the system is not in recovery. 
In  equilibrium, the sprint distribution is stationary and 
does not change across epochs. In any given epoch, some 
agents complete a sprint and enter the cooling state while 
others leave the cooling state and begin a sprint. Yet the 
number of agents who sprint is unchanged in expectation.

The stationary distribution for the number of sprinters 
translates into stationary distributions for the rack’s cur-
rent draw and the probability of tripping the circuit 
breaker. Given the tripping probability, which concisely 
describes population dynamics, an agent can formulate 
her best response and optimize her sprinting strategy to 
maximize performance. We find an equilibrium by speci-
fying an initial value for the tripping probability and 
iterating.

•	 Optimize sprint strategy (§4.2). Given the probability of 
tripping the breaker Ptrip, each agent optimizes her 
sprinting strategy to maximize her performance. She 
sprints if performance gains from doing so exceed 
some threshold. Optimizing her strategy means setting 
her threshold uT.

•	 Characterize sprint distribution (§4.3). Given that each 
agent sprints according to her threshold uT, the game 
characterizes population behavior. It estimates the 
expected number of sprinters nS, calculates their 
demand for power, and updates the probability of trip-
ping the breaker .

•	 Check for equilibrium. The game is in equilibrium if 
 = Ptrip. Otherwise, iterate with the new probability of 

tripping the breaker.

4.2 Optimizing the sprint strategy
Sprinting defines a repeated game in which an agent acts in 
the current epoch and encounters consequences of that 
action in future epochs. An agent optimizes her sprinting 
strategy accounting for the probability of tripping the circuit 
breaker Ptrip, her utility from sprinting u, and her state. To 
decide whether to sprint, each agent optimizes the following 
Bellman equation.

� (1)

The equation quantifies value when an agent acts optimally 
in every epoch. VS and V¬S are the expected values from sprint-
ing and not sprinting, respectively. If VS(u, A) > V¬S(u, A),  
then sprinting is optimal. The game solves the Bellman 
equation and identifies actions that maximize value with 

simultaneously, but they risk tripping the circuit breaker 
and triggering power emergencies that harm global 
performance.

The game considers N agents who run task-parallel appli-
cations on N chip multiprocessors. Each agent computes in 
either normal or sprinting mode. The normal mode uses a 
fraction of the cores at low frequency whereas sprints use all 
cores at high frequency. Sprints rely on the executor to 
increase task parallelism and exploit extra cores. In this arti-
cle, we consider three cores at 1.2GHz in normal mode and 
twelve cores at 2.7GHz in a sprint.

In any given epoch, an agent occupies one of three states—
active (A), chip cooling (C), and rack recovery (R)—according 
to her actions and those of others in the rack. An agent’s 
state describes whether she can sprint, and describes how 
cooling and recovery impose constraints on her actions.

Active (A) – Agent can safely sprint. An agent in the active 
state operates her chip in normal mode by default. The 
agent may decide to sprint by comparing benefits in the cur-
rent epoch against benefits from deferring the sprint to a 
future epoch. If the agent sprints, her state in the next epoch 
is cooling.

Chip cooling (C) – Agent cannot sprint. After a sprint, an 
agent remains in the cooling state until excess heat has been 
dissipated. Cooling requires a number of epochs ∆tcool, 
which depends on the chip’s thermal package. An agent in 
the cooling state stays in this state with probability pc and 
returns to the active state with probability 1 − pc. Probability 
pc is defined so that 1/(1 − pc) = ∆tcool.

Rack recovery (R) – Agent cannot sprint. When multiple 
chips sprint simultaneously, total current draw may trip the 
circuit breaker, trigger a power emergency, and require sup-
plemental current from batteries. After an emergency, all 
agents remain in the recovery state until batteries recharge. 
Recovery requires a number of epochs ∆trecover, which 
depends on the power supply and battery capacity. Agents in 
the recovery state stay in this state with probability pr and 
return to the active state with probability 1 − pr. Probability  
pr is defined so that 1/(1 − pr) = ∆trecover.

4. GAME DYNAMICS AND STRATEGIES
Strategic agents decide between sprinting or not to maxi-
mize utilities. Sophisticated strategies produce several 
desirable outcomes. Agents sprint during the epochs that 
benefit most from additional cores and higher frequencies. 
Moreover, agents consider other agents’ strategies because 
the probability of triggering a power emergency and enter-
ing the recovery state increases with the number of 
sprinters.

We analyze the game’s dynamics to optimize each agent’s 
strategy for her performance. A comprehensive approach to 
optimizing strategies considers each agent—her state, util-
ity, and history—to determine whether sprinting maximizes 
her performance given her competitor’s strategies and sys-
tem state. In practice, however, this optimization is intrac-
table for hundreds or thousands of agents.

4.1 Mean field equilibrium
The mean field equilibrium (MFE) is an approximation 
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Markov chain that describes each agent’s behavior. As agents 
play their strategies, the Markov chain converges to a station-
ary distribution in which each agent is active with probability 
pA. Given N agents, the expected number of sprinters is

	 � (9)

Given the expected number of sprinters, the game 
updates the probability of tripping the breaker according to 
its trip curve (e.g., Figure 2).

� (10)

Ptrip may change uT and nS, which may produce a new . If 
Ptrip = , then agents are playing optimized strategies that 
produce an equilibrium.

4.4 Finding the equilibrium
When the game begins, agents make initial assumptions 
about population behavior and the probability of tripping 
the breaker. Agents optimize their strategies in response to 
population behavior. Strategies produce sprints that affect 
the probability of tripping the breaker. Over time, popula-
tion behavior and agent strategies converge to a stationary 
distribution. The game is in equilibrium if the following 
conditions hold.

•	 Given tripping probability Ptrip, the sprinting strategy 
dictated by threshold uT is optimal and solves the 
Bellman equation in Equations (1)–(3).

•	 Given sprinting strategy uT, the probability of tripping 
the circuit breaker is Ptrip and is calculated by Equations 
(8)–(10).

In equilibrium, every agent plays her optimal strategy and 
no agent benefits when deviating from her strategy. In prac-
tice, the coordinator in the management framework finds 
and maintains an equilibrium with a mix of offline analysis 
and online play.

Offline analysis. Agents sample epochs and measure util-
ity from sprinting to produce a density function f(u), which 
characterizes how often an agent sees utility u from sprint-
ing. The coordinator collects agents’ density functions, ana-
lyzes population dynamics, and tailors sprinting strategies 
for each agent. Finally, the coordinator assigns optimized 
strategies to support online sprinting decisions.

Algorithm 1 describes the coordinator’s offline analysis. 
It initializes the probability of tripping the breaker. Then, it 
iteratively analyzes population dynamics to find an equilib-
rium. Each iteration proceeds in three steps. First, the coor-
dinator optimizes sprinting threshold uT by solving the 
dynamic program defined in Equations (1)–(7). Second, it 
estimates the number of sprinters according to Equation (9). 
Finally, it updates the probability of tripping the breaker 
according to Equation (10). The algorithm terminates when 
thresholds, number of sprinters, and tripping probability 

dynamic programming.
Value in active state. An action’s value depends on bene-

fits in the current epoch plus the discounted value from 
future epochs. Suppose an agent in the active state decides 
to sprint. Her value from sprinting is her immediate utility u 
plus her discounted future utility. When she sprints, future 
utility is calculated for the cooling state V (C) or the recovery 
state V (R) when her sprint trips the breaker.

� (2)

However, an agent who does not sprint will remain in the 
active state unless other sprinting agents trip the circuit 
breaker and require recovery.

� (3)

V (A) denotes an agent’s expected value from being in the 
active state. The game profiles an application and its time-
varying computational phases to obtain a density function 
f(u), which characterizes how often an agent derives utility u 
from sprinting. With this density, the game estimates 
expected value.

� (4)

Value in cooling and recovery states. An active agent transi-
tions into cooling and recovery states when she and/or oth-
ers sprint.

� (5)

� (6)

Parameters pc and pr are technology-specific probabilities of 
an agent in cooling and recovery states staying in those 
states. The game tunes these parameters to reflect the time 
required for chip cooling after a sprint and for rack recovery 
after a power emergency.

Threshold strategy. An agent should sprint if her utility 
from doing so is greater than not. Equation (7), which fol-
lows from Equations (2) and (3), states that an agent should 
sprint if her utility u is greater than her optimal threshold for 
sprinting uT. Applying this strategy in every epoch maximizes 
expected value across time in the repeated game.

� (7)

4.3 Characterizing the sprint distribution
Given threshold uT, an agent estimates the probability that 
she sprints, ps, in a given epoch.

	 � (8)

The probabilities of sprinting (ps) and cooling (pc) define a 
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modes and we estimate speedups by comparing the two 
traces, epoch by epoch. In a practical system, online pro-
filing and heuristics would be required to estimate 
speedups.

Datacenter simulation. We simulate 1000 users and eval-
uate their performance in the sprinting game. The simula-
tor uses server traces and models system dynamics as agents 
sprint, cool, and recover. Simulations evaluate homoge-
neous agents who arrive randomly and launch the same type 
of Spark application; randomized arrivals cause application 
phases to overlap in diverse ways. Diverse phase behavior 
exercises the sprinting game as agents optimize strategies 
in response to varied competitors’.

Table 1 summarizes technology and system parameters. 
Parameters Nmin and Nmax are set by the circuit breaker’s trip-
ping curve. Parameters pc and pr are set by the chip’s cooling 
mechanism and the system’s batteries. These probabilities 
decrease as cooling efficiency and recharge speed increase.

6. EVALUATION
We evaluate the sprinting game and its equilibrium thresh-
old against several alternatives that represent broader per-
spectives on power management. First, greedy heuristics 
focus on the present and neglect the future.21 Second, control- 
theoretic heuristics are reactive rather than proactive.2 
Third, centralized heuristics focus on the system and neglect 
individual users. Unlike these approaches, the sprinting 
game anticipates the future and models strategic agents in a 
shared system.

Greedy (G) permits agents to sprint as long as the chip is 
not cooling and the rack is not recovering. This mechanism 
may frequently trip the breaker and require rack recovery. 
Greedy produces a poor equilibrium—knowing that every-
one is sprinting, an agent’s best response is to sprint as well.

Exponential Backoff (E-B) throttles the frequency at which 
agents sprint. An agent sprints greedily until the breaker 
trips. After the t-th trip, agents wait for some number of 
epochs drawn randomly from [0, 2t − 1] before sprinting 
again. The waiting interval contracts by half if the breaker 
has not been tripped in the past 100 epochs.

Cooperative Threshold (C-T) assigns each agent the globally 
optimal sprinting threshold. The coordinator identifies and 
enforces thresholds that maximize system performance. 
Although these thresholds provide an upper bound on perfor-
mance, they do not produce an equilibrium because thresh-
olds do not reflect agents’ best responses to system dynamics.

Equilibrium Threshold (E-T) assigns each agent her opti-
mal threshold from the sprinting game. The coordinator 
collects performance profiles and finds thresholds that 

are stationary.
The analysis runs periodically to update sprinting strate-

gies and the tripping probability as application mix and sys-
tem conditions evolve. The analysis does not affect an 
application’s critical path as agents use updated strategies 
when they become available but need not wait for them. On 
an Intel® Core™ i5 processor with 4GB of memory, the analy-
sis completes in less than 10s, on average.

Online play. An agent decides whether to sprint at the 
start of each epoch by estimating a sprint’s utility and com-
paring it against her threshold. Estimation could be imple-
mented in several ways. An agent could use the first few 
seconds of an epoch to profile her normal and sprinting per-
formance. Alternatively, an agent could use heuristics to 
estimate utility from additional cores and higher clock rates. 
For example, task queue occupancy and cache misses are 
associated with a sprint’s impact on task parallelism and 
instruction throughput, respectively. Comparisons with a 
threshold are trivial.

5. EXPERIMENTAL METHODOLOGY
Server measurements. The agent and its application are 
pinned to a chip multiprocessor, an Intel® Xeon® E5-2697 v2. 
In normal mode, the agent uses three 1.2GHz cores. In 
sprinting mode, the agent uses twelve 2.7GHz cores. We turn 
cores on and off with Linux sysfs. In principle, sprinting 
represents any mechanism that performs better but con-
sumes more power.

We evaluate Apache Spark workloads. The Spark run-
time engine dynamically schedules tasks to use available 
cores and maximize parallelism, adapting as sprints cause 
the number of available cores to vary across epochs. We pro-
file workloads by modifying Spark (v1.3.1) to log the IDs of 
jobs, stages, and tasks as they complete. We profile system 
and power temperature using the Intel® Performance 
Counter Monitor 2.8.

We measure workload performance in terms of tasks 
completed per second (TPS). The total number of tasks in 
a job is constant and independent of the available hard-
ware resources such that TPS measures performance for a 
fixed amount of work. In our experiments, we trace TPS 
during application execution in normal and sprinting 

Table 1. Experimental Parameters.

Description Symbol Value

Min # sprinters Nmin 250
Max # sprinters Nmax 750
Prob. of staying in cooling pc 0.50
Prob. of staying in recovery pr 0.88
Discount factor δ 0.99

Algorithm 1: Optimizing the Sprint Strategy

input   : Density for sprinting utilities ( f (u) )
output: Optimal sprinting threshold (uT)
j ← 1
P0

lstrip ← 1
while P j

trip not converged do

end



research highlights 

 

104    COMMUNICATIONS OF THE ACM    |   FEBRUARY 2019  |   VOL.  62  |   NO.  2

reflect agents’ best responses to system dynamics. These 
thresholds produce an equilibrium and agents cannot ben-
efit by deviating from their assigned strategy.

6.1 Sprinting behavior
Figure 4 compares sprinting policies and resulting system 
dynamics as 1000 instances of Decision Tree, a representa-
tive application, computes across over time. Sprinting poli-
cies determine how often agents sprint and whether sprints 
trigger emergencies. Ideally, policies would permit agents 
to sprint up until they trip the circuit breaker. In this exam-
ple, 250 of the 1000 agents can sprint before triggering a 
power emergency.

Greedy heuristics are aggressive and inefficient. A 
sprint in the present precludes a sprint in the near future, 
harming subsequent tasks that could have benefited more 
from the sprint. Moreover, frequent sprints risk power 
emergencies and require rack-level recovery. G produces 
an unstable system, oscillating between full-system 
sprints that trigger emergencies and idle recovery that 
harms performance.

Control-theoretic approaches are more conservative, 
throttling sprints in response to power emergencies. E-B 
adaptively responds to feedback, producing a more stable 
system with fewer sprints and emergencies. Indeed, E-B may 
be too conservative, throttling sprints beyond what is neces-
sary to avoid tripping the circuit breaker. The number of 
sprinters is consistently lower than Nmin, which is safe but 
leaves sprinting opportunities unexploited. In neither G nor 
E-B do agents sprint to full advantage.

In contrast, the computational sprinting game performs 

well by embracing agents’ strategies. E-T produces an equi-
librium in which agents play their optimal strategies and 
converge to a stationary distribution. In equilibrium, the 
number of sprinters is just slightly above Nmin, the number 
that causes a breaker to transition from the non-tripped 
region to the tolerance band. After emergency and recovery, 
the system quickly returns to equilibrium.

Figure 5 shows the percentage of time an agent spends in 
each state. E-T and C-T sprints are timely as strategic agents 
sprint only when estimated benefits exceed an optimized 
threshold. A sprint in E-T or C-T contributes more to perfor-
mance than one in G or E-B. Moreover, G and E-B ignore the 
consequences of a sprint. With G, an agent spends more 
than 50% of its time in recovery, waiting for batteries to 
recharge after an emergency. With E-B, an agent spends 
nearly 40% of its time in active mode but not sprinting.

6.2 Sprinting performance
Figure 6 shows task throughput under varied policies. The 
sprinting game outperforms greedy heuristics and is com-
petitive with globally optimized heuristics. Rather than 
sprinting greedily, E-T uses equilibrium thresholds to select 
more profitable epochs for sprinting. E-T outperforms G 
and E-B by up to 6.8× and 4.8×, respectively. Agents who use 
their own strategies to play the game competitively produce 
outcomes that rival expensive cooperation. E-T’s task 
throughput is 90% that of C-T’s for most applications.

Linear Regression and Correlation are outliers, achieving 
only 36% and 65% of cooperative performance. For these 
applications, E-T performs as badly as G and E-B because 
the applications’ performance profiles exhibit little variance 

Figure 4. Sprinting behavior for a representative application, Decision Tree. Black line denotes number of sprinters. Gray line denotes the 
point at which sprinters risk a power emergency, Nmin.

N
um

be
r 

of
 s

pr
in

tin
g 

us
er

s
0

0 200 400
Epoch index

Equilibrium threshold

Cooperative threshold

Exponential backoff

Greedy

600 800 1000

30
0

60
0

0
30

0
60

0
0

30
0

60
0

0
30

0
60

0



 

FEBRUARY 2019  |   VOL.  62  |   NO.  2  |   COMMUNICATIONS OF THE ACM     105

and all epochs benefit similarly from sprinting. When an 
agent cannot distinguish between epochs, she sets a low 
threshold and sprints for every epoch. In effect, for such 
applications, E-T produces a greedy equilibrium.

6.3 Sprinting strategies
Figure 7 uses density plots for two representative applica-
tions, Linear Regression and PageRank, to show how often and 
how much their tasks benefit from sprinting. Linear Regression 
presents a narrower distribution and performance gains 
from sprinting vary in a band between 3× and 5×. In contrast, 
PageRank’s performance gains can often exceed 10×.

The coordinator uses density plots to optimize threshold 
strategies. Linear Regression’s strategy is aggressive and uses a 
low threshold that often induces sprints. This strategy arises 
from its relatively low variance in performance gains. If sprint-
ing’s benefits are indistinguishable across tasks and epochs, 
an agent sprints indiscriminately and at every opportunity. 
PageRank’s strategy is more nuanced and uses a high thresh-
old, which cuts her bimodal distribution and implements 
judicious sprinting. She sprints for tasks and epochs that 
benefit most (i.e., those that see performance gains greater 
than 10×).

Figure 8 illustrates diversity in agents’ strategies by 
reporting their propensities to sprint. Linear Regression and 
Correlation’s narrow density functions and low thresholds 
cause these applications to sprint at every opportunity. The 
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Figure 6. Performance, measured in tasks per second and 
normalized against greedy, for a single application type.
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Figure 5. Percentage of time spent in agent states for a representative 
application, Decision Tree.

majority of applications, however, resemble PageRank with 
higher thresholds and judicious sprints.

6.4 Equilibrium versus cooperation
Equilibrium thresholds are robust to strategic behavior and 
perform well, but cooperative thresholds can perform even 
better. The sprinting game’s equilibrium delivers 90% of the 
performance from cooperation because the penalties from 
non-cooperative behavior are low. Figure 9 shows how effi-
ciency falls as recovery from power emergencies become 
increasingly expensive. Recall that pr is the probability an 
agent in recovery stays in that state.

The sprinting game fails when an emergency requires indefi-
nite recovery and pr is one. This game has no equilibrium that 
avoids tripping the breaker and triggering indefinite recovery. 
If a strategic agent were to observe system dynamics that avoid 
tripping the breaker, which means Ptrip is zero, she would realize 
that other agents have set high thresholds to avoid sprints. Her 
best response would be lowering her threshold and sprinting 
more often. Others would behave similarly and drive Ptrip 
higher. In equilibrium, Ptrip would rise above zero and agents 
would eventually trip the breaker, putting the system into 
indefinite recovery. Thus, selfish agents would produce inef-
ficient equilibria—the Prisoner’s Dilemma in which each 
agent’s best response performs worse than a cooperative one.

The Folk theorem guides agents to a more efficient equilib-
rium by punishing agents whose responses harm the system. 
The coordinator would assign agents the best cooperative 
thresholds to maximize system performance from sprinting. 
When an agent deviates, she is punished such that 
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Figure 9. Efficiency of equilibrium thresholds.

performance lost exceeds performance gained. In our exam-
ple, punishments would allow the system to escape inefficient 
equilibria as agents are compelled to increase their thresholds 
and ensure Ptrip remains zero. The coordinator could monitor 
sprints, detect deviations from assigned strategies, and forbid 
agents who deviate from ever sprinting again. Note that threat 
of punishment is sufficient to shape the equilibrium.

7. CONCLUSION
Economics and game theory have proven effective in data-
center power and resource management. Game-theoretic 
notions of fairness can incentivize strategic users when shar-
ing hardware.6,12,19,20 Markets and price theory can allocate and 
manage heterogeneous servers.8,9,17 Demand response mod-
els can handle power emergencies.3,11

We link system architecture and algorithmic economics 
to decentralize the allocation of shared resources to strate-
gic users. The computational sprinting game is a manage-
ment architecture that governs how independent chip 
multiprocessors share a power supply. The approach gener-
alizes beyond datacenters and is relevant to systems that are 
distributed, heterogeneous, and dynamic. The game’s 
approach to sprinting applies to any mechanism that briey 
accelerates performance using additional resources be they 
processor, memory, network, or power. The game’s equilib-
rium highlights a path to scalable management because 
mean field analysis provides tractability when the number 
of system components is large. However, finding the equi-
librium requires statistical distributions of agent behaviors 
and further research is needed to reduce offline profiling 
costs and accelerate online utility prediction.
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