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Abstract

To improve efficiency and amortize cost over more computation, resource sharing

has become vital in high performance computing systems. In such systems, the con-

ventional wisdom assumes that users have to share, regardless of the management

policy. With a wide range of computing options available, this assumption does not

seem to hold for today’s self-interested users. These users selfishly pursue their in-

dividual performance without regard for others or the system. And if they dislike

management outcomes, they will withdraw from the shared system. If they decide to

share, they will try to game the management system by misreporting their resource

demands to improve their performance, perhaps at the expense of others in the sys-

tem. To address this challenge and study strategic behavior of self-interested users,

game theory is known to be an effective tool. Drawing on game theory, this the-

sis encourages new thinking in designing management platforms robust to strategic

behavior. In this thesis, we present five pieces of work on data center management

platforms.

First, with the democratization of cloud and datacenter computing, users in-

creasingly share large hardware platforms. In this setting, architects encounter two

challenges: sharing fairly and sharing multiple resources. Drawing on game the-

ory, we rethink fairness in computer architecture. A fair allocation must provide

sharing incentives (SI), envy-freeness (EF), and Pareto efficiency (PE). We show

that Cobb-Douglas utility functions are well suited to modeling user preferences for

iv



cache capacity and memory bandwidth. Additionally we present an allocation mech-

anism that uses Cobb-Douglas preferences to determine each user’s fair share of the

hardware. This mechanism provably guarantees SI, EF, and PE, as well as strategy-

proofness in the large (SPL). And it does so with modest performance penalties, less

than 10% throughput loss, relative to an unfair mechanism.

Second, computational sprinting is a class of mechanisms that boost performance

but dissipate additional power. We describe a sprinting architecture in which many

independent chip multiprocessors share a power supply and sprints are constrained

by the chips’ thermal limits and the rack’s power limits. Moreover, we present

the computational sprinting game, a multi-agent perspective on managing sprints.

Strategic agents decide whether to sprint based on application phases and system

conditions. The game produces an equilibrium that improves task throughput for

data analytics workloads by 4-6× over prior greedy heuristics and performs within

90% of an upper bound on throughput from a globally optimized policy.

Third, ensuring fairness in a system with scarce and commonly preferred re-

sources requires time sharing. We consider a heterogeneous system with a few “big”

and many “small” processors. We allocate heterogeneous processors using a novel

token mechanism that supports game-theoretic notions of fairness such as sharing

incentives and envy-freeness. The mechanism frames the allocation problem as a

repeated game. In each round of the game, users request big processors and spend a

token if their request is granted. We formulate game dynamics and optimize users’

strategies to produce an equilibrium. Allocations from optimal strategies balance

performance and fairness. Our token mechanism outperforms classical, fair mech-

anisms by 1.7x, on average, in total performance gains, and is competitive with a

performance maximizing mechanism.

Fourth, we present a processor allocation framework that uses Amdahl’s Law to

model parallel performance and a market mechanism to allocate cores. We propose
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the Amdahl utility function and demonstrate its accuracy when modeling perfor-

mance from processor core allocations. We then design a market based on Amdahl

utility and propose the Amdahl bidding procedure that optimizes users’ bids for

processors based on workload parallelizability. The framework uses entitlements to

guarantee fairness yet outperforms existing proportional share algorithms.

Finally, sharing computational resources amortizes cost and improves utilization

and efficiency. When agents pool their resources together, each becomes entitled to

a portion of the shared pool. Static allocations in each round can guarantee entitle-

ments and are strategy-proof, but efficiency suffers because allocations do not reflect

variations in agents’ demands for resources across rounds. Dynamic allocation mech-

anisms assign resources to agents across multiple rounds while guaranteeing agents

their entitlements. Designing dynamic mechanisms is challenging, however, when

agents are strategic and can benefit by misreporting their demands for resources.

The Amdahl bidding mechanism facilitates the trade in resources between users

with static demands within a single management round. To facilitate the trade in

resources between users with dynamic demands across multiple rounds, we propose

two novel mechanisms. First, the T-period mechanism satisfies strategy-proofness

and sharing incentives but with low efficiency. Second, the token mechanism satisfies

strategy-proofness and guarantees at least a 50% approximation of sharing incentives,

which means users receive at least half the utility they would have received by not

participating in the mechanism. Through simulations on data gathered from Google

clusters, we show that the performance of the token mechanism is comparable to that

of state-of-the-art mechanisms that do not guarantee our game-theoretic properties.

Further, although the token mechanism only guarantees a 50% approximation of

sharing incentives, in practice, users receive at least 98% of their sharing incentives

guarantee.
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1

Introduction

To improve efficiency and amortize cost over more computation, resource sharing

has become vital in high performance computing systems [6]. In such systems, the

conventional wisdom assumes that users have to share, regardless of the management

policy. With a wide range of computing options available, this assumption does not

seem to hold for today’s self-interested users. These users selfishly pursue their

individual performance without regard for others or the system. And if they dislike

management outcomes, they will withdraw from the shared system. If they decide to

share, they will try to game the management system by misreporting their resource

demands to improve their performance, perhaps at the expense of others in the

system.

Users’ selfish behavior is not just a theoretical assumption. Previous work in

systems literature has reported real-world examples of strategic behavior [7, 8, 9],

making it a real challenge facing systems architects. To address this challenge and

study strategic behavior of self-interested users, game theory is known to be an effec-

tive tool. Drawing on game theory, this thesis encourages new thinking in designing

management platforms robust to strategic behavior. The main contributions are
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management platforms at different levels in datacenter systems: server processors

[1, 10], server racks [2, 11], and server clusters [4, 5, 3].

1.1 Multi-resource Allocation in Server Processors [1]

In a shared server processor, computer architects encounter two challenges – sharing

fairly and sharing multiple resources. To address these challenges, In Chapter 2, we

propose Resource Elasticity Fairness (REF) [1, 10], a fair, multi-resource allocation

mechanism that provably guarantees four fundamental game-theoretic properties.

First, REF provides sharing incentives, ensuring that users perform no worse than

under an equal division of resources. Second, REF provides envy-freeness, ensuring

that each user prefers her own allocation over other users’ allocations. Third, REF

ensures Pareto efficiency, providing an allocation in which the system cannot improve

a user’s performance without harming another’s. Finally, REF is strategy-proof when

the number of users in a shared system is large, ensuring that users cannot improve

their performance by misreporting their resource demands.

These properties are guaranteed when software preferences for hardware can be

modeled by Cobb-Douglas utility functions. The Cobb-Douglas function accurately

describes hardware performance for two fundamental reasons. First, it captures

diminishing marginal returns in performance, a prevalent concept in computer sys-

tems. Second, the Cobb-Douglas function captures substitution effects, which are

also typical – a user might trade off-chip memory bandwidth for last-level cache ca-

pacity. Using cycle-accurate simulations for diverse application suites, we show that

Cobb-Douglas utility functions are well suited to modeling user utility for hardware

resources.
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1.2 Power Management in Server Racks [2]

In a datacenter rack, power supply is shared between servers. Most of today’s servers

are capable of computational sprinting by supplying extra power for short durations

to enhance their performance. Although sprints improve servers’ performance, un-

coordinated sprints could overwhelm the rack’s power supply and risk power emer-

gencies. To maximize performance gains and minimize risks, systems architects face

hard management questions – which servers should sprint and when should they

sprint? In Chapter 3, we address these questions by designing the computational

sprinting game [2]. In equilibrium, the game produces several desiderata – perfor-

mance optimality of individual servers, system stability, and distributed sprinting

management.

The sprinting architecture, which specifies the sprinting mechanism as well as

power and cooling constraints, defines rules of the game. The game assumes that

each server is controlled by a self-interested user who decides whether to sprint.

Since simultaneous sprints could lead to power emergencies, users have to account for

competitors’ decisions before making any sprinting decision. When all users optimize

their sprinting strategies against each other, the game reaches its equilibrium. To find

an equilibrium, users make initial assumptions about system conditions and optimize

their strategies. Doing so, they affect those same system conditions. Eventually,

system conditions and users’ strategies converge to a stationary distribution and the

game reaches its equilibrium.

We show that users’ equilibrium strategy is a simple threshold strategy – sprinting

whenever utility gain exceeds a threshold. To find and maintain an equilibrium,

we have proposed a computational sprinting management framework. Offline, the

framework finds each user’s sprinting threshold. Online, users decide whether to

sprint by comparing a sprint’s utility gain against their threshold. The framework
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permits distributed sprinting enforcement, because in equilibrium, users have no

incentives to change their strategies.

1.3 Managing Heterogeneity in Server Clusters [3]

Ensuring fairness in a system with scarce and commonly preferred resources requires

time sharing. To allocate processors in a datacenter with “big” and “small” proces-

sors, in Chapter 4, we devise a novel token mechanism that frames the allocation

problem as a repeated game with discrete rounds [3]. At each round, users request

big processors and spend a token if their request is granted. Spent tokens are then

redistributed among users who do not receive a big processor. We formulate the

game dynamics and optimized user’ strategies to produce an equilibrium. In equilib-

rium, allocations balance performance and fairness, outperforming fair mechanisms

and being competitive with a performance maximizing mechanism. Allocations from

optimal strategies balance performance and fairness. Our token mechanism outper-

forms classical, fair mechanisms by 1.7x, on average, in total performance gains, and

is competitive with a performance maximizing mechanism.

1.4 Processor Core Allocation in Server Clusters [4]

In many private datacenters, users share a non-profit server cluster and its capi-

tal and operating costs. In such datacenters, a cluster manager must ensure users

receive their entitlements, which specify the minimum share of resources each user

should receive relative to others. For instance, in an academic cluster that combines

servers purchased by researchers, entitlements may specify shares in proportion to

researchers’ financial contributions.

Entitlements for processor cores in a datacenter differ from those in a server.

Within a server, time on processor cores is a divisible resource that can be proportion-

ally divided between users. The idealized datacenter provides a similar abstraction—
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a warehouse-scale machine with a logically divisible pool of cores. However, cores

are physically distributed across servers. This is challenging because users deploy

different jobs on different servers, which means their demands for cores vary across

servers. To address this challenge, a classical approach enforces proportional shares

on each server separately, allocating each user her demand or entitlement, whichever

is smaller. When entitlement exceeds demand, excess cores are redistributed among

other users according to their entitlements. Although simple and widely used, this

approach does not guarantee datacenter-wide entitlements.

To guarantee datacenter-wide entitlements, in Chapter 5, we design the Amdahl

bidding mechanism [4]. The mechanism’s centerpiece is the Amdahl utility function,

which is derived from Amdahl’s Law to model users’ valuations for each server’s cores.

Users receive budgets in proportion to their entitlements and spend their budgets

bidding for processor cores according to their Amdahl utility function. The market

sets prices based on bids and users respond to prices until, in equilibrium, all cores

are allocated and allocations are optimal. Informally, budgets satisfy entitlements

while bids shift more resources to more parallelizable workloads. Market allocations

are competitive with performance-centric ones. First, allocations incentivize sharing

as each user always receives her entitlement and sometimes receives more. Second,

allocations are Pareto-efficient, which means no other allocation can benefit one user

without harming another. Third, the market is strategy-proof for highly competitive

systems, which means no user can benefit by misreporting utility from processors.

Finally, the market has low overheads as we have devised closed-form equations to

calculate market allocations.

1.5 Allocate Resources across Time [5]

Sharing computational resources amortizes cost and improves utilization and effi-

ciency. When agents pool their resources together, each becomes entitled to a portion
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of the shared pool. Static allocations in each round can guarantee entitlements and

are strategy-proof, but efficiency suffers because allocations do not reflect variations

in agents’ demands for resources across rounds. Dynamic allocation mechanisms

assign resources to agents across multiple rounds while guaranteeing agents their

entitlements. Designing dynamic mechanisms is challenging, however, when agents

are strategic and can benefit by misreporting their demands for resources.

In Chapter 6, we show that dynamic allocation mechanisms based on max-min

fail to guarantee entitlements, strategy-proofness or both. We propose the flexible

lending (FL) mechanism and show that it satisfies strategy-proofness and guaran-

tees at least half the utility from static allocations while providing an asymptotic

efficiency guarantee. Our simulations with real and synthetic data show that the

performance of the flexible lending mechanism is comparable to that of state-of-the-

art mechanisms, providing agents with at least 0.98x, and on average 15x, of their

utility from static allocations. Finally, we propose the T -period mechanism and

prove that it satisfies strategy-proofness and guarantees entitlements.
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2

REF: Resource Elasticity Fairness with Sharing
Incentives for Multiprocessors

2.1 Introduction

Datacenter platforms are often poorly utilized, running at less than 30% of peak

capability [12]. With poor utilization, server power is amortized over little compu-

tation. To address this inefficiency, software must share hardware. Mechanisms for

fair resource allocation (or a lack thereof) determine whether users have incentives

to participate in dynamic, shared hardware platforms. In this setting, architects

encounter two challenges: sharing fairly and sharing multiple resources.

We rethink fairness in resource allocation for computer architecture. Adopting

the game-theoretic definition, a fair hardware allocation is one in which

• all users perform no worse than under an equal division,

• no user envies the allocation of another, and

• no other allocation improves utility

without harming a user.
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Our resource allocation strategy relies on robust game theory, encouraging users

to share hardware and ensuring equitable allocations when they do. Conventional

wisdom, on the other hand, assumes that users have no choice but to share. In this

setting, prior efforts devise mechanisms to equally distribute performance penalties

from sharing, which is not equitable [13, 14].

Drawing on economic game theory, we present a fair, multi-resource allocation

mechanism. This mechanism and its resulting allocations provide key game-theoretic

properties. First, the mechanism provides sharing incentives (SI), ensuring that each

agent is at least as happy as they would be under an equal division of shared resources.

Without SI, agents would not participate in the proposed sharing mechanism. In-

stead, they would rather equally and inefficiently divide the hardware. Supposing

agents share a system, they will desire a fair division of the hardware.

In economic game theory, a fair allocation is defined to be envy-free (EF) and

Pareto efficient (PE) [15]. An allocation is EF if each agent prefers his own allocation

to other agents’ allocations. Equitable sharing is defined by EF for all agents. An

allocation is PE if we cannot improve an agent’s utility without harming another

agent.

Finally, a mechanism to allocate hardware should be strategy-proof (SP), ensuring

that agents cannot gain by misreporting their preferences. Without SP, strategic

agents may manipulate the hardware allocation mechanism by lying. In practice, SP

may be incompatible with SI, EF, and PE [16]. But there exist allocation mechanisms

that are approximately SP as long as many agents share a system. We refer to this

weaker guarantee as strategy-proofness in the large (SPL).

Thus, we present a new framework for reasoning about fair resource allocation in

computer architecture. Our contributions include the following:

• Cobb-Douglas Utility in Computer Architecture. We show that Cobb-
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Douglas utility functions are well suited to model user performance and prefer-

ences for multiple hardware resources. Given Cobb-Douglas utilities, we detail

conditions for SI, EF, and PE. (Section 2.3)

• Fair Allocation for Computer Architecture. We present a new mech-

anism to fairly allocate multiple hardware resources to agents with Cobb-

Douglas utilities. We prove its game-theoretic properties (SI, EF, PE, SPL)

and describe its implementation. (Section 2.4)

• Case Study for Cache Size and Memory Bandwidth. We apply the

mechanism to fairly allocate cache size and memory bandwidth. We evaluate

with cycle-accurate processor and memory simulators for diverse application

suites, including PARSEC, SPLASH-2x, and Phoenix MapReduce. (Section

2.5)

• Performance Trade-offs. We compare our mechanism against prior ap-

proaches that equalize slowdown, describing how the latter violates game-

theoretic fairness. Our mechanism provides fairness with modest penalties

(< 10% throughput loss) relative to a mechanism that does not provide SI,

EF, PE, and SPL. (Section 2.5)

Without loss of generality, we evaluate our multi-resource allocation mechanism for

cache size and memory bandwidth. In the future, the mechanism can support ad-

ditional resources, such as the number of processor cores. Collectively, our findings

establish robust foundations for the fair division of multiple hardware resources.

2.2 Motivation and Background

We present a mechanism for allocating shared resources. This mechanism guar-

antees SI, EF, PE, and SPL. And we demonstrate its ability to allocate last-level
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cache capacity and off-chip memory bandwidth. Our mechanism design relies on two

fundamental insights about utility functions for computer architecture.

First, we use Cobb-Douglas utility functions to accurately capture hardware per-

formance. For example, u = xαxyαy models performance u as a function of resource

allocations for cache capacity x and memory bandwidth y. The exponents α capture

non-linear trends and model performance elasticity (i.e., sensitivity) for each hard-

ware resource. For example, if αx > αy, the agent prefers cache capacity to memory

bandwidth.

Second, we design a mechanism that uses each agent’s reported resource elasticity

α to determine his fair share of hardware. Given Cobb-Douglas utilities, the fair share

can be expressed in a closed-form equation. Thus, the mechanism is computationally

trivial. Yet the resulting allocation provably guarantees each of the desired game-

theoretic properties: SI, EF, PE, and SPL.

Game-theoretic versus Heuristic Fairness. Our approach addresses funda-

mental limitations in prior work. Prior mechanisms consider each user’s performance

penalty incurred from sharing [17, 18]. They then allocate a resource, such as mem-

ory bandwidth, trying to equalize slowdown [14]. While this approach produces equal

outcomes, it is not fair in the economic sense. Our rigorous, game-theoretic analysis

shows that equalizing slowdown provides neither SI nor EF.

Without these properties, strategic users would have no incentive to share. They

would prefer an equal division of memory bandwidth rather than receive an equal

slowdown guarantee from the allocation mechanism. Allocating multiple resources

with heuristics, such as hill-climbing [19], is even more difficult and provides even

fewer guarantees.

Cobb-Douglas versus Leontief. Cobb-Douglas allows us to guarantee fairness

in computer architecture for the first time. Although Leontief [8, 20, 21] provides

the same guarantees in distributed systems, they do not apply in a more fine-grained
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analysis of hardware behavior for two reasons.

First, unlike Leontief, Cobb-Douglas utilities capture diminishing returns and

substitutability. Both of these effects are prevalent in architecture, whether in Am-

dahl’s Law for multi-core parallelism [22], in data locality for cache sizing, or in

communication intensity for bandwidth allocation. In these settings, linear Leontief

preferences of the form u = min(x1/α1, x2/α2) are ineffective.

Second, consider the complexity of Cobb-Douglas and Leontief. We use classical

regression to fit log-linear Cobb-Douglas to architectural performance. In contrast,

since Leontief is concave piecewise-linear, fitting it would require non-convex opti-

mization, which is computationally expensive and possibly NP-hard [23]. Note that

[8, 20, 21] did not encounter these difficulties because they assume that agents in

a distributed system provide a demand vector (e.g., 2CPUs, 4GB-DRAM). Fitting

architectural performance to Leontief is equivalent to finding the demand vector

for substitutable microarchitectural resources (e.g., cache and memory bandwidth),

which is conceptually challenging.

2.3 Fair Sharing and Cobb-Douglas

A mechanism for fair sharing should guarantee several game theoretic properties.

First, the mechanism must provide sharing incentives (SI). Without such incentives,

software agents would prefer equally divided resources to a sophisticated mechanism

that shares hardware more efficiently.

If agents do intelligently share, they will want a fair division. In economic game

theory, a fair allocation is envy-free (EF) and Pareto efficient (PE) [15]. We present

an allocation mechanism that provides SI, EF, and PE for hardware resources given

software agents with Cobb-Douglas utility.

Cobb-Douglas Utility. Suppose multiple agents share a system with several

types of hardware resources 1, . . . , R. Let xi = (xi1, . . . , xiR) denote agent i’s hard-
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ware allocation. Further, let ui(xi) denote agent i’s utility. Equation (2.1) defines

utility within the Cobb-Douglas preference domain.

ui(xi) = αi0

R∏
r=1

xαir
ir (2.1)

The exponents α introduce non-linearity, useful for capturing diminishing marginal

returns in utility. The product models interactions and substitution effects between

resources. The user requires both resources for progress because utility is zero when

either resource is unavailable.

The parameters αi = (αi1, . . . , αiR) quantify the elasticity with which an agent

demands a resource. If αir > αir′ , then agent i benefits more from resource r than

from resource r′. These parameters are tailored to each agent and define her demand

for resources.

With Cobb-Douglas utility functions, we reason about agents’ preferences. Con-

sider two allocations x and x′ for agent i.

• If ui(x) > ui(x
′), then x ≻i x

′ (strictly prefer x to x′)

• If ui(x) = ui(x
′), then x ∼i x

′ (indifferent to x and x′)

• If ui(x) ≥ ui(x
′), then x ≿i x

′ (weakly prefer x to x′)

Cobb-Douglas preferences are a good fit for resources in computer architecture. They

capture diminishing marginal returns and substitution effects in ways that linear

Leontief preferences, which prior work uses [8], cannot.

Example with Cache and Memory. We use a recurring example to illustrate

the allocation of multiple resources given Cobb-Douglas preferences. Consider pro-

cessor cache size and memory bandwidth. Agents see diminishing marginal returns
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from larger caches since software tasks exhibit limited exploitable locality. Depend-

ing on its data access locality, software tasks can substitute cache size for memory

bandwidth and vice versa.

Suppose a system has 24GB/s of memory bandwidth and 12MB cache. This

setting is representative of a quad-core processor with two DDRX channels. The

system is shared by two users or agents. Let (x1, y1) denote the memory bandwidth

and cache capacity allocated to the first user. Similarly, let (x2, y2) denote the second

user’s allocation. Suppose users’ utilities are described by Equation (2.2).

u1 = x0.6
1 y0.41 u2 = x0.2

2 y0.82 (2.2)

User 1 runs an application that exhibits bursty memory activity but little data re-use.

For user 1, memory bandwidth x1 is more useful than cache capacity y1. In contrast,

user 2 makes good use of its cache capacity y2. We use profilers and regression to

derive these utility functions (Section 2.4.4).

Software behavior translates into hardware demands, which in turn are reflected

in the utility functions. These utility functions are representative of realistic appli-

cations. For example, u1 and u2 accurately model the relative cache and memory

intensities for canneal and freqmine from the PARSEC benchmarks (Section 2.5).

Visualization with Edgeworth Boxes. To visualize feasible resource alloca-

tions, we use the Edgeworth box [24]. Figure 2.1 illustrates the allocation of two

resources to two users. User 1’s origin is at the lower left corner and User 2’s origin

is at the upper right corner. The total amount of cache is the height of the box

and the total amount of memory bandwidth is the width. Therefore, each feasible

allocation of resources can be represented as a point in the Edgeworth box. If user 1

gets 6GB/s memory bandwidth and 8MB cache, user 2 is left with 18GB/s memory

bandwidth and 4MB cache.
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Figure 2.1: Edgeworth Box Example. Box height shows total cache size and box

width shows total memory bandwidth. Each point in this box corresponds to a feasible

resource allocation to users.

The Edgeworth box includes all possible allocations. But only some of these

allocations are fair. And only some of these provide sharing incentives. Thus, desired

game-theoretic properties (sharing incentives, envy-freeness, and Pareto efficiency)

define constraints on the allocation space. We use the Edgeworth box to visualize

these constraints, beginning with sharing incentives.

2.3.1 Sharing Incentives (SI)

Sharing hardware is essential to increasing system utilization and throughput. An

allocation mechanism should provide sharing incentives (SI) such that agents are at

least as happy as they would be under an equal split of the resources. Without SI,

users would prefer to partition hardware equally. But an equal partitioning would

not reflect software diversity and heterogeneous hardware demands. Resources may

be mis-allocated, leaving throughput unexploited.

Formally, let Cr denote the total capacity of resource r in the system. Suppose

an allocation mechanism provides agent i with resources xi = (xi1, . . . , xiR). For a

system with N users, this mechanism provides SI if
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(xi1, . . . , xiR) ≿i

(
C1

N
, . . . ,

CR

N

)
(2.3)

for each agent i∈[1, N ]. In other words, each agent weakly prefers its allocation of

hardware to an equal partition.

Whether an allocation is preferred depends on the utility functions. Consider

our example with cache size and memory bandwidth. User 1 compares its allocation

(x1, y1) against equally splitting 24GB/s of bandwidth and 12MB of cache. If user

1 always weakly prefers (x1, y1), then the allocation mechanism provides user 1 an

incentive to share.

x0.6
1 y0.41 ≥

(
24GB/s

2

)0.6(
12MB

2

)0.4

(2.4)

x0.2
2 y0.82 ≥

(
24GB/s

2

)0.2(
12MB

2

)0.8

(2.5)

In our example with two agents, Equations (2.4)–(2.5) must be satisfied. User 1 must

receive allocations that satisfy Equation (2.4). Simultaneously, user 2 must receive

allocations that satisfy Equation (2.5). A mechanism that provides SI will identify

allocations that satisfy both constraints.

2.3.2 Envy-Freeness (EF)

Envy is the resentment of another agent’s allocation combined with a desire to receive

that same allocation. Allocations are envy-free (EF) if no agent envies another. Such

allocations are considered equitable and equity is a game-theoretic requirement for

fairness [15].

Specifically, suppose agent i is allocated xi. This allocation is EF if agent i

prefers its allocation to any other agent’s allocation and has no desire to swap. That
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(b) Envy-free Allocations for User 2

Figure 2.2: Visualizing Envy-freeness (EF). The mid-point and two corners, and

are always EF.

is, xi ≿i xj,∀j ̸=i. In this comparison, each agent considers herself in the place of

other agents and evaluates their allocations in the same way she judges her own

allocation.

In our cache and bandwidth example, the EF allocations for user 1 are those for

which u1(x1, y1) ≥ u1(x2, y2). Note that (x2, y2) = (24−x1, 12−y1). Thus, allocations

that satisfy Equation (2.6) are EF for user 1. And Figure 2.2(a) illustrates regions

in which these allocations are found. Similarly, Equation (2.7) and Figure 2.2(b)

describe the set of EF allocations for user 2. A mechanism that satisfies EF will

identify allocations that satisfy both constraints.

x0.6
1 y0.41 ≥ (24− x1)

0.6(12− y1)
0.4 (2.6)

x0.2
2 y0.82 ≥ (24− x2)

0.2(12− y2)
0.8 (2.7)

There are always at least three EF allocations, which are illustrated by the middle

point and two corner points. The middle point corresponds to the situation in which

all resources all equally divided between users. No user envies the other.

The corners correspond to situations in which all of one resource is given to one

user and all of the other resource is given to the other. Both users derive zero
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Figure 2.4: Leontief Indifference Curves. Resources are perfect complements and

the marginal rate of substitution is either zero or infinity.

utility and do not envy each other. In our example, the two corner allocations are

(0GB/s, 12MB) and (24GB/s, 0MB). Users derive zero utility because both cache

and memory are required for computation.

None of these obvious EF allocations is attractive. The middle point divides

resources equally without accounting for differences in user utility. In this setting,

system throughput could likely be improved. And corner points are clearly not useful.

Thus, we need a mechanism to identify more effective EF allocations.
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2.3.3 Pareto Efficiency (PE)

Pareto efficiency (PE) is another game-theoretic property that must be satisfied

by a fair resource allocation [15]. An allocation is PE if increasing one user’s utility

necessarily decreases another’s utility. If an allocation is not PE, there exists another

allocation that should have been chosen to improve total system utility.

More precisely, consider an allocation x = (x1, . . . , xN) for N agents. Allocation

x is PE if there exists no other feasible allocation x′ that all agents i weakly prefer

(x′
i ≿i xi) and at least one agent j strictly prefers (x′

j ≻j xj). Finding PE allocations

is inherently linked to navigating trade-offs between substitutable resources.

Substitution Effects. An indifference curve depicts the allocations that are

substitutable for one another. Figure 2.3 shows three indifference curves for user

1. Allocations on the same curve provide the same utility. Allocations on different

curves provide different utilities. The utility of I1 is less than that of I2, and the

utility of I2 is less than that of I3. Therefore, all allocations on I2 and I3 are strictly

preferred to those on I1.

The Leontief preferences used in prior work do not permit substitution [8]. Sup-

pose user 1 demands 2GB/s of memory bandwidth and 1MB of cache. With this

demand vector, the user’s Leontief utility function is shown in Equation (2.8). Un-

der Leontief, resources are perfect complements, leading to the L-shaped indifference

curves in Figure 2.4.

u1 = min{x1, 2y1} (2.8)

User 1 demands bandwidth and cache in a 2:1 ratio. If the allocated ratio differs, then

extra allocated resources are wasted. For example, user 1 derives the same utility

from (4GB/s, 2MB) as it does from disproportional allocations such as (10GB/s,

2MB) or (4GB/s, 10MB). Leontief preferences do not account for marginal benefits
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Figure 2.5: Visualizing Pareto Efficiency. The contract curve includes all PE

allocations for which MRS for both utility functions are equal.

from disproportional allocations. Nor do they allow for substitution in which more

cache capacity compensates for less memory bandwidth.

In contrast, substitution is modeled by Cobb-Douglas preferences as illustrated

by indifference curves’ slopes in Figure 2.3. For instance, user 1 can substitute

an allocation of (4GB/s, 1MB) for an allocation of (1GB/s, 8MB). Such flexibility

provides the allocation mechanism with more ways to provide the same utility, which

is particularly important as the set of feasible allocations are constrained by the

conditions for SI, EF, and PE.

Marginal Rates of Substitution. The marginal rate of substitution (MRS),

is the rate at which the user is willing to substitute one resource for the other.

Visually, the MRS is the slope of the indifference curve. If MRS=2, the user will

give up two units of y for one unit of x. Under Leontief preferences, the MRS is either

zero or infinity; the user has no incentive for substitution. But under Cobb-Douglas

preferences, the MRS is more interesting. In our cache and bandwidth example, the

marginal rate of substitution for user 1 is given by Equation (2.9).

MRS1,xy =
∂u1/∂x1

∂u1/∂y1
=

(
0.6

0.4

)(
y1
x1

)
(2.9)
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For any PE allocation, the MRS for the two users must be equal. Visually, this

means users’ indifference curves are tangent for PE allocations. Suppose curves were

not tangent for a particular allocation. Then a user i could adjusts its allocation and

travel along its indifference curve, substituting resources based on its MRS without

affecting ui. But the substitution would take the other user to a higher utility.

The MRS determines the contract curve, which shows all PE allocations. Figure

2.5 shows the contract curve and illustrates tangency for three allocations. With the

tangency condition, formal conditions for PE is easily formulated. In our example,

allocations (x1, y1) and (x2, y2) are PE if the users’ marginal rates of substitution are

equal; Equation (2.10) must be satisfied.

(
0.6

0.4

)(
y1
x1

)
=

(
0.2

0.8

)(
y2
x2

)
(2.10)

As seen in Figure 2.5, both origins are PE allocations. At these points, one user’s

utility is zero and the other’s is maximized. Increasing a user’s utility, starting from

zero, necessarily decreases the other user’s utility. While PE, these allocations are

neither desirable nor fair. The user with zero utility envies the other user’s allocation.

Thus, we need a mechanism that identifies both PE and EF allocations.

2.4 Resource Elasticity Fairness (REF)

We present a fair allocation mechanism that satisfies three game-theoretic properties:

sharing incentives (SI), envy-freeness (EF), and Pareto efficiency (PE). We begin with

the space of possible allocations. We then add constraints to identify allocations with

the desired properties.

Economic game theory defines a fair allocation as one that is equitable (EF) and

efficient (PE) [15]. Figure 2.6 illustrates the effect of these constraints. Each user

identifies its EF allocations. And the contract curve identifies PE allocations. The
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Figure 2.6: Fair Allocation Set. All the points on the intersection of envy-free sets

and the contract curve correspond to the fair allocations.
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Figure 2.7: Visualizing Sharing Incentives. Satisfying the sharing incentive

property limits the set of feasible fair allocations.

intersection of these three constraints define feasible, fair allocations. Figure 2.7

shows that SI further constrains the set of fair allocations.

Formally, finding fair multi-resource allocations given Cobb-Douglas preferences

can be modeled as the following feasibility problem for N agents and R resources.
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find x (2.11)

subject to ui(xi) ≥ ui(xj) i, j∈[1, N ]

αir

αis

xis

xir

=
αjr

αjs

xjs

xjr

i, j∈[1, N ]; r, s∈[1, R]

ui(xi) ≥ ui(C/N) i∈[1, N ]

N∑
i=1

xir ≤ Cr, r∈[1, R]

where C/N is (C1/N, . . . , CR/N). In this formulation, the four constraints enforce

EF, PE, SI, and capacity.

2.4.1 Procedure for Fair Allocation

To solve the multi-resource allocation problem, we present a mechanism to determine

each agent’s fair share of the hardware. N agents share R resources. For each agent

i, we determine its allocation xi = (xi1, . . . , xiR) with the following procedure, which

satisfies all constraints in Equation (2.11).

• Fit Cobb-Douglas Utility. Profile and characterize agent i’s performance

for various resource allocations. Fit a Cobb-Douglas utility function ui(xi) =

αi0

∏R
r=1 x

αir
ir .

• Re-scale Elasticities. Parameters α in the Cobb-Douglas utility function are

known as elasticities. For each agent i, re-scale its elasticities so that they sum

to one.

α̂ir =
αir∑R
r=1 αir

(2.12)

• Re-scale Utilities. Redefine the Cobb-Douglas utility function with re-scaled

elasticities ûi(xi) =
∏R

r=1 x
α̂ir
ir .
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• Allocate in Proportion to Elasticity. Examine re-scaled Cobb-Douglas

utilities and use their elasticities to determine fair share for each agent i and

resource r.

xir =
α̂ir∑N
j=1 α̂jr

× Cr (2.13)

In effect, this allocation mechanism quantifies elasticity α to determine the extent

each resource improves an agent’s utility. Re-scaling elasticities allows us to compare

values for different agents on the same scale. By allocating in proportion to elasticity,

agents that benefit more from resource r will receive a larger share of the total Cr.

In our cache and bandwidth example, two users provide Cobb-Douglas utility

functions with elasticities. These elasticities are already scaled and sum to one (e.g.,

u1 = x0.6
1 y0.41 ). To determine the memory bandwidth allocation, we examine both

user’s bandwidth elasticity (α1x = 0.6, α2x = 0.2) and allocate proportionally.

x1 =

(
0.6

0.8

)
× 24 = 18GB/s, y1 =

(
0.4

1.2

)
× 12 = 4MB

x2 =

(
0.2

0.8

)
× 24 = 6GB/s, y2 =

(
0.8

1.2

)
× 12 = 8MB

2.4.2 Fairness and Sharing Incentives

The proportional elasticity mechanism has several attractive properties. The mech-

anism promotes sharing and guarantees fairness by satisfying conditions for SI, EF,

and PE. We sketch the proofs for these properties.

First, we show that the allocation is a Nash bargaining solution. Observe that the

allocation from Equation (2.13) is equivalent to finding an allocation that maximizes

the product of re-scaled utilities û. This equivalence can be shown by substituting

re-scaled Cobb-Douglas utility functions into Equation (2.14) and using Lagrange

multipliers for constrained optimization.
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max
N∏
i=1

ûi(xi) subject to
N∑
i=1

xir ≤ Cr (2.14)

In game theory, the bargaining problem asks how agents should cooperate to produce

Pareto efficient outcomes. Nash’s solution is to maximize the product of utilities

[25, 26], which is equivalent to Equation (2.14) and our allocation mechanism. Thus,

our mechanism produces an allocation that is also a Nash bargaining solution.

Next, we show that our allocation is also a Competitive Equilibrium from Equal

Outcomes (CEEI), a well-known microeconomic concept for fair division. In CEEI,

users are initially assigned equal resource allocations. Based on user preferences,

prices are assigned to resources such that users trade and the market clears to produce

an allocation.

The CEEI solution picks precisely the same allocation of resources as the Nash

bargaining solution for homogeneous utility functions [27]. Let x = (x1, . . . , xR)

be a vector of resources. Utility function u is homogeneous if u(kx) = ku(x) for

some constant k. Our re-scaled Cobb-Douglas utilities are homogeneous because∑R
r=1 α̂r = 1. For this reason, our allocation is a solution to both the Nash bargaining

problem and CEEI.

Finally, a CEEI allocation is known to be fair, satisfying both EF and PE [15].

CEEI solutions also satisfy SI because users start with an equal division of resources.

Users would only deviate from this initial division if buying and selling resources in

the CEEI market would increase utility. Thus, users can do no worse than an equal

division and CEEI provides SI.

In summary, our allocation mechanism is equivalent to the Nash bargaining solu-

tion, which is equivalent to the CEEI solution. Because the CEEI solution provides

SI, EF, and PE for re-scaled Cobb-Douglas utility functions, the proportional elas-
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ticity mechanism provides these properties as well.

2.4.3 Fairness and Strategy-Proofness in the Large

The proportional elasticity mechanism is strategy-proof in the large. An allocation

mechanism is strategy-proof (SP) if a user cannot gain by mis-reporting its utility

functions. Unfortunately, SP is too restrictive a property for Cobb-Douglas utility

functions. For these preferences, no mechanism can provide both PE and SP [16].

However, our mechanism does satisfy a weaker property, strategy-proofness in the

large (SPL). When there are many users in the system, users have no incentive to

lie about their elasticities α.

First, we define large. A large system has many users such that the sum of all

agents’ elasticities for any resource is much bigger than 1. In such a system, any one

user’s resource elasticity is small relative to the sum of all agents’ elasticities for the

resource. More formally, the system is large if 1≪∑
j αjr, for all resources r.

Next, suppose user i decides to lie about her utility function, reporting α′
ir instead

of the true value αir for resource r. Given other users’ utilities, user i would choose

to report the α′
ir that maximizes her utility.

∂

∂α′
ik

R∏
r=1

(
α′
ir

α′
ir +

∑
j ̸=i αjr

Cr

)αir

= 0 ∀k∈[1, R] (2.15)

In her best scenario, user i knows all other users’ utilities and αjr,∀j ̸=i. Thus, by

mis-reporting α′
ir, user i can precisely affect her proportional share of resource r.

Yet, when user i receives her allocation, she evaluates it with αir, which reflects her

true utility from resource r. Thus, the product in Equation (2.15) reflects user i’s

utility from lying.

User i attempts to maximize this utility from lying, taking partial derivatives with

respect to α′
ir. But it can be proven that this optimization produces α′

ir ≈ αir when

25



1 ≪∑
j αjr for all resources r.1 Thus, in a large system, our allocation mechanism

is approximately strategy proof. A user cannot benefit by lying about her utility.

In theory, SPL holds when an individual agent’s elasticity is much smaller than

the sum of all agents’ elasticities. In practice, we find that tens of agents are sufficient

to provide SPL. In other words, a strategic agent performing the optimization of

Equation (2.15) will not deviate from her true elasticity.

For example, consider 64 tasks sharing a large system. This is a realistic setting

since modern servers can have four processor sockets (= 64 threads) that share eight-

twelve memory channels (> 100 GB/s of bandwidth). Suppose each of the 64 task’s

elasticities are uniformly random from (0,1). We analyze Equation (2.15) and find

that SPL holds.

2.4.4 Implementing the Mechanism

To implement the proportional elasticity mechanism, we need Cobb-Douglas utilities.

We describe the process for deriving these utilities based on performance profiles and

statistical regression. We also describe how proportional shares can be enforced by

leveraging known resource schedulers.

Profiling Performance. Suppose a user derives utility from performance.

Without loss of generality, we measure performance as the number of instructions

committed per cycle (IPC). Execution time, speed-ups over a baseline, and energy

efficiency would all exhibit similar trends.

The user profiles its performance as a function of allocated resources. These

profiles reveal the rate of diminishing returns and identify resource substitutability.

For example, the user samples from the allocation space to determine sensitivity to

cache size and memory bandwidth. These profiles provide the data needed to derive

utilities.

1 See Appendix A.1 for the proof
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Performance can be profiled in several ways. First, consider off-line profiling

in which a user runs software while precisely varying the available hardware. For

example, a user can co-locate its task with synthetic benchmarks that exert tunable

pressure on the memory hierarchy [28]. Thus, profiles would quantify cache and

bandwidth sensitivity.

Also off-line, the user might rely on cycle-accurate, full-system simulators. These

simulators combine virtual machines, such as QEMU, with hardware timing mod-

els to accurately model processor and memory [29, 30]. Simulated and physical

hardware may report different performance numbers. But simulators can accurately

report trends and elasticities, identifying hardware resources that are more important

for performance. We value relative accuracy over absolute accuracy when profiling

hardware preferences.

Finally, consider on-line profiling. Without prior knowledge, a user assumes

all resources contribute equally to performance. Such a naive user reports utility

u = x0.5y0.5. As the system allocates for this utility, the user profiles software per-

formance. And as profiles are accumulated for varied allocations, the user adapts its

utility function.

Fitting Cobb-Douglas Utility. Given performance profiles for varied hardware

allocations, each user fits her Cobb-Douglas utility function in the form of u =

α0

∏R
r=1 x

αr
r . For example, let u be IPC, let x1 be cache capacity, and let x2 be

memory bandwidth.

Fitting the utility function means identifying elasticities α = (α0, . . . , αR) that

best relate performance to the resources. We fit α with regression. Specifically, we

apply a log transformation to linearize Cobb-Douglas. After this transformation,

we have a standard linear model with parameters α as shown in Equation (2.16).

Parameters are fit with least squares.
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log(u) = log(α0) +
R∑

r=1

αrlog(xr) (2.16)

Allocating Proportional Shares. We re-scale elasticities from each user’s Cobb-

Douglas utility function and compute proportional shares. The novelty of our mech-

anism is not in proportional sharing but in how we identify the proportions based

on Cobb-Douglas elasticities to ensure SI, EF, and PE. After the procedure deter-

mines proportional shares for each user, we can enforce those shares with existing

approaches, such as weighted fair queuing [31] or lottery scheduling [32].

2.4.5 Alternative Fair Mechanisms

There may exist multiple allocations x that satisfy the fairness conditions in Equation

(2.11). Our mechanism for proportional elasticity is only one possible mechanism for

one possible solution. Alternative mechanisms may also produce fair allocations

but increase computational complexity. Suppose we follow prior work in computer

architecture and seek fair allocations that maximize system throughput.

To evaluate throughput for a multi-programmed system, architects define the

notion of weighted progress, which divides each application’s multi-programmed IPC

by its single-threaded IPC [17]. Weighted system throughput is the sum of each

user’s weighted progress. This is the metric used to evaluate prior work on memory

scheduling and multiprocessor resource management [33, 19].

N∑
i=1

IPC(xi)

IPC(C)
≈

N∑
i=1

ui(xi)

ui(C)
=

N∑
i=1

U(xi) (2.17)

We adapt this notion of normalized throughput, expressing it in terms of our utility

functions. This means dividing utility for an allocation in the shared machine ui(xi)
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by utility when given all of the machine’s capacity ui(C). Let U(xi) = ui(xi)/ui(C)

define the notion of weighted utility, which is equivalent to the notion of slowdown

in prior work [33, 19].

Fair Allocation for Utilitarian Welfare. Rather than allocate in proportion

to elasticities, we could allocate to maximize utilitarian welfare. Instead of finding x

subject to fairness conditions in Equation (2.11), we would optimize max
∑

i Ui(xi)

subject to the same conditions. While max
∑

i Ui(xi) is computationally intractable,

max
∏

i Ui(xi) is similar but tractable with geometric programming.2 But this mech-

anism would be more computationally demanding than our closed-form solution in

Equation (2.13).

Yet a utilitarian mechanism is interesting. Overall system performance is an

explicit optimization objective. A utilitarian mechanism likely provides the allocation

that achieves the highest performance among all fair allocations. In effect, utilitarian

allocations provides an empirical upper bound on fair performance.

Fair Allocation for Egalitarian Welfare. We could also find fair allocations to

optimize egalitarian welfare. In Equation (2.11), we would optimize max-min Ui(xi)

subject to fairness conditions. As before, geometric programming can perform this

optimization but this mechanism would be more computationally demanding than

our closed-form solution.

Egalitarian welfare is interesting because it optimizes for the least satisfied user.

EF and PE define conditions for a fair allocation. But these conditions say nothing

about equality in outcomes. An allocation could be fair but the difference between the

most and least satisfied user in the system could be large. The max-min optimization

objective mitigates inequality in outcomes, perhaps at the expense of system welfare.

Egalitarian allocations might provide an empirical lower bound on fair performance.

2 Cobb-Douglas is a monomial function (i.e., function with the form f(x) = axα1
1 xα2

2 , . . . , xαm
m ).

And geometric programming can maximize monomials [34].
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Unfair Allocation. Finally, we could neglect game-theoretic fairness and ignore

constraints imposed by SI, EF, and PE. In this setting, we would maximize welfare

subject only to capacity constraints. Note that optimizing egalitarian welfare without

fairness conditions is equivalent to the objective in prior work [33], which equalizes

users’ weighted progress such that maxi Ui(xi) / minj Uj(xj) → 1. The max-min

objective for egalitarian welfare causes the denominator to approach the numerator.

Assessing performance of unfair allocations reveals the penalty we must pay for SI,

EF, and PE.

2.5 Evaluation

We evaluate the proportional elasticity mechanism when sharing the last-level cache

and main memory bandwidth in a chip-multiprocessor. In this setting, we evaluate

several aspects of the mechanism. First, we show that Cobb-Douglas utilities are a

good fit for performance. Then, we interpret utility functions to identify applications

that prefer cache capacity (C) and memory bandwidth (M).

Finally, we compare the proportional elasticity mechanism against an equal slow-

down mechanism, which represents conventional wisdom. We find that equal slow-

down fails to guarantee game-theoretic fairness. On the other hand, proportional

elasticity guarantees SI, EF and PE with only modest performance penalties relative

to an unfair approach.

2.5.1 Experimental Methodology

Simulator. We simulate the out-of-order cores using the MARSSx86 full system

simulator [29]. We integrate the processor model with the DRAMSim2 simulator [30]

to simulate main memory. To characterize application sensitivity to allocated cache

size and memory bandwidth, we simulate 25 architectures spanning combinations of

five cache sizes and five memory bandwidths. The platform parameters are described
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Table 2.1: Platform Parameters

Component Specification

Processor 3 GHz OOO cores, 4-width issue and commit

L1 Cache 32 KB, 4-way set associative, 64-byte block size, 2-cycle la-
tency

L2 Cache [128 KB, 256 KB, 512 KB, 1 MB, 2 MB], 8-way set associa-
tive, 64-byte block size, 20-cycle latency

DRAM Controller Closed-page, Queue per rank, Rank then bank round-robin
scheduling

DRAM Bandwidth [0.8 GB/s, 1.6 GB/s, 3.2 GB/s, 6.4 GB/s, 12.8 GB], single
channel

in Table 2.1.

Given simulator data, we use Matlab to fit Cobb-Douglas utility functions. Our

mechanism includes a closed-form expression for each agent’s fair allocation. But to

evaluate other mechanisms that require geometric programming, we use CVX [35],

a convex optimization solver.

Workloads. We evaluate our method on 24 benchmarks from PARSEC and

SPLASH-2x suites [36]. We further evaluate applications from the Phoenix system for

MapReduce programming [37], including histogram, linear regression, string match,

and word count. For PARSEC 3.0 benchmarks, we simulate 100M instructions from

the regions of interest (ROI), which are representative application phases identified

by MARSSx86 developers. Phoenix applications we simulate 100M instructions from

the beginning of the map phase.

2.5.2 Fitting Cobb-Douglas Utility

Each application is associated with a user. Application performance is measured

as instructions per cycle (IPC). Using cycle-accurate simulations, we profile each

benchmark’s performance. Given these profiles for varied cache size and memory

bandwidth allocations, we perform a linear regression to estimate utility functions.
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For each application, we use a Cobb-Douglas utility function u = α0x
αxyαy where

u is application performance measured with IPC, x is memory bandwidth, and y is

cache size. Although a non-linear relationship exists between Cobb-Douglas util-

ity and resource allocations, a logarithmic transformation produces a linear model

(Equation (2.16)). Least squares regression estimates the resource elasticities α for

each benchmark.

To evaluate this fit, we report the coefficient of determination (R-squared), which

measures how much variance in the data set is captured by the model. R-squared

→ 1 as fit improves. Figure 2.8(a) shows that most benchmarks are fitted with R-

squared of 0.7-1.0, indicating good fits. Benchmarks with low R-squared, such as

radiosity, have negligible variance and no trend for Cobb-Douglas to capture.

We consider representative workloads with high and low R-squared values in

Figure 2.8, which plots simulated and fitted IPC. Cobb-Douglas utilities accurately

track IPC and reflect preferences for cache and memory bandwidth. Even workloads

with lower R-squared values, such as radiosity, do not deviate significantly from

true values.

In practice, the proportional elasticity mechanism never uses the predicted value

for u to allocate hardware. It only uses the fitted parameters for α to determine fair

shares. Thus, Cobb-Douglas fits need only be good enough to assess resource elas-

ticities and preferences. But good predictions for u give confidence in the accuracy

of fitted α.

We expect Cobb-Douglas utility functions to generalize beyond cache size and

memory bandwidth. After applying log transformations to performance and each of

the resource allocations, our approach to fitting the utility function is equivalent to

prior work in statistically inferred microarchitectural models [38]. Prior work accu-

rately inferred performance models with more than ten microarchitectural resources,

which suggests our application of Cobb-Douglas utilities will scale as more resources
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(a) Coefficient of determination (R-squared)
measures goodness of fit for Cobb-Douglas util-
ity functions. Larger values are better.
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Figure 2.8: Evaluating Cobb-Douglas Utilities. Cobb-Douglas is fit by finding

α with method of least squares.

are shared.

2.5.3 Interpreting Cobb-Douglas Utilities

After fitting Cobb-Douglas utilities, we re-scale elasticities as described in Equation

(2.12). Resource elasticity quantifies the extent to which an agent demands a re-

source. In other words, in a multi-resource setting, elasticities quantify the relative

importance of each resource to an agent.

33



0.0
0.1

0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
e
la

tiv
e
 R

e
so

u
rc

e
P

re
fe

re
n
ce

s

Cache Size – Rescaled Elasticity
Memory Bandwidth – Rescaled Elasticity

Figure 2.9: Resource Preferences and Elasticities. Re-scaled elasticities from

Equation (2.12) show relative importance of cache size and memory bandwidth for each

workload.

Figure 2.9 depicts re-scaled elasticities for our workloads. If αcache > αmem,

then the workload derives more utility from cache size than it does from memory

bandwidth (e.g., raytrace). In contrast, if αmem > αcache, then the workload finds

memory bandwidth more useful (e.g., dedup).

Given resource elasticities, we can classify workloads into two groups. Workloads

in group M demand memory bandwidth and αmem > 0.5. Workloads in group C

demand cache capacity and αcache > 0.5. This classification differentiates how work-

loads re-use data in their cache and whether they exhibit bursty memory behavior.

For example, facesim, fluidanimate, and streamcluster exhibit streaming

behavior [39]. Increasing the cache size would only marginally increase performance.

Streaming workloads clearly prefer memory bandwidth and this preference is reflected

in their resource elasticities in Figure 2.9.

2.5.4 Proportional Elasticity versus Equal Slowdown

Having demonstrated accurate Cobb-Douglas utility models, we now evaluate our

mechanism that allocates in proportion to elasticity. We compare against a mech-
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(b) Proportional Elasticity

Figure 2.10: Allocations. Equal slowdown may satisfy SI, EF, and PE in some cases.

anism that allocates for equal slowdown, a commonly used approach in computer

architecture that seeks to equally distribute the performance penalties from sharing

[33], [19].

We compare proportional elasticity and equal slowdown with a series of repre-

sentative examples. In the first example, all desirable properties (SI, EF, PE) are

satisfied by both proportional elasticity and equal slowdown. But an equal slowdown

mechanism cannot guarantee these properties. We present two other examples where

both SI and EF are violated by an equal slowdown mechanism.

Example 1: C-M satisfies SI, EF, and PE. Consider a system shared by

histogram from group C and dedup from group M, which prefer cache capacity and

memory bandwidth, respectively. Figure 2.10 illustrates allocations as a percentage

of total capacity for an equal slowdown mechanism and our proportional elasticity

mechanism.

Both mechanisms allocate more cache capacity to histogram (C) and memory

bandwidth to dedup (M). Consider a chip multiprocessor with 12MB cache and

24GB/s of memory bandwidth. We can compute the allocations and evaluate the con-

ditions for SI, EF, and PE in Equation (2.11). In this particular case, the equal slow-

down allocation satisfies all game-theoretic conditions for fairness. And, of course,
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(b) Proportional Elasticity

Figure 2.11: Allocations. Equal slowdown provides canneal less than half of both

resources, which satisfies neither SI nor EF.

we have proven that the proportional elasticity allocation is fair.

Unfortunately, while an equal slowdown mechanisms may provide SI and EF in

this case, it cannot guarantee them. We cannot even generalize the properties of

equal slowdown for broad classes of workloads. While equal slowdown happens to

provide SI and EF for histogram (C) and dedup (M), it may not do so for other

pairs of C and M workloads.

Example 2: C-M violates SI and EF. Figure 2.11 considers the allocations

for barnes (C) and canneal (M). Barnes prefers cache size to memory bandwidth

whereas cannel prefers bandwidth to cache. This example shows how an equal slow-

down mechanism fails to satisfy SI and EF for canneal, which receives less than

half of both resources in the system. In this setting, cannel would not be willing

to participate in an equal slowdown mechanism and would rather statically receive

half the hardware resources. Moreover, canneal envies barnes’s allocation. In con-

trast, our proportional elasticity mechanism allocates more than half of the memory

bandwidth to canneal, giving it an incentive to share.

Example 3: C-C violates SI and EF. Finally, Figure 2.12 considers two

workloads from the same group. In this, case freqmine (C) and linear regression

(C) both prefer cache capacity to memory bandwidth. But freqmine exhibits less
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memory activity than linear. To equalize slowdowns, linear must receive far more

of both resources.

In this setting, freqmine would not be willing to share the system, preferring an

equal split of the resources rather than participate in an equal slowdown mechanism.

Even if freqmine had been willing to share resources with linear, it would prefer

linear’s allocation over its own. Thus, the allocation from equal slowdown is far

from equitable. On the other hand, proportional elasticity divides resources almost

equally between benchmarks to satisfy SI and EF.

However, proportional elasticity seems inefficient. It allocates resources equally

when one user needs them more. Although the equal slowdown mechanism does not

provide game-theoretic fairness, it likely provides higher system throughput in this

example. Thus, in some cases, proportional elasticity pays a throughput penalty to

provide game-theoretic fairness.

This trade-off between game-theoretic fairness and performance efficiency is fun-

damental to the mechanisms. The equal slowdown mechanism seeks to equalize nor-

malized performance. If one more unit of a resource significantly improves linear’s

performance and only modestly improve freqmine’s, the equal slowdown mecha-

nism favors linear. And overall throughput should increase. In the next section,

we quantify the performance penalty incurred by adding constraints for SI, EF, and

PE.

2.5.5 Performance Penalty from Fairness

We investigate the performance lost due to game-theoretic fairness conditions. We

define an agent’s individual performance as Ui(xi) = ui(xi)/ui(C), which divides

utility when sharing by utility when not. Ui is equivalent to the notion of weighted

throughput [17] except that we use utility functions rather than IPC. For each allo-

cation policy, we compare weighted system throughput in Equation (2.17) calculated
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Figure 2.12: Allocations. Equal slowdown can fail to satisfy SI and EF.

from utility functions fitted to simulator data.

• Max Welfare w/o Fairness. Find an allocation that maximizes welfare

subject only to capacity constraints. We use Nash social welfare (
∏

i Ui(xi)),

which is tractably maximized with geometric programming. This mechanism

provides an empirical upper bound on performance.

• Equal Slowdown w/o Fairness. Find an allocation that maximizes the

minimum Ui(xi). This max-min objective function is equivalent to equalizing

slowdown by closing the gap between the best and worst performing agents.

• Max Welfare w/ Fairness. Find an allocation that maximizes welfare sub-

ject to SI, EF, and PE conditions. We use Nash social welfare (
∏

i Ui(xi)),

which is tractably maximized with geometric programming.

• Proportional Elasticity w/ Fairness. Allocate in proportions based on

elasticities in Cobb-Douglas utility functions. Allocations are proven to provide

SI, EF, and PE.

Thus, we compare two allocations with and without game-theoretic fairness. Note

that our mechanism is computationally trivial based on the closed-form expression in
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Table 2.2: Workload Characterization

Name Benchmarks C/M

WD1 histogram, linear regression, water nsquared, bodytrack 4C

WD2 radiosity, fmm, facesim, string match 2C-2M

WD3 lu cb, fluidanimate, facesim, dedup 4M

WD4 fft, streamcluster, canneal, word count 3C-1M

WD5 streamcluster, facesim, dedup, string match 1C-3M

WD6 histogram, linear regression, water nsquared, bodytrack,
freqmine, word count, x264, dedup

7C-1M

WD7 word count, linear regression, water nsquared, rtview,
histogram, canneal, bodytrack, radiosity

6C-2M

WD8 radiosity, word count (2), canneal, rtview, freqmine, x264,
dedup

5C-3M

WD9 radiosity (2), word count, canneal, rtview, fmm, facesim,
string match

4C-4M

WD10 water nsquared, barnes, ferret, lu cb (2), fluidanimate,
facesim, dedup

3C-5M

Equation (2.13). In contrast, the other mechanisms require geometric programming

and convex optimization.

Figure 2.13 presents weighted system throughput when four applications share

cache and memory bandwidth. The workloads have different characteristics, as

shown in Table 2.2. Performance penalties are larger when the allocation mecha-

nism imposes more constraints. Least restricted, maximizing welfare without any

fairness constraints provides an empirical upper bound on throughput. Relative to

this upper bound, equal slowdown optimizes worst-case performance, thereby low-

ering overall throughput. Yet, despite its lower performance, an equal slowdown

mechanism does not guarantee game-theoretic fairness.

Among the two mechanisms that provide fairness with SI, EF and PE, we find no

performance difference, which is a compelling result. First, our proportional elasticity
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Figure 2.13: Performance Comparison for 4-core System. Penalties for game-

theoretic fairness are less than 10%.
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Figure 2.14: Performance Comparison for 8-core System. Penalties for game-

theoretic fairness are less than 10%.

mechanism is as good as explicitly optimizing throughput subject to fairness. Second,

proportional elasticity provides fair performance in a complexity effective way. Our

mechanism simply calculates fair shares whereas other mechanisms would require

geometric programming.

The price for game-theoretic fairness is small. First, compare maximizing welfare

with and without fairness. Constraints for SI, EF, and PE reduces throughput by

less than 10%. Second, compare equal slowdown to proportional elasticity. With

less than a 7% throughput penalty, proportional elasticity provides game-theoretic

guarantees.
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Figure 2.14 further presents throughput for an eight-core system in which eight

applications share cache and memory bandwidth. We select five representative

workloads to compare allocation mechanisms. In this setting, constraints for game-

theoretic fairness reduce throughput by less than 10%.

More interesting, in an eight-core setting, equal slowdown may perform worse

than proportional elasticity. Poor performance for an equal slowdown mechanism

may be due to optimizing allocations to favor the least satisfied user (i.e., max-min

ui). As the number of users increases, the opportunity cost of favoring the least

satisfied user also increases. Thus, not only does an equal slowdown mechanism

fail to provide game-theoretic fairness, it may also perform worse than proportional

elasticity in large systems with many agents.

2.6 Related Work

Computer Science and Economics. The fair resource allocation problem has

been extensively studied in computer science and economics. While most prior stud-

ies focus on fairly allocating a single resource, Ghodsi et al. propose Dominant

Resource Fairness (DRF) for fair, multi-resource allocation [8]. DRF satisfies SI,

PE, EF and SP for Leontief preferences. Leveraging Leontief properties, Parkes et

al. [40] and Joe-Wong et al. [20] extend DRF. Dolev et al. propose an alternative

notion of multi-resource fairness [21]. Gutman et al. analyze fairness frameworks

and present computational tractable algorithms [41].

While Leontief preferences might be appropriate for distributed systems [8], they

cannot capture important trends in hardware architecture. Leontief utilities are lin-

ear and do not allow substitution between multiple resources. Moreover, specifying a

demand vector for resources, which is required by DRF, is not always possible. In this

chapter, we consider fair, multi-resource allocation under Cobb-Douglas preferences,

which are more realistic in computer architecture.
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Fairness in Computer Architecture. Nesbit et al. [42] propose a memory

scheduler to address fairness for a single memory resource. Other architects use

an unfairness index [14, 18]. A variety of memory scheduling heuristics optimize

this metric to fairly share memory bandwidth [43, 44, 45, 19, 33]. The unfairness

index quantifies the ratio between the maximum and the minimum performance

slowdown among workloads sharing the system. The allocation is considered fair

if workloads experience equal slowdowns. However, we find that equal slowdowns

cannot guarantee game-theoretic properties (e.g., SI, EF, PE).

We consider fairness in a multi-resource setting. Coordinating multi-resource

allocation is more challenging due to substitution effects. Bitirgen et al. [19] consider

multiple resources, relying on machine learning to predict performance for different

allocations at run-time. Their objective is system throughput not fairness. Moreover,

their learning technique is likely more computationally demanding than our equation

for fair shares.

Resource Allocation in Datacenters. Within datacenters, market mecha-

nisms allocate resources to maximize welfare, which is defined as user utility minus

power cost [46], [47].

2.7 Conclusions

Our results motivate new thinking in fairly allocating hardware resources. Rather

than assume users must share hardware, we must provide allocation mechanisms to

encourage sharing. We show that Cobb-Douglas utilities are well suited to modeling

user preferences in computer architecture. For Cobb-Douglas utilities, we present

an allocation mechanism that provides sharing incentives, envy-freeness, Pareto ef-

ficiency, and strategy-proofness in the large. By linking hardware resource manage-

ment to robust, game-theoretic analysis, computer architects can qualitatively change

the nature of performance guarantees in hardware platforms shared by strategic users.
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3

The Computational Sprinting Game

3.1 Introduction

Modern datacenters oversubscribe their power supplies to enhance performance and

efficiency. A conservative datacenter that deploys servers according to their ex-

pected power draw will under-utilize provisioned power, operate power supplies at

sub-optimal loads, and forgo opportunities for higher performance. In contrast, ef-

ficient datacenters deploy more servers than it can power fully and rely on varying

computational load across servers to modulate demand for power [48]. Such a strat-

egy requires responsive mechanisms for delivering power to the computation that

needs it most.

Computational sprinting is a class of mechanisms that supply additional power for

short durations to enhance performance. In chip multiprocessors, for example, sprints

activate additional cores and boost their voltage and frequency. Although originally

proposed for mobile systems [49, 50], sprinting has found numerous applications in

datacenter systems. It can accelerate computation for complex tasks or accommodate

transient activity spikes [51, 52].
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The system architecture determines sprint duration and frequency. Sprinting

multiprocessors generate extra heat, absorbed by thermal packages and phase change

materials [49, 52], and require time to release this heat between sprints. At scale,

uncoordinated multiprocessors that sprint simultaneously could overwhelm a rack or

cluster’s power supply. Uninterruptible power supplies reduce the risk of tripping

circuit breakers and triggering power emergencies. But the system requires time to

recharge batteries between sprints. Given these physical constraints in chip multi-

processors and the datacenter rack, sprinters require recovery time. Thus, sprinting

mechanisms couple performance opportunities with management constraints.

We face fundamental management questions when servers sprint independently

but share a power supply – which processors should sprint and when should they

sprint? Each processor’s workload derives extra performance from sprinting that

depends on its computational phase. Ideally, sprinters would be the processors that

benefit most from boosted capability at any given time. Moreover, the number

of sprinters would be small enough to avoid power emergencies, which constrain

future sprints. Policies that achieve these goals are prerequisites for sprinting to full

advantage.

We present the computational sprinting game to manage a collection of sprinters.

The sprinting architecture, which defines the sprinting mechanism as well as power

and cooling constraints, determines rules of the game. A strategic agent, representing

a multiprocessor and its workload, independently decides whether to sprint at the

beginning of an epoch. The agent anticipates her action’s outcomes, knowing that

the chip must cool before sprinting again. Moreover, she analyzes system dynamics,

accounting for competitors’ decisions and risk of power emergencies.

We find the equilibrium in the computational sprinting game, which permits dis-

tributed management. In an equilibrium, no agent can benefit by deviating from her

optimal strategy. The datacenter relies on agents’ incentives to decentralize man-
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agement as each agent self-enforces her part of the sprinting policy. Decentralized

equilibria allow datacenters to avoid high communication costs and unwieldy enforce-

ment mechanisms in centralized management. Moreover, equilibria outperform prior

heuristics. In summary, we present the following contributions:

• Sprinting Architecture (Section 3.2). We present a system of indepen-

dent sprinters that share power – a rack of chip multiprocessors. Sprinting

multiprocessors activate additional cores and increase clock rates. Sprints are

constrained by chips’ thermal limits and rack power limits.

• Sprinting Game (Section 3.3). We define a repeated game in which strate-

gic agents sprint based on application phases and system conditions. The game

divides time into epochs and agents play repeatedly. Actions in the present af-

fect performance and the ability to sprint in the future.

• Dynamics and Strategies (Section 3.4). We design agents who sprint

when the expected utility from doing so exceeds a threshold. We devise an

algorithm that optimizes each agent’s threshold strategy. The strategies pro-

duce an equilibrium in which no agent benefits by deviating from her optimal

threshold.

• Performance (Sections 3.5–3.6). We evaluate the game for Spark-based

datacenter applications, which exhibit diversity in phase behavior and utility

from sprinting. The game increases task throughput by 4-6× when compared

to prior heuristics in which agents sprint greedily.

3.2 The Sprinting Architecture

We present a sprinting architecture for chip multiprocessors in datacenters. Multi-

processors sprint by activating additional cores and increasing their voltage and fre-

quency. Datacenter applications, with their abundant task parallelism, scale across
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Figure 3.1: Normalized Speedup, Power, and Temperature. Shown for varied

Spark benchmarks when sprinting. Nominal operation supplies three cores at 1.2GHz.

Sprint supplies twelve cores at 2.7GHz.

additional cores as they become available. We focus on applications built atop the

Spark framework, which extends Hadoop for memory caching [53]. In Figure 3.1,

Spark benchmarks perform 2-7× better on a sprinting multiprocessor, but dissipates

1.8× the power. Power produces heat.

Sprinters require infrastructure to manage heat and power. First, the chip multi-

processor’s thermal package and heat sink must absorb surplus heat during a sprint

[49, 54]. Second, the datacenter rack must employ batteries to guard against power

emergencies caused by a surplus of sprinters on a shared power supply. Third, the

system must implement management policies that determine which chips sprint.

3.2.1 Chip Multiprocessor Support

A chip multiprocessor’s maximum power level depends on its thermal package and

heat sink. Given conventional heat sinks, thermal constraints are the primary de-

terminant of multiprocessor performance, throttling throughput and overriding con-

straints from power delivery and off-chip bandwidth [55]. More expensive heat sinks

employ phase change materials (PCMs), which increase thermal capacitance, to ab-

sorb and dissipate excess heat [50, 54]. The quality of the thermal package, as

measured by its thermal capacitance and conductance, determines parameters of the
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sprinting game.

The choice of thermal package dictates the maximum duration of a sprint [54].

Whereas water, air and foam enable sprint durations on the order of seconds [50],

PCMs enable durations on the order of minutes if not hours [56, 57, 54]. Our sprint

architecture employs paraffin wax, which is attractive for its high thermal capacitance

and tunable melting point when blended with polyolefins [58]. We estimate a chip

with paraffin wax can sprint with durations on the order of 150 seconds.

After a sprint, the thermal package must release its heat before the chip can sprint

again. The average cooling duration, denoted as ∆tcool, is the time required before

the PCM returns to ambient temperature. The rate at which the PCM dissipates

heat depends on its melting point and the thermal resistance between the material

and the ambient [58]. Both factors can be engineered and, with paraffin wax, we

estimate a cooling duration on the order of 300 seconds, twice the sprint’s duration.

Different types of workloads may demand different sprint durations. Sprints for

online queries requires tens of milliseconds or less [59]. Sprints for parallel workloads

requires seconds or more [50]. And those for warehouse-scale thermal management

requires support for hours [52]. In this chapter, we study data analytics applications

that would prefer to sprint indefinitely. In this setting, the primary determinant of

a sprint’s duration is the thermal package.

3.2.2 Datacenter Support

At scale, servers within the same rack share a power supply. Chip multiprocessors

draw current from a shared power distribution unit (PDU) that is connected to a

branch circuit and protected by a circuit breaker (CB). Datacenter architects deploy

servers to oversubscribe branch circuits for efficiency. Oversubscription utilizes a

larger fraction of the facility’s provisioned power for computation. But it relies on

power capping and varied computational load across servers to avoid tripping circuit
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breakers or violating contracts with utility providers [48, 60]. Although sprints boost

computation for complex queries and during peak loads [59, 51], the risk of a power

emergency increases with the number of sprinters in a power capped datacenter.

Circuit Breakers and Trip Curves. Figure 3.2 presents the circuit breaker’s

trip curve, which specifies how sprint duration and power combine to determine

whether the breaker trips. The trip time corresponds to the sprint’s duration. Longer

sprints increase the probability of tripping the breaker. The current draw corresponds

to the number of simultaneous sprints as each sprinter contributes to the load above

rated current. Higher currents increase the probability of tripping the breaker. Thus,

the tolerance for sprints depends on their duration and power. The breaker dictates

the number of sprinters supported by the datacenter rack.

Figure 3.3 associates the number of sprinters to the tripping probability for a given

trip time. Let nS denote the number of sprinters and let Ptrip denote the probability

of tripping the breaker. The breaker occupies one of the following regions:

• Non-Tripped. Ptrip is zero when nS < Nmin

• Non-Deterministic. Ptrip is a non-decreasing function of nS when Nmin ≤

nS < Nmax

• Tripped. Ptrip is one when nS ≥ Nmax

Note that Nmin and Nmax depend on the breaker’s trip curve and the application’s

demand for power when sprinting.

Suppose a sprinter dissipates twice as much power as a non-sprinter, as in Spark

applications on chip multiprocessors. We find that the breaker does not trip when

less than 25% of the chips sprint and definitely trips when more than 75% of the

chips sprint. In other words, Nmin = 0.25N and Nmax = 0.75N . We consider UL489

circuit breakers from Rockwell Automation, which can be overloaded to 125-175% of

rated current for a 150 second sprint [51, 61, 62].
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Figure 3.3: Probability of Tripping the Rack’s Circuit Breaker.

Uninterruptible Power Supplies. When the breaker trips and resets, power

distribution switches from the branch circuit to the uninterruptible power supply

(UPS) [63, 64]. The rack augments power delivery with batteries to complete sprints

in progress. Lead acid batteries support discharge times of 5-120 minutes, long

enough to support the duration of a sprint. After completing sprints and resetting

the breaker, servers resume computation on the branch circuit.

However, servers are forbidden from sprinting again until UPS batteries have
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Figure 3.4: Sprinting Architecture. Users deploy task executors and agents that

decide when to sprint. Agents send performance profiles to a coordinator and receives

optimized sprinting strategies.

been recharged. Sprints before recovery would compromise server availability and

increase vulnerability to power emergencies. Moreover, frequent discharges without

recharges would shorten battery life. The average recovery duration, denoted by

∆trecover, depends on the UPS discharge depth and recharging time. A battery can

be recharged to 85% capacity in 8-10× the discharge time [65], which corresponds

to 8-10× the sprint duration.

Servers are permitted to sprint again after recharge and recovery. However, if

every chip multiprocessor in the rack were to sprint simultaneously and immediately

after recovery, they would trigger another power emergency. The rack must stagger

the distribution of sprinting permissions to avoid dI/dt problems.

3.2.3 Power Management

Figure 3.4 illustrates the management framework for a rack of sprinting chip multi-

processors. The framework supports policies that pursue the performance of sprints

while avoiding system instability. Unmanaged and excessive sprints may trip break-

ers, trigger emergencies, and degrade performance at scale. The framework achieves

its objectives with strategic agents and coarse-grained coordination.
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Users and Agents. Each user deploys three run-time components: executor,

agent, and predictor. Executors provide clean abstractions, encapsulating applica-

tions that could employ different software frameworks [66]. The executor supports

task-parallel computation by dividing an application into tasks, constructing a task

dependence graph, and scheduling tasks dynamically based on available resources.

Task scheduling is particularly important as it increases parallelism when sprinting

powers-on cores and tolerates faults when cooling and recovery powers-off cores.

Agents are strategic and selfish entities that act on users’ behalf. They decide

whether to sprint by continuously analyzing fine-grained application phases. Because

sprints are followed by cooling and recovery, an agent sprints judiciously and targets

application phases that benefit most from extra capability. Agents use predictors

that estimate utility from sprinting based on software profiles and hardware counters.

Each agent represents a user and her application on a chip multiprocessor.

Coordination. The coordinator collects profiles from all agents and assigns

tailored sprinting strategies to each agent. The coordinator interfaces with strategic

agents who may attempt to manipulate system outcomes by misreporting profiles

or deviating from assigned strategies. Fortunately, our game-theoretic mechanism

guards against such behavior.

First, agents will truthfully report their performance profiles. In large systems,

game theory provides incentive compatibility, which means that agents cannot im-

prove their utility by misreporting their preferences. The coordinator assigned a

tailored strategy to each agent based on system conditions. An agent who misre-

ports her profile has little influence on conditions in a large system. Not only does

she fail to affect others, an agent who misreports suffers degraded performance as

the coordinator assigns her a poorly suited strategy based on inaccurate profiles.

Second, agents will implement their assigned strategies because the coordinator

optimizes those strategies to produce an equilibrium. In equilibrium, every agent
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implements her strategy and no agent benefits when deviating from it. An equilib-

rium has compelling implications for management overheads. If each agent knows

that every other agent is playing her assigned strategy, she will do the same without

further communication with the coordinator. Global communication between agents

and the coordinator is infrequent and occurs only when system profiles change. Lo-

cal communication between each user’s run-time components (i.e., executor, agent,

predictor) is frequent but employs inexpensive, inter-process mechanisms. In effect,

an equilibrium permits the distributed enforcement of sprinting policies.

In contrast, the centralized enforcement of coordinated policies poses several chal-

lenges. First, it requires frequent and global communication as each agent decides

whether to sprint by querying the coordinator at the start of each epoch. The length

of an epoch is short and corresponds to sprint duration. Moreover, without equilib-

ria, agents with kernel privileges could ignore prescribed policies, sprint at will, and

cause power emergencies that harm all agents. Avoiding such outcomes in a multi-

tenant datacenter would require a distributed runtime. The runtime, not the agent,

would have kernel privileges for power management, introducing an abstraction layer

and overheads.

3.3 The Sprinting Game

We present a computational sprinting game, which governs demands for power and

manages system dynamics. We design a dynamic game that divides time into epochs

and asks agents to play repeatedly. Agents represent chip multiprocessors that share

a power supply. Each agent chooses to sprint independently, pursuing benefits in the

current epoch and estimating repercussions in future epochs. Multiple agents can

sprint simultaneously, but they risk tripping the circuit breaker and triggering power

emergencies that harm global performance.
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3.3.1 Game Formulation

The game considers N agents who run task-parallel applications on N chip multipro-

cessors. Each agent computes in either normal or sprinting mode. The normal mode

uses a fraction of the cores at low frequency whereas sprints use all cores at high

frequency. Sprints rely on the executor to increase task parallelism and exploit extra

cores. In this chapter, for example, we consider three cores at 1.2GHz in normal

mode and twelve cores at 2.7GHz in a sprint.

The repeated game divides time into epochs. The duration of an epoch corre-

sponds to the duration of a safe sprint, which neither overheats the chip nor trips

the circuit breaker. An agent’s utility from a sprint varies across epochs according

to her application’s phases. Agents apply a discount factor δ < 1 to future utilities

as, all else being equal, they prefer performance sooner rather than later.

3.3.2 Agent States

At any given time, an agent occupies one of three states—active (A), chip cooling

(C), and rack recovery (R)—according to her actions and those of others in the rack.

An agent’s state describes whether she can sprint, and describes how cooling and

recovery impose constraints on her actions.

Active (A) – Agent can safely sprint. By default, an agent in an active

state operates her chip in normal mode, with a few processor cores running at low

frequency. The agent has an option to sprint, which deploys additional cores and

raises the frequency. She decides whether to sprint by comparing a sprint’s benefits

in the current epoch against benefits from deferring the sprint to a future epoch. If

the agent sprints, her state in the next epoch is cooling.

Chip Cooling (C) – Agent cannot sprint. After a sprint, an agent remains

in the cooling state until excess heat has been dissipated. Cooling requires a number

of epochs ∆tcool, which depends on the chip’s thermal conductance and resistance,
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the heat sink and cooling technology, and the ambient temperature. An agent in the

cooling state stays in this state with probability pc and returns to the active state

with probability 1− pc. Probability pc is defined so that 1/(1− pc) = ∆tcool.

Rack Recovery (R) – Agent cannot sprint. When multiple chips sprint

simultaneously, their total current draw may trip the rack’s circuit breaker, trig-

ger a power emergency, and require supplemental current from batteries. After an

emergency, all agents remain in the recovery state until batteries recharge. Recovery

requires a number of epochs ∆trecover, which depends on the rack’s power supply and

its battery capacity. Agents in the recovery state stay in this state with probability

pr and return to the active state with probability 1− pr. Probability pr is defined so

that 1/(1− pr) = ∆trecover.

In summary, the states describe and enforce system constraints. A chip that

sprints must cool before sprinting again. A rack that supports sprints with batteries

must recharge those batteries before doing so again. Agents in cooling or recovery

states are constrained, but those in active states will sprint strategically.

3.3.3 Agent Actions and Strategies

Agents have two possible actions — sprint or do not sprint. Strategic agents decide

between these actions to maximize their utilities. Each agent’s sprinting strategy

depends on various factors, including

• agent’s state and her utility from sprinting,

• agent’s history of sprinting,

• other agents’ states,

• other agents’ utilities, strategies, and histories.

Sprinting strategies determine the game’s performance. Agents that greedily

sprint at every opportunity produce several sub-optimal outcomes. First, chips and
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racks would spend many epochs in cooling and recovery states, respectively, de-

grading system throughput. Moreover, agents who sprint at the first opportunity

constrain themselves in future epochs, during which sprints may be even more ben-

eficial.

In contrast, sophisticated strategies improve agent utility and system perfor-

mance. Strategic agents sprint during the epochs that benefit most from additional

cores and higher frequencies. Moreover, they consider other agents’ strategies be-

cause the probability of triggering a power emergency and entering the recovery state

increases with the number of sprinters. We analyze the game’s governing dynamics

to optimize each agent’s strategy and maximize her performance.

3.4 Game Dynamics and Agent Strategies

A comprehensive approach to optimizing strategies considers each agent—her state,

utility, and history—to determine whether sprinting maximizes her performance

given her competitor’s strategies and system state. In practice, however, this op-

timization does not scale to hundreds or thousands of agents.

For tractability, we analyze the population of agents by defining key probability

distributions on population behavior. This approach has several dimensions. First,

we reason about population dynamics in expectation and consider an “average”

agent. Second, we optimize each agent’s strategy in response to the population

rather than individual competitors. Third, we find an equilibrium in which no agent

can perform better by deviating from her optimal strategy.

3.4.1 Mean Field Equilibrium

The mean field equilibrium (MFE), a concept drawn from economic game theory, is

an approximation method used when analyzing individual agents in a large system

is intractable [67, 68, 69, 70, 71, 72]. With the MFE, we can characterize expected
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behavior for a population of agents and then optimize each agent’s strategy against

that expectation. We can reason about the population and neglect individual agents

because any one agent has little impact on overall behavior in a large system.

The mean field analysis for the sprinting game focuses on the sprint distribution,

which characterizes the number of agents who sprint when the rack is not in the

recovery state. In equilibrium, the sprint distribution is stationary and does not

change across epochs. In any given epoch, some agents complete a sprint and enter

the cooling state while others leave the cooling state and begin a sprint. Yet the

number of agents who sprint is unchanged in expectation.

The stationary distribution for the number of sprinters translates into stationary

distributions for the rack’s current draw and the probability of tripping the circuit

breaker – see Figure 3.3. Given the rack’s tripping probability, which concisely de-

scribes population dynamics, an agent can formulate her best response and optimize

her sprinting strategy to maximize performance.

We find an equilibrium by characterizing a population’s statistical distributions,

optimizing agents’ responses, and simulating game play to update the population.

We specify an initial value for the probability of tripping the breaker and iterate as

follows.

• Optimize Sprint Strategy (Section 3.4.2). Given the probability of trip-

ping the breaker Ptrip, each agent optimizes her sprinting strategy to maximize

her performance. She sprints if performance gains from doing so exceed some

threshold. Optimizing her strategy means setting her threshold uT .

• Characterize Sprint Distribution (Section 3.4.3). Given that each agent

sprints according to her threshold uT , the game characterizes population behav-

ior. It estimates the expected number of sprinters nS, calculates their demand

for power, and updates the probability of tripping the breaker P ′
trip.
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• Check for Equilibrium. The game is in equilibrium if P ′
trip = Ptrip. Other-

wise, iterate with the new probability of tripping the breaker.

3.4.2 Optimizing the Sprint Strategy

An agent considers three factors when optimizing her sprinting strategy: the proba-

bility of tripping the circuit breaker Ptrip, her utility from sprinting u, and her state.

An agent occupies either the active (A), cooling (C), or recovery (R) state. To maxi-

mize expected value and decide whether to sprint, each agent optimizes the following

Bellman equation.

V (u, A) = max{VS(u, A), V¬S(u, A)} (3.1)

The Bellman equation quantifies value when an agent acts optimally in every epoch.

VS and V¬S are the expected values from sprinting and not sprinting, respectively.

If VS(u, A) > V¬S(u, A), then sprinting is optimal. The game solves the Bellman

equation and identifies actions that maximize value with dynamic programming.

Value in Active State. Sprinting defines a repeated game in which an agent

acts in the current epoch and encounters consequences of that action in future epochs.

Accordingly, the Bellman equation is recursive and expresses an action’s value in

terms of benefits in the current epoch plus the discounted value from future epochs.

Suppose an agent in the active state decides to sprint. Her value from sprinting

is her immediate utility u plus her discounted utility from future epochs. When she

sprints, her future utility is calculated for the chip cooling state V (C) or calculated

for the rack recovery state V (R) when her sprint trips the circuit breaker.

VS(u, A) = u+ δ [V (C)(1− Ptrip) + V (R)Ptrip] (3.2)

On the other hand, an agent who does not sprint will remain in the active state

unless other sprinting agents trip the circuit breaker and trigger a power emergency
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that requires recovery.

V¬S(u, A) = δ [V (A)(1− Ptrip) + V (R)Ptrip] (3.3)

We use V (A) to denote an agent’s expected value from being in the active state,

which depends on an agent’s utility from sprinting. The game profiles an application

and its time-varying computational phases to obtain a probability density function

f(u), which characterizes how often an agent derives utility u from sprinting. With

this density, the game estimates expected value.

V (A) =

∫
V (u, A) f(u) du (3.4)

Value in Cooling and Recovery States. An active agent transitions into

cooling and recovery states when she and/or others sprint. Because agents cannot

sprint while cooling or recovering, their expected values from these states do not

depend on their utility from sprinting.

V (C) = δ [V (C)pc + V (A)(1− pc)] (1− Ptrip) +

δ V (R)Ptrip (3.5)

V (R) = δ [V (R)pr + V (A)(1− pr)] (3.6)

Parameters pc and pr are technology-specific probabilities of an agent in cooling and

recovery states staying in those states. An agent in cooling will remain in this state

with probability pc and become active with probability 1 − pc, assuming the rack

avoids a power emergency. If the circuit breaker trips, an agent enters recovery. An

agent remains in recovery with probability pr and becomes active with probability

1−pr. The game tunes these parameters to reflect the time required for chip cooling

after a sprint and for rack recovery after a power emergency – see Section 3.2.

Threshold Strategy. An agent should sprint if her utility from doing so is

greater than not. But when is this the case? Equation (3.8), which follows from
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not in recovery.

Equations (3.2)–(3.3), states that an agent should sprint if her utility u is greater

than her optimal threshold for sprinting uT .

VS(u, A) > V¬S(u, A) (3.7)

u > δ (V (A)− V (C)) (1− Ptrip)︸ ︷︷ ︸
uT

(3.8)

Thus, an agent uses threshold uT to test a sprint’s utility. If sprinting improves

performance by more than the threshold, an agent should sprint. Applying this

strategy in every epoch maximizes expected value across time in the repeated game.

3.4.3 Characterizing the Sprint Distribution

Given threshold uT for her strategy, an agent uses her density function on utility to

estimate the probability that she sprints, ps, in a given epoch.

ps =

∫ umax

uT

f(u) du (3.9)

The probabilities of sprinting (ps) and cooling (pc) define a Markov chain that

describes each agent’s behavior – see Figure 3.5, which assumes the agent is not in

recovery. As agents play their strategies, the Markov chain converges to a stationary

distribution in which each agent is active with probability pA. If N agents play the

game, the expected number of sprinters is

nS = ps×pA×N (3.10)
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Algorithm 1: Optimizing the Sprint Strategy

input : Probability density function for sprinting utilities (f(u))
output: Optimal sprinting threshold (uT )
j ← 1
P 0
trip ← 1

while P j
trip not converged do

uj
T ← DP solution for Equations (3.1)–(3.8) with P j

trip

pjS ← Equation (3.9) with f(u), uj
T

nj
S ← Equation (3.10) with MC solution and P j

S

P j+1
trip ← Equation (3.11)

j ← j + 1
end

As the number of sprinters increases, so does the rack’s current draw and the

probability of tripping the breaker. Given the expected number of sprinters, the

game updates the probability of tripping the breaker according to its trip curve

(e.g., Figure 3.3). Mathematically, the curve is described as follows.

Ptrip =


0 if nS < Nmin

nS−Nmin

Nmax−Nmin
if Nmin ≤ nS ≤ Nmax

1 if nS > Nmax

(3.11)

Ptrip determines nS, which determines P ′
trip. If Ptrip = P ′

trip, then agents are playing

optimized strategies that produce an equilibrium.

3.4.4 Finding the Equilibrium

When the game begins, agents make initial assumptions about population behavior

and the probability of tripping the breaker. Agents optimize their strategies in re-

sponse to population behavior. Strategies produce sprints that affect the probability

of tripping the breaker. Over time, population behavior and agent strategies con-

verge to a stationary distribution, which is consistent across epochs. The game is in

equilibrium if the following conditions hold.

• Given tripping probability Ptrip, the sprinting strategy dictated by threshold
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Table 3.1: Spark Workloads

Benchmark Category Dataset Data Size

NaiveBayesian Classification kdda2010 [73] 2.5G
DecisionTree Classification kdda2010 2.5G
GradientBoostedTrees Classification kddb2010 [73] 4.8G
SVM Classification kdda2010 2.5G
LinearRegression Classification kddb2010 4.8G
Kmeans Clustering uscensus1990 [74] 327M
ALS Collaborative Filtering movielens2015 [75] 325M
Correlation Statistics kdda2010 2.5G
PageRank Graph Processing wdc2012 [76] 5.3G
ConnectedComponents Graph Processing wdc2012 5.3G
TriangleCounting Graph Processing wdc2012 5.3G

uT is optimal and solves the Bellman equation in Equations (3.1)–(3.3).

• Given sprinting strategy uT , the probability of tripping the circuit breaker is

Ptrip and is calculated by Equations (3.9)–(3.11).

In equilibrium, every agent plays her optimal strategy and no agent benefits when de-

viating from her strategy. In practice, the coordinator in the management framework

finds and maintains an equilibrium with a mix of offline and online analysis.

Offline Analysis. Agents sample epochs and measure utility from sprinting

to produce a density function f(u), which characterizes how often an agent sees

utility u from sprinting. The coordinator collects agents’ density functions, analyzes

population dynamics, and tailors sprinting strategies for each agent. Finally, the

coordinator assigns optimized strategies to support online sprinting decisions.

Algorithm 1 describes the coordinator’s offline analysis. It initializes the proba-

bility of tripping the breaker. Then it iteratively analyzes population dynamics to

find an equilibrium. Each iteration proceeds in three steps. First, the coordinator

optimizes sprinting threshold uT by solving the dynamic program defined in Equa-

tions (3.1)–(3.8). Second, it estimates the number of sprinters according to Equation
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(3.10). Finally, it updates the probability of tripping the breaker according to Equa-

tion (3.11). The algorithm terminates when thresholds, number of sprinters, and

tripping probability are stationary.

The offline algorithm has no performance overhead. The analysis runs periodi-

cally to update sprinting strategies and the tripping probability as application mix

and system conditions evolve. It does not affect an application’s critical path as

agents use updated strategies when they become available but need not wait for

them.

The algorithm requires little computation. It solves the dynamic program with

value-iteration, which has a convergence rate that depends on the discount factor δ.

The number of iterations grows polynomially in (1 − δ)−1. We implement and run

the algorithm on an Intel® Core™ i5 processor with 4GB of memory. The algorithm

completes in less than 10s, on average.

Online Strategy. An agent decides whether to sprint at the start of each epoch

by estimating a sprint’s utility and comparing it against her threshold. Estimation

could be implemented in several ways. An agent could use the first few seconds of

an epoch to profile her normal and sprinting performance. Alternatively, an agent

could use heuristics to estimate utility from additional cores and higher clock rates.

For example, task queue occupancy and cache misses are associated with a sprint’s

impact on task parallelism and instruction throughput, respectively. Comparisons

with a threshold are trivial. If an agent decides to sprint, it turns on otherwise

disabled cores using CPU-hotplug and increases clock rates using ACPI [77].

3.5 Experimental Methodology

Servers and Sprints. The agent and its application are pinned to a chip multipro-

cessor, an Intel® Xeon® E5-2697 v2 that can run at 2.70GHz. Two multiprocessors

share 128GB of main memory within a server. An agent runs in normal or sprinting
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mode. In normal mode, the agent uses three 1.2GHz cores. In sprinting mode, the

agent uses twelve 2.7GHz cores. We turn cores on and off with Linux sysfs. In

principle, sprinting represents any mechanism that performs better but consumes

more power.

Workloads. We evaluate Apache Spark workloads [53]. The Spark run-time

engine dynamically schedules tasks to use available cores and maximize parallelism,

adapting as sprints cause the number of available cores to vary across epochs. Each

agent runs a Spark application on representative datasets as shown in Table 3.1.

Profiling Methods. We collect system profiles that measure power and tem-

perature, using the Intel® Performance Counter Monitor 2.8 to read MSR registers

once every second. We collect workload profiles by modifying Spark (v1.3.1) to log

the IDs of jobs, stages, and tasks upon their completion.

We measure application performance in terms of the number of tasks completed

per second (TPS). Each application defines a number of jobs, and each job is divided

into tasks that compute in parallel. Jobs are completed in sequence while tasks

can be completed out of order. The total number of tasks in a job is constant and

independent of the available hardware resources. Thus, TPS measures performance

for a fixed amount of work.

We trace TPS during an application’s end-to-end execution in normal and sprint-

ing modes. Since execution times differ in the two modes, comparing traces requires

some effort. For every second in normal mode, we measure the number of tasks

completed and estimate the number of tasks that would have been completed in the

sprinting mode. For our evaluation, we estimate a sprint’s speedup by comparing

the measured non-sprinting trace and the interpolated sprinting trace. In a practical

system, online profiling and heuristics would be required.

Simulation Methods. We simulate 1000 users and evaluate their performance

in the sprinting game. The R-based simulator uses traces of Spark computation col-
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Table 3.2: Experimental Parameters

Description Symbol Value

Min # sprinters Nmin 250
Max # sprinters Nmax 750
Prob. of staying in cooling pc 0.50
Prob. of staying in recovery pr 0.88
Discount factor δ 0.99

lected in both normal and sprinting modes. The simulator models system dynamics

as agents sprint, cool, and recover.

One set of simulations evaluates homogeneous agents who arrive randomly and

launch the same type of Spark application; randomized arrivals cause application

phases to overlap in diverse ways. A second set of simulations evaluates hetero-

geneous agents who launch different types of applications, further increasing the

diversity of overlapping phases. Diverse phase behavior exercises the sprinting game

as agents and their processors optimize strategies in response to varied competitors’.

Table 3.2 summarizes technology and system parameters. Parameters Nmin and

Nmax are set by the circuit breaker’s tripping curve. Parameters pc and pr are set

by the chip’s cooling mechanism and the rack’s UPS batteries. These probabilities

decrease as cooling efficiency and recharge speed increase – see Section 3.2.

3.6 Evaluation

We evaluate the sprinting game and its equilibrium threshold against several alter-

natives. Although there is little prior work in managing sprints, we compare against

three heuristics that represent broader perspectives on power management. First,

greedy heuristics focus on the present and neglect the future [51]. Second, control-

theoretic heuristics are reactive rather than proactive [78, 79]. Third, centralized

heuristics focus on the system and neglect individuals. Unlike these approaches, the
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sprinting game anticipates the future and emphasizes strategic agents who partici-

pate in a shared system.

Greedy (G) permits agents to sprint as long as the chip is not cooling and the

rack is not recovering. This mechanism may frequently trip the breaker and require

rack recovery. After recovery, agent wake-ups and sprints are staggered across two

epochs. Greedy produces a poor equilibrium—knowing that everyone is sprinting,

an agent’s best response is to sprint as well.

Exponential Backoff (E-B) throttles the frequency at which agents sprint. An

agent sprints greedily until the breaker trips. After the first trip, agents wait 0 – 1

epoch before sprinting again. After the second trip, agents wait 0 – 3 epochs. After

the t-th trip, agents wait for some number of epochs drawn randomly from [0, 2t−1].

The waiting interval contracts by half if the breaker has not been tripped in the past

100 epochs.

Cooperative Threshold (C-T) assigns each agent the globally optimal thresh-

old for sprinting. The coordinator exhaustively searches for the threshold that maxi-

mizes system performance. The coordinator enforces these thresholds although they

do not reflect agents’ best responses to system dynamics. These thresholds do not

produce an equilibrium but do provide an upper bound on performance.

Equilibrium Threshold (E-T) assigns each agent her optimal threshold from

the sprinting game. The coordinator collects performance profiles and implements

Algorithm 1 to produce thresholds that reflect agents’ best responses to system

dynamics. These thresholds produce an equilibrium and agents cannot benefit by

deviating from their assigned strategy.

3.6.1 Sprinting Behavior

Figure 3.6 compares sprinting policies and resulting system dynamics as 1000 in-

stances of Decision Tree, a representative application, computes for a sequence of
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Figure 3.6: Sprinting Behavior. Shown for a representative application, Decision

Tree. Black line denotes number of sprinters. Grey line denotes the point at which sprinters

risk a power emergency, Nmin.

epochs. Sprinting policies determine how often agents sprint and whether sprints

trigger emergencies. Ideally, policies would permit agents to sprint up until they trip

the circuit breaker. In this example, 250 of the 1000 agents for Decision Tree can

sprint before triggering a power emergency.

Greedy heuristics are aggressive and inefficient. A sprint in the present precludes

a sprint in the near future, harming subsequent tasks that could have benefited more

from the sprint. Moreover, frequent sprints risk power emergencies and require rack-

level recovery. G produces an unstable system, oscillating between full-system sprints

that trigger emergencies and idle recovery that harms performance. G staggers the

distribution of sprinting permissions after recovery to avoids dI/dt problems, which

reduces but does not eliminate instability.

Control-theoretic approaches are more conservative, throttling sprints in response

to power emergencies. E-B adaptively responds to feedback, producing a more stable

system with fewer sprints and emergencies. Indeed, E-B may be too conservative,
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throttling sprints beyond what is necessary to avoid tripping the circuit breaker.

The number of sprinters is consistently lower than Nmin, which is safe but leaves

sprinting opportunities unexploited. Thus, in neither G nor E-B do agents sprint to

full advantage.

In contrast, the computational sprinting game performs well by embracing agents’

strategies. E-T produces an equilibrium in which agents play their optimal strategies

and converge to a stationary distribution. In equilibrium, the number of sprinters is

just slightly above Nmin = 250, the number that causes a breaker to transition from

the non-tripped region to the tolerance band. After emergency and recovery, the

system quickly returns to equilibrium. Note that E-T’s system dynamics are similar

to those from the high-performance, cooperative C-T policy.

Figure 3.7 shows the percentage of time an agent spends in active, cooling, and

recovery states. The analysis highlights G and E-B’s limitations. With G, an agent

spends more than 50% of its time in recovery, waiting for batteries to recharge after

an emergency. With E-B, an agent spends nearly 40% of its time in active mode but

not sprinting.

Agents spend comparable shares of their time sprinting in each policy. However,

this observation understates the sprinting game’s advantage. G and E-B sprint at

every opportunity and ignore transitions into cooling states, which preclude sprints

in future epochs. In contrast, E-T and C-T’s sprints are more timely as strategic

agents sprint only when estimated benefits exceed an optimized threshold. Thus, a

sprint in E-T or C-T contributes more to performance than one in G or E-B.

3.6.2 Sprinting Performance

Figure 3.8 shows task throughput under varied policies. The sprinting game out-

performs greedy heuristics and is competitive with globally optimized heuristics.

Rather than sprinting greedily, E-T uses equilibrium thresholds to select more prof-
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Figure 3.7: Percentage of Time Spent in each State. Shown for a representative

application, Decision Tree.

itable epochs for sprinting. E-T outperforms G and E-B by up to 6.8× and 4.8×,

respectively. Agents who use their own strategies to play the game competitively

produce outcomes that rival expensive cooperation. E-T’s task throughput is 90%

that of C-T’s for most applications.

Linear Regression and Correlation are outliers, achieving only 36% and 65% of

cooperative performance. For these applications, E-T performs as badly as G and E-

B because the applications’ performance profiles exhibit little variance and all epochs

benefit similarly from sprinting. When an agent cannot distinguish between epochs,

she sets a low threshold and sprints for every epoch. In effect, for such applications,

E-T produces a greedy equilibrium.

Thus far, we have considered agents for applications of the same type that com-

pute together. When agents represent different types of applications, E-T assigns

different sprinting thresholds for each type. Figure 3.9 shows performance as the

number of application types increases. We evaluate performance for a system with

k types by randomly selecting k applications, finding each agent’s strategy under an

E-T policy, and repeating ten times to report an average. As before, E-T performs

much better than G and E-B. We do not evaluate C-T because searching for optimal

thresholds for multiple types of agents is computationally hard.
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Figure 3.8: Performance. Measured in tasks per second and normalized against

greedy, for a single application type.
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Figure 3.9: Performance. Measured in tasks per second and normalized against

greedy, for multiple application types.
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Figure 3.10: Probability Density for Sprinting Speedups.
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Figure 3.11: Probability of Sprinting.
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3.6.3 Sprinting Strategies

Figure 3.10 uses kernel density plots for two representative applications, Linear Re-

gression and PageRank, to show how often and how much their tasks benefit from

sprinting. Linear Regression presents a narrower distribution and performance gains

from sprinting vary in a band between 3× and 5×. In contrast, PageRank ’s perfor-

mance gains can often exceed 10×.

The coordinator uses performance profiles to optimize threshold strategies. Lin-

ear Regression’s strategy is aggressive and uses a low threshold that often induces

sprints. This strategy arises from its relatively low variance in performance gains.

If sprinting’s benefits are indistinguishable across tasks and epochs, an agent sprints

indiscriminately and at every opportunity. PageRank ’s strategy is more nuanced and

uses a high threshold, which cuts her bimodal distribution and implements judicious

sprinting. She sprints for tasks and epochs that benefit most (i.e., those that see

performance gains greater than 10×).

Figure 3.11 illustrates diversity in agents’ strategies by reporting their propen-

sities to sprint. Linear Regression and Correlation’s narrow density functions and

low thresholds cause these applications to sprint at every opportunity. The majority

of applications, however, resemble PageRank with higher thresholds and judicious

sprints.

3.6.4 Equilibrium versus Cooperation

Sprinting thresholds from equilibria are robust to strategic behavior and perform

well. However, cooperative thresholds that optimize system throughput can perform

even better. Our evaluation has shown that the sprinting game delivers 90% of the

performance from cooperation. But we find that the game performs well only when

the penalties from non-cooperative behavior are low. To understand this insight,

let us informally define efficiency as the ratio of game performance from equilibrium
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thresholds (E-T) to optimal performance from cooperative thresholds (C-T).1

The sprinting game produces efficient equilibria because the penalty for non-

cooperative behavior is triggering a power emergency. In the sprinting architecture,

recovery is relatively inexpensive as batteries recharge and normal system operation

resumes in ten epochs or less. However, higher penalties for non-cooperative behavior

would degrade the game’s performance from equilibrium strategies. Figure 3.12

shows how efficiency falls as recovery from power emergencies become increasingly

expensive. Recall that pr is the probability an agent in recovery stays in that state.

Prisoner’s Dilemma. The sprinting game fails when an emergency requires

indefinite recovery and pr is one. In this extreme scenario, we would like the game

to produce an equilibrium in which agents sprint yet avoid tripping the breaker.

Unfortunately, the game has no equilibrium that avoids tripping the breaker and

triggering indefinite recovery. If a strategic agent were to observe system dynamics

that avoid tripping the breaker, which means Ptrip is zero, she would realize that

other agents have set high thresholds to avoid sprints. Her best response would be

lowering her threshold and sprinting more often. Others would behave similarly and

drive Ptrip higher.

In equilibrium, Ptrip would rise above zero and agents would eventually trip the

breaker, putting the system into indefinite recovery. Thus, selfish agents would

produce inefficient equilibria—the Prisoner’s Dilemma in which each agent’s best

response performs worse than a cooperative one.

Enforcing Non-Equilibrium Strategies. The Folk theorem guides agents to

a more efficient equilibrium by punishing agents whose responses harm the system.

The coordinator would assign agents the best cooperative thresholds to maximize

system performance from sprinting. When an agent deviates, she is punished such

1 We are informal because the domain of strategies is huge and we consider only the best cooper-
ative threshold. A non-threshold strategy might provide even better performance.

72



that performance lost exceeds performance gained. When applied to our previous ex-

ample, punishments would allow the system to escape inefficient equilibria as agents

are compelled to increase their thresholds and ensure Ptrip remains zero.

Note that threat of punishment is sufficient to shape the equilibrium. Agents

would adapt strategies based on the threat to avoid punishment. The coordinator

could monitor sprints, detect deviations from assigned strategies, and forbid agents

who deviate from ever sprinting again. Alternatively, agents could impose collective

punishment by continuously sprinting, triggering emergencies, and degrading every-

one’s performance. The threat of collective action deters agents who would deviate

from the cooperative strategy.

3.6.5 Sensitivity Analysis

Figure 3.13 shows the sprinting threshold’s sensitivity to the game’s parameters. In

practice, server engineering affects cooling and recovery durations (pc, pr) as well as

the breaker’s trip curve (Nmin, Nmax).

As cooling duration increases, thresholds increase and agents sprint less. Agents

are more cautious because sprinting in the current epoch requires many more epochs

for cooling. The opportunity cost of sprinting mistakenly rises. As recovery duration

increases, the cost of tripping the breaker increases. However, because each agent

sprints to pursue her own performance while hoping others do not trip the breaker,

thresholds are insensitive to recovery cost. When pr is one, we have shown how

agents encounter the Prisoner’s Dilemma – see Section 3.6.4.

When Nmin and Nmax are small, the probability of tripping the breaker is high.

Ironically, agents sprint more aggressively and extract performance now because

emergencies that forbid future sprints are likely. When Nmin and Nmax are big, each

agent sprints more judiciously as a sprint now affects the ability to sprint in the

future.
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3.7 Related Work

The sprinting problem falls into the general category of datacenter power manage-

ment, but we are the first to identify the problem and propose a game-theoretic

approach. The sprinting problem is made interesting by modern approaches to dat-

acenter provisioning.

To minimize total cost of ownership and maximize return on investment, datacen-

ters oversubscribe their servers [12, 80], bandwidth [81], branch circuits [60], cooling

and power supplies [48, 64]. In datacenters, dynamic power capping [82] adjusts the

power allocation to individual servers, enabling a rich policy space for power and

energy management. In servers, managers could pursue performance while mini-

mizing operating costs, which are incurred from energy and cooling [83, 84, 85, 86].

Researchers have sought to allocate server power to performance critical services via

DVFS [59, 87].

Economics and game theory have proven effective in datacenter power and re-

source management [46]. Price theory [88] have been applied to manage heteroge-

neous server cores. Demand response models have been proposed to handle power

emergencies [89]. In addition to performance, fairness in game theory has been stud-

ied to incentivize users when sharing hardware in a cloud environment [8, 10, 1].

In this chapter, we treat the sprinting management problem as a repeated game

and seek an equilibrium that leads sprinting servers to expected behavior. Similar

approaches have been applied to power control in wireless communication systems

[90]. But we are the first to consider game theory for datacenter management,

especially in the context of computational sprinting and power capping.
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3.8 Conclusions

We present a sprinting architecture in which many, independent chip multiprocessors

share a power supply. When an individual chip sprints, its excess heat constrains

future sprints. When a collection of chips sprint, its additional power demands raise

the risk of power emergencies. For such an architecture, we present a management

framework that determines when each chip should sprint.

We formalize sprint management as a repeated game. Agents represent chip

multiprocessors and their workloads, executing sprints strategically on their behalf.

Strategic behaviors produce an equilibrium in the game. We show that, in equilib-

rium, the computational sprinting game outperforms prior, greedy mechanisms by

4-6× and delivers 90% of the performance achieved from a more expensive, globally

enforced mechanism.
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4

Managing Heterogeneous Datacenters with Tokens

4.1 Introduction

Processor heterogeneity is a fundamental design strategy at all scales, from chip

multiprocessors to warehouse-scale datacenters. Heterogeneity improves performance

and energy efficiency when tasks compute in their best suited setting. But managing

heterogeneity is challenging. Prior efforts pursue energy efficiency [91, 92], instruction

throughput in chip multiprocessors [17], or service quality in datacenters [93, 94].

The pursuit of fairness in heterogeneous systems is equally important but less

understood. Fairness encourages users to dynamically share systems. If a user dislikes

an allocation policy, she may prefer private or statically partitioned systems, which

are less efficient than dynamically shared ones. Users seek at least two assurances—

sharing incentives (SI) and envy-freeness (EF) [15]. SI ensure that users perform at

least as well as they would have under equal division. EF ensures that users prefer

their own allocation over other users’.

Recently, researchers have turned to microeconomics and game theory for fair,

multi-resource allocation [8, 1, 21, 20, 41]. These studies pursue fairness in space,
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dividing hardware resources that outnumber software tasks. In contrast, we pursue

fairness in time for heterogeneous systems that multiplex scarce hardware to sat-

isfy simultaneous, competing demands. For example, consider a system where the

majority of processors are “small” and only a few are “big.”

Fairness versus Performance. Round-robin is the classic policy for managing

scarce resources over time. It divides time into rounds and assigns each user their fair

share of rounds in fixed rotation. Although round-robin guarantees users equal time

on preferred processors, as we show in this chapter, it fails to ensure EF. Moreover,

round-robin performs poorly in heterogeneous systems because it ignores phases in

users’ workloads. Some workloads receive big processors when small ones would have

sufficed.

Randomized and proportional shares, with a mechanism like lottery scheduling

[32], ensure that users receive equal shares over time. In a system with n users

and m big processors, m < n, each user receives a big processor with probability

m/n in each round. Ex ante, allocations guarantee SI and EF in expectation over

multiple rounds. However, performance suffers in much the same way it does with

round-robin.

Equal-progress is another classic policy that balances performance across parallel

tasks, which helps manage a job’s critical path. However, it fails to produce the

requisite conditions for sharing in multi-user, multi-program settings. Specifically,

equal-progress unfairly favors tasks that require large allocations for progress, which

provides neither SI nor EF [18, 1].

Allocation Games. Performance losses from fair allocation are inevitable when

there is no information about workloads’ utilities for big processors. But what if

users know their workloads’ utility distributions from resources over time? What if

users know their workloads’ utilities for a resource in the current round? Our answer

is a repeated game that extracts and uses information about workloads’ utilities to
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simultaneously improve performance and ensure fairness.

We frame heterogeneous processor allocation as a repeated game and study users’

strategies for requesting processors. In equilibrium, the game improves performance

by increasing system flexibility. It allocates resources to users that benefit most in

each round and compensates those that are unfairly treated with more resources in

later rounds. For a case study, the game manages processors with heterogeneous

power budgets—“small” processors operate within a modest budget and “big” pro-

cessors operate within an augmented one. The following lists our contributions.

• Repeated Game for Managing Heterogeneity. We propose a repeated

game in which users spend tokens when allocated big processors. We apply the

game to allocate power boosts. (Sections 4.2–4.3)

• Tokens and Game Theory. We formulate the repeated game for heteroge-

neous processor allocation. We optimize users’ strategies for spending tokens

and identify conditions for equilibria. (Section 4.4)

• Tokens in Practice. We describe a framework that profiles tasks, optimizes

strategies, and allocates power. Profiling and optimization are offline whereas

allocation is online. (Section 4.5)

• Fairness and Performance. The allocation game incentivizes sharing and

mitigates ex post envy over time. The game performs much better than other

fair policies, (e.g., 1.7x better than round-robin) and performs comparably to

performance-maximizing policies. (Sections 4.6–4.7)

Collectively, the results suggest potential for economic game theory in systems re-

source management. The game extends naturally to any setting in which applications

compete for scarce, preferred hardware.
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4.2 Motivation and Background

System Setting. We study systems with many small processors and a few big

ones. Each user can receive a processor, just not necessarily a big one. Big and small

processors arise in many settings, from chip multiprocessors to warehouse scale dat-

acenters. Our mechanism is particularly well suited to managing processors that

dynamically re-configure between big and small capability (e.g., with dynamic volt-

age/frequency scaling).

Allocation Games. We formulate the allocation of heterogeneous processors

as a repeated game between strategic users. Rather than burden human users with

a complex space of actions, we design agents to represent users and their jobs in

the shared system. Each agent selfishly requests processors to maximize individual

performance subject to the rules of the game.

Agents analyze workload phases, which cause their utility from heterogeneous

processors to vary over time. Ideally, agents request big processors when they are

most beneficial and, all else being equal, prefer a big processor in the present over one

in the future. Responding to agents’ requests in each round, the game (re-)allocates

processors. Allocations in the present affect those in future. In turn, agents adapt

their strategies for requesting resources according to competitive dynamics. Over

time, strategic game play can produce an equilibrium.

Game-Theoretic Desiderata. We focus on fair resource allocations that en-

courage participation in shared systems. In microeconomic theory [15], fairness is

defined by sharing incentives (SI), when every agent’s allocation performs at least

as well as it would have under equal division, and envy-freeness (EF), when every

agent prefers its own allocation over another’s. Without these axiomatic properties,

strategic users may prefer private or statically partitioned systems.

Finding allocations that incentivize sharing in practical systems is challenging,
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and two recent studies are representative. Ghodsi et al. propose Dominant Resource

Fairness when allocating processor cores and memory capacity in distributed systems.

[8]. Zahedi et al. propose Resource Elasticity Fairness when allocating cache capacity

and memory bandwidth in chip multiprocessors [1]. These algorithms guarantee SI

and EF for very different performance models, pursuing fairness in space.

Repeated Games. In this chapter, we pursue fairness in time. We design

a game that encourages sharing and mitigates envy across repeated allocations of

heterogeneous processors. Because each agent’s allocation is a sequence of big and

small processors, we add a temporal dimension to SI and EF. The allocation sequence

provides repeated sharing incentives (SIR) when every agent performs at least as well

as it would have under equal division of time on big processors. And it provides

repeated envy-freeness (EFR) when every agent prefers its allocation sequence over

another’s. Repeated games that flexibly pursue these properties in expectation (i.e.,

averaged) over rounds are fair and perform better than mechanisms, such as lottery

scheduling [32], that rigidly enforce SI and EF in every round.

4.3 Repeated Game with Tokens

The repeated game is implemented with a token mechanism. Tokens determine

the allocation of boosts, the acceleration from a big processor over a small one.

Boosts can be defined by heterogeneity across design generations[95, 96, 93], adaptive

microarchitectures [97, 98, 99], and power budgets [2, 49, 100].

Without loss of generality, we describe our token mechanism with a case study

in power. Consider a datacenter power delivery unit (PDU) that supplies limited

power to m chip multiprocessors. Each multiprocessor runs with nominal power.

Additionally, the supply can support n simultaneous power boosts (n << m).

Each user runs her job on a chip multiprocessor. Agents represent users and

their jobs. Agents’ utilities from boosts vary across job phases and rounds. Time is
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divided into rounds. We assume each agent knows its utility distribution over time

and its utility at the beginning of each round, but the management mechanism lacks

this information.

4.3.1 Token Mechanism

In each round, agents signal preferences for boosts. The game uses agents’ signals

and token holdings to allocate boosts. Agents must spend tokens when allocated

boosts and may receive tokens otherwise.

Signals (Y and ¬ Y). When beginning a round, each agent signals yes (Y ) or

no (¬ Y ) to indicate her preference for one of n boosts. If fewer than n agents signal

Y , each agent who prefers a boost receives one. If more than n agents signal Y , the

n agents holding the most tokens receive boosts.

Tokens (t). Each agent holds a number of tokens t. Agents start with an equal

number of tokens.1 An agent must hold at least one token to signal Y and must spend

one token when allocated a boost. The game prohibits hoarding and allocates boosts

to agents with tmax tokens, requiring them to spend regardless of their preference.

Token Distribution (f(t)). Agents’ token holdings determine winners in the

competition for boosts. An agent with few tokens can signal Y but fail to receive

a boost when others with more tokens also signal Y . Let f(t) describe the token

distribution, which quantifies the percentage of agents with t tokens. An agent with

t′ tokens is outranked by
∑

t>t′ f(t) percent of the game’s agents, who receive power

boosts with higher priority when signaling Y .

Token Redistribution (PR). In each round, the game redistributes spent

tokens among agents who do not receive a boost. When the game allocates n boosts,

it redistributes n tokens to them−n agents who did not receive them with probability

1 Users could start with different token holdings if they have different weights (i.e., priorities)—see
Section 4.9.
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PR = n/(m− n). The game does not use fractional tokens and redistributes tokens

probabilistically, which is fair in expectation.

4.3.2 Threshold Strategies

Agents play the game with threshold strategies. A user signals for boosts when its

utility exceeds some threshold. Such strategies are trivial to implement at run-time.

But determining the optimal threshold requires an offline analysis of the system’s

competitive dynamics. When beginning a round, each agent’s decision to signal

depends on the game’s history and competitive factors, including the

• agent’s tokens,

• agent’s utilities from boosts,

• other agents’ tokens,

• other agents’ utilities and strategies.

An agent’s token holdings affect her signaling strategy. An agent who holds many

tokens feels rich and signals Y even when utility from a boost is modest. An agent

who holds few tokens feels poor, hoards tokens, and signals ¬ Y even when it would

benefit from a boost. An agent signals strategically because it must spend a token if

it receives a boost, which affects both its performance in the current round and its

ability to signal effectively in future rounds.

Agents signal and exchange tokens, actions which determine how efficiently the

game allocates boosts. Suppose agents hoard tokens and rarely request boosts, or

spend tokens liberally and often request boosts. Because naive signals do not reveal

agents’ relative utilities, they produce an uninformative token distribution and the

game can do no better than round-robin allocation. Agents who signal strategically,

in contrast, request boosts only for rounds that benefit.
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Figure 4.1: Probability Density Functions on Utility. For example, throughput

gains from power boosts.

4.3.3 Game Dynamics

We optimize each agent’s strategy in Section 4.4 but first present an extended case

study that illustrates game play. See Section 4.6 for more details on experimental

methods.

Suppose that the nominal power budget is 30W and a boost is an additional 50W

of power. In other words, a little processor has a 30W budget and a big processor has

an 80W budget. A 35KW datacenter rack supports 900 little processors and 100 big

ones. In each round, 1000 agents compete for 100 power boosts. These parameters

reflect modern power supplies [48, 51] and our workloads’ typical power demands.

Workloads’ Preferences. For insight into competing demands for power, con-

sider two representative Spark workloads and their utilities from boosts. Figure 4.1

shows each agent’s probability density on utility u, measuring gains in normalized

task throughput from power boosts. KMeans agents strongly prefer power boosts

whereas PageRank agents weakly prefer them. Specifically, KMeans’s u ranges from

0.1 to 0.5 whereas PageRank’s ranges from 0 to 0.2.

Signaling Strategies. Suppose 500 agents for KMeans and 500 agents for

PageRank play the game by signaling for power boosts when their expected util-

ities exceed some threshold. Figure 4.2 presents representative thresholds, which
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Figure 4.2: Signaling Thresholds. Agents with more tokens lower thresholds, spend
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Figure 4.3: Tokens. KMeans agents have higher thresholds, signal less for boosts,

receive them less frequently, hold more tokens.

tend to decrease with token holdings. Poor agents signal for boosts only when bene-

fits are large whereas rich agents signal more freely. An agent without tokens cannot

receive boosts and a high threshold prevents it from signaling. Agents with tmax

tokens must receive a boost. A low threshold ensures they signal.

Because the supply of power boosts is limited, KMeans agents use higher thresh-

olds to decide when to receive their fair share. With higher thresholds, agents signal

for boosts less often and signal when benefits are greater. With lower thresholds,

users would spend tokens quickly and exhaust their share of boosts.

Token Distributions. Figure 4.3 illustrates the distribution of tokens after

multiple rounds of game play. Agents begin the game with one token and signal for

boosts according to their threshold strategies. KMeans agents conserve their tokens
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Figure 4.4: Snapshot of System Dynamics.

and do not signal in every round. PageRank agents have fewer tokens because they

signal whenever their utilities are higher than their relatively low thresholds. Among

500 PageRank agents, approximately 35% have zero tokens and 20% have one.

Game Play. Figure 4.4 presents a snapshot of game play for a KMeans agent.

The top sub-figure superimposes utility and threshold, which vary over time. The

bottom sub-figure shows token holdings and signals for boosts. The agent signals

when utility exceeds threshold. It does not signal in rounds 0 to 30, accumulating

tokens to ensure successful signals when boosts are most needed in rounds 30 to 35,

an exceptionally compute-intensive phase.

Token holdings and signaling thresholds fluctuate during game play. Holdings

increase when an agent’s utility is low and it does not signal while others do (e.g.,

rounds 0 to 30). Tokens spent by other agents are redistributed. Holdings decrease

when an agent’s utility is high and it signals for boosts (e.g., rounds 30 to 35). Note

that thresholds rise as token holdings fall because the agent signals and spends tokens

more judiciously.

Not all signals are successful. An agent may signal yet fail to receive a boost

when others hold more tokens. We observe a series of successful signals beginning

85



in round 31 followed by an unsuccessful signal in round 34. Prior successes reduce

token holdings such that the agent is outranked by others who signal.

4.4 Strategic Game Play

We optimize agents’ threshold strategies and find the game’s equilibrium. First,

we derive equations that describe game play. Then, we use these equations to re-

fine thresholds and assess outcomes. Finally, we produce the optimal threshold for

each agent. These thresholds produce an equilibrium in which no agent benefits by

deviating from its assigned strategy.

Although the analysis is sophisticated, it has low overheads. The models do not

delay resource allocation because thresholds are optimized offline and only checked

online. The offline computation requires a few seconds, using a dynamic program to

refine thresholds.

The analysis is efficient despite the difficulty of the problem. Each agent must

identify its best action from a complex strategy space. And it must respond to

competitors’ actions but cannot tractably monitor every other agent (e.g., token

holdings, signals) in large systems with many participants.

Equilibrium. Addressing these challenges, we study the mean field equilibrium

(MFE), a solution built atop statistical summaries of the game [67, 68, 69, 70, 71, 72].

Each agent optimizes strategies against expectations of population behavior. We find

a MFE by analyzing interdependent distributions that describe agents.

• Signaling Strategy (PY(t)). Probability agent signals Y for boost when

holding t tokens.

• Token Distribution (f(t)). Statistical distribution measuring fraction of

agents with t tokens.
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• Signaling Strength (PB(t)). Probability agent holding t tokens receives

boost when signaling Y .

In equilibrium, agents are described by stationary distributions, which are invariant

across time. For example, some agents spend tokens and others receive them in a

given round, but the token distribution is unchanged with game play across rounds.

We find an equilibrium by finding the game’s stationary distributions. Specifi-

cally, we construct an algorithm that characterizes agents and optimizes each agent’s

response to the population as follows.

• Optimize Signaling Strategy (PB → PY). Given signaling strength, de-

termine strategy to maximize utility.

• Assess Token Distribution (PY → f). Given signaling strategy, spend to-

kens and determine token distribution.

• Assess Signaling Strength (PY, f → P′
B). Given signaling strategy and

token distribution, determine signaling strength.

• Iterate (P′
B → PB). If PB = P ′

B, distributions are stationary and game is in

equilibrium. Otherwise, iterate with new PB.

The algorithm iteratively refines an agent’s strategy. In response to its expected sig-

naling strength, each agent optimizes its signaling strategy to maximize performance.

Signals affect token holdings, which in turn affect signaling strength. The algorithm

terminates with an equilibrium when the game converges to stationary distributions

and agents find their optimal strategies.

We detail each step of the algorithm in the following sections. Utility refers to

performance gain from power boost. Value is an agent’s expected utility in the

present based on statistical estimates of the future.
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4.4.1 Optimize Signaling Strategy

For each agent, the Bellman equation determines whether signaling for a power boost

maximizes value V given its token holdings t and boosted utility u. VY and V¬Y are

values when signaling Y and ¬Y .

V (t, u) = max(VY (t, u), V¬Y (t, u)) (4.1)

If VY (t, u) ≥ V¬Y (t, u), then signaling Y is optimal in state (t, u). Otherwise,

signaling ¬Y is optimal. We determine the optimal signal for every (t, u) with

dynamic programming. The resulting map from state to signal specifies the optimal

strategy.

Value from Signal. The value from signaling Y depends on whether the signal

is successful. The signal succeeds with probability PB(t), producing utility u from

boosted performance in the current round plus future value after spending one token

γ V (t− 1). Future values are discounted by γ < 1 because agents prefer utility now

over utility later, all else being equal.

VY (t, u) = PB(t)
(
u+ γ V (t− 1)

)
+ (4.2)

(1− PB(t))
(
PR γ V (t+ 1) + (1− PR) γ V (t)

)
The signal fails with probability 1−PB(t), producing no utility. After failure, future

value depends on how tokens are redistributed; the agent receives a token with

probability PR.

V (t) is the expected future value when holding t tokens. Maximizing value is

complicated by uncertainty and incomplete task profiles. Future value cannot be

known precisely because utility u varies across computational phases. However,

profilers that measure performance across rounds can supply distribution h(u), the

probability that boosted performance is u.

V (t) = E [V (t, u)] =

∫
V (t, u) h(u) du
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We similarly assess value from not signaling. An agent who signals ¬Y derives the

same value as an agent who signals Y but fails to receive a boost.

V¬Y (t, u) = γ
(
PR V (t+ 1) + (1− PR) V (t)

)
(4.3)

Threshold Strategy. Dynamic programming produces the optimal signaling

strategy – a threshold on performance gains from power boosts. Specifically, agents

maximize value by signaling for boosts when VY > V¬Y . From Equations (4.2)–(4.3),

agents should signal if boosted utility u exceeds threshold uthr.

u > γ
(
PRV (t+ 1) + (1− PR)V (t)− V (t− 1)

)︸ ︷︷ ︸
uthr(t)

(4.4)

Note that the threshold varies with the agent’s token holdings t and utility distribu-

tion h(u).

PY (t) = Pr
(
u ≥ uthr(t)

)
=

∫
u≥uthr(t)

h(u) du. (4.5)

Given its threshold, an agent signals for boosts with probability PY (t). This prob-

ability depends on several factors. First, threshold uthr specifies the gains required

to justify signals. Second, token holding t affects the threshold as rich agents set

lower thresholds to signal more liberally. Finally, utility distribution h(u) affects the

threshold. Agents that often benefit from boosts set higher thresholds, judiciously

signaling in rounds that benefit most.

Agents implement their signaling strategies with offline analysis and online com-

parisons, sketched here and detailed in Section 4.5. Offline, agents profile boosted

performance, construct utility distributions, and optimize thresholds. This compu-

tation requires a few seconds. Online, in each round, the agent signals when utility

exceeds threshold, a comparison that requires modest support from hardware coun-

ters.

4.4.2 Assess Token Distribution

Agents exchange tokens as the game allocates power boosts. Figure 4.5 presents a

Markov chain that specifies possible token holdings and transitions between them.
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Figure 4.5: Token Exchange.

An agent with i tokens has j tokens in the next round with probability pi,j.

pt,t−1 = PY (t) PB(t) (4.6)

pt,t = (1− PR)
(
1− PY (t) PB(t)

)
pt,t+1 = PR

(
1− PY (t)PB(t)

)
An agent loses a token after signaling successfully. Otherwise, it gains a token with

some probability. The net change in token holdings depends on probability of sig-

naling PY , receiving a boost PB, or a token PR.

When agents signal using optimized thresholds, the Markov chain converges to a

stationary distribution f(t), characterized by linear equations for t ∈ (0, tmax).

f(t) = f(t+ 1) pt+1,t + f(t) pt,t + f(t− 1) pt−1,t (4.7)

We omit boundary conditions for t = 0 and t = tmax, which differ only slightly.

Agents hold a non-negative number of tokens and hold no more than tmax tokens.

An agent with tmax tokens receives a boost and spends a token.

4.4.3 Assess Signaling Strength

Signaling strength is the probability of successfully requesting a power boost. We

calculate strength from its signaling strategy and token holdings. First, we define

the probability an agent holds t tokens and signals Y .

g(t) = f(t) PY (t)

Then, we determine the percentage of agents who signal Y and hold at least t tokens.

G(t) =
tmax∑
t′=t

g(t′)
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Algorithm 2: Optimize Signaling Strategy

input : Initial tokens per agent tini;
Utility distribution per agent h(u);
Token redistribution PR = n/(m− n)

output: Optimal threshold uthr

while PB not converged do
uthr ← DP for Equations (4.1)–(4.4) given PB

PY ← Equation (4.5) given h(u), uthr

f(tini) ← 1
while f not converged do

f ← Equations (4.6)–(4.7) given PY , PB, f
PB ← Equation (4.8) given f , PY

end

end

Finally, we determine the probability an agent signals successfully for one ofm boosts

when holding t tokens.

PB(t) =


0 if mG(t+ 1) ≥ n,

1 if mG(t) < n,
n−mG(t+1)

mg(t)
otherwise.

(4.8)

The definition of PB(t) enumerates scenarios for an agent with t tokens. First, the

agent fails to receive a boost when agents that signal with > t tokens outnumber

available boosts. Second, if agents that signal with ≥t tokens undersubscribe boosts,
all of these agents receive them. Finally, ties are broken for agents with t tokens.

The mG(t + 1) signaling agents with > t tokens receive boosts. The remaining

n −mG(t + 1) boosts are assigned with equal probability to the mg(t) agents with

t tokens.

4.4.4 Equilibrium

The mean field equilibrium is defined by stationary distributions for signaling strat-

egy, token holdings, and signaling strength. The game is in equilibrium if

• PY is signaling strategy that uses threshold uthr to solve Equations (4.1)–(4.3).
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Figure 4.6: Game Architecture.

• f is token distribution that satisfies consistency conditions in Equations (4.6)–

(4.7).

• PB is signaling strength that satisfies consistency conditions in Equation (4.8).

Algorithm 2 optimizes signaling strategies to produce an equilibrium. Given an

initial PB, the outer loop optimizes threshold uthr and corresponding strategy PY .

Given this strategy, the inner loop finds stationary token distribution f and assesses

signaling strength PB. The algorithm iteratively updates PY , f , and PB until they

converge to stationary distributions and satisfy equilibrium conditions.

To prove that the mean field equilibrium exists and Algorithm 2 finds the equilib-

rium, we need to use a fixed point theorem. This is out of the scope of this chapter

and is a future work in the field of theoretical game theory. In practice, the algo-

rithm converges within tens of loop iterations for every workload we study. We cap

the number of loop iterations (e.g., Imax) and, if the algorithm fails to converge, we

default to randomly signal for boosts, implementing probabilistic round-robin.

4.5 Game Architecture

Figure 4.6 summarizes the token system’s architecture in practice. The offline engine

profiles workload utilities and optimizes agents’ signaling strategies by identifying

their best response to other agents. The online engine compares expected utility

against thresholds that define agents’ optimized strategies. It then allocates boosts
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according to signals and relative token holdings. The allocator enforces management

decisions with power capping.

4.5.1 Offline: Optimizing Strategies

The offline engine profiles each agent’s workload and utility over time, producing a

probability density for utility from power boost (h(u)). Our baseline profiler runs

the computation twice, once with the power boost and again under nominal power,

and compares performance counters in every round.

In future, we could enhance profilers to learn h(u) as computation progresses.

Agents could begin game play by reporting constant utility, which indicates no in-

formation about h(u). As the game proceeds, agents would observe boosted perfor-

mance and update the probability density.

Implementation. The offline engine runs Algorithm 2 to optimize threshold

strategies based on utility distributions. We implement the algorithm in R. Algo-

rithm 2 completes within 10 seconds on an Intel® Core™i7-3630QM 2.4GHz proces-

sor. The offline algorithm updates agents with newly optimized strategies when they

become available. The algorithm does not affect the critical path in online allocation.

To solve the dynamic program (DP), we use value-iteration with computational

complexity that is linear with the number of states and actions when state transition

probabilities are sparse [101]. The convergence rate of the method slows as the

discount factor γ approaches 1. In the worst case, the number of iterations grows

polynomially in (1− γ)−1.

4.5.2 Online: Signaling and Allocation

The online engine receives and deploys optimized threshold strategies. In each round,

it predicts agents’ utilities from boosts. Our experiments assume oracular prediction,

reading utilities from traces of computation on instrumented servers. In practice,

agents could profile their workload under nominal and boosted power budgets for a

small portion of each round to predict utility in that round.

Implementation. An agent with t tokens signals Y when its profiled or pre-
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dicted utility exceeds its signaling threshold, u > uthr(t). Profiling and predicting

utility require hardware counters but is computationally inexpensive. Comparing

utility against pre-computed thresholds is trivial.

The game ranks agents by token holdings and allocates boosts to those who

signal and hold the most tokens. Sorting m agents requires O(m logm) time. A

simple approach sorts agents in every round, which takes less than 1ms for 1000

agents and less than 4ms for 10000 agents.

The allocator implements power boosts with Intel RAPL [102]. Writing to the

registers requires milliseconds and changing the voltage/frequency requires microsec-

onds. These latencies are negligible compared to rounds that span tens of seconds.

4.6 Experimental Methodology

Spark Workloads. We evaluate task-parallel datacenter workloads from Apache

Spark [53]—see Table 4.1. Each user runs a Spark job on a chip multiprocessor, which

is managed by an agent who signals to request power boosts on behalf of the user

and her workload.

We define performance in terms of relative progress. Specifically, for each round

in the game, a job’s performance is the number of completed tasks divided by the

total number of tasks in the job. This measure places performance on the same scale

across Spark jobs, which have tasks that vary in number and size.

We define utility as the gap between utilities under nominal and boosted power.

We trace task throughput under these power budgets in each round for each workload.

Since the length of the trace is shorter under boosted power, we extend the shorter

trace with linear interpolation.

Physical Server Measurements. We run Spark applications on physical

machines to profile performance and trace phase behavior. Each server has two

sockets, and each socket has an Intel® Xeon®E5-2697 (v2) Processor. We enable

power boosts using RAPL [102]. We set power limits for sockets by writing to the

MSR PKG POWER LIMIT register. We trace utility from power boosts by measuring
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Table 4.1: Spark Workloads

ID Applications Dataset Data Size

1 Correlation kdda2010 [73] 2.5G
2 FP Growth Webdocs [103] 1.5G
3 KMeans uscensus1990 [74] 327M
4 LinearRegression kddb2010 [73] 4.8G
5 ALS movielens2015 [75] 325M
6 SVM kdda2010 2.5G
7 Pagerank wdc2012 [76] 5.3G
8 ConnectedComponents wdc2012 5.3G
9 TriangleCounting wdc2012 5.3G

Table 4.2: Experimental Parameters

Description Symbol Value

# Agents m 1000
# Rounds t 3000
# Power Boosts n 100
# Initial Tokens per Agent iniT 1
Discount Factor Rate γ 0.99
Precision ϵ 0.01
Maximum # of iterations Imax 200

each workload’s task throughput under nominal and boosted power limits.

Datacenter Simulation Methods. We use traces from physical machines to

simulate allocation at datacenter scale. Table 4.2 summarizes the simulation of 1000

agents that run varied workloads for 3000 rounds. In each 60-second round, agents

compete for 100 boosts.

Simulations assume agents enter the system at varied times and restart computa-

tion when jobs complete. The trace-based approach reads utility from system profiles

at the beginning of each round. In effect, we assume an oracle that predicts utility

from a power boost. This optimistic assumption benefits not only our allocation

mechanism but also alternatives that we compare against.

We simulate the case study first described in Section 4.3. The datacenter’s power

delivery unit (PDU) supplies 35KW of power. Power is shared by 1000 chip multi-

processors, each running with a 30W nominal power budget or an additional 50W

boost. The power supply can support only 100 simultaneous boosts.

Workload Mixes and Metrics. We construct agent populations with diverse

workloads. Simulating k types of agents means sampling k workloads, uniformly
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at random, from the broader suite in Table 4.1 and launching an equal number of

instances for each. We assess diversity across agent populations by averaging results

across 25 workload mixes, constructed with IID samples from the benchmark suite.

We report figures of merit averaged across workloads in the mix.

4.7 Evaluation

We evaluate the repeated game and token system, referred to as the mean field (M-

F) mechanism, when workloads share a power budget and signal for power boosts.

We compare against baselines that use alternative definitions for fairness. We also

compare against a baseline that optimizes throughput without regard for fairness.

The following details these alternatives:

• Round-Robin (R-R). Allocate equal number of boosted rounds to each agent

in fixed rotation. Agents may receive boosts when less power would have

sufficed or fail to receive them when needed.

• Equal-Progress (E-P). Allocate as many boosted rounds as needed for equal

progress across agents. Progress is measured by normalized throughput. In

effect, E-P maximizes minimum progress and ensures max-min fairness. Agents

may lack incentives and exhibit envy.

• Equal-Division (E-D). Divide power equally across agents, eliminating het-

erogeneity in power budgets (i.e., 35W for each instead of 30W for 900 and

80W for 100). E-D is fair and avoids envy, but loses opportunities for system

performance by allocating more power to those who benefit more.

• Max-Welfare (M-W). Allocate boosted rounds to maximize throughput.

Sort agents by u, using an oracle, and allocate boosts to those with higher

utility. Agents with low utility may starve.

We find that M-F performs much better than other fair policies—R-R, E-P, and

E-D—yet provides sharing incentives and mitigates ex-post envy. M-F sees only
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Figure 4.8: Sharing Incentives. Time in boosted rounds.

modest penalties relative to M-W, which provides an upper bound on performance

that neglects fairness and starves low-throughput jobs.

4.7.1 Sharing Incentives

Allocations provide sharing incentives (SIR) when agents receive the number of boosts

they would have received under R-R. This definition is conservative. Equal time on

boosted processors is sufficient, but not necessary, for SIR. Agents given fewer boosts

could still prefer M-F over R-R because M-F’s boosts could deliver exceptionally high

utility from successful signals while R-R’s could be untimely.

We quantify SIR with share uniformity, a metric calculated from allocated boosts
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over time.

share uniformity =
min{# boosted rounds}
max{# boosted rounds}

Uniformity is the ratio of the minimum and maximum number of boosted rounds

across agents, and its value is between 0 and 1. Larger values indicate stronger SIR.

Figure 4.7 evaluates SIR in terms of share uniformity. Uniformity is 1 for M-F

and R-R as both allocate an equal number of boosts to each agent. Uniformity is 1

for E-D too as agents receive a 5W boost in every round.

In contrast, uniformity is much lower for E-P as it boosts stragglers and starves

agents who make good progress without extra power. Similarly, uniformity is near 0

for M-W as it pursues performance by boosting agents who benefit most from extra

power while starving the rest. Low uniformity due to starvation is likely in diverse

populations with many workload types.

Figure 4.8 considers five representative workload types and their time shares for

boosted processors. R-R provides SIR, allocating boosts to agents in fixed rotation

and guaranteeing equal time (i.e., 20% each). M-F provides SIR with similar time

shares. Yet M-F is preferable as signals and tokens allow agents to request boosts

when benefits are greatest, significantly improving performance – see Section 4.7.3.

Time shares reveal how E-P and M-W violate SIR due to biases toward particular

workload behaviors. E-P equalizes progress by favoring low-throughput workloads

over high-throughput ones (e.g., SVM over KMeans). M-W maximizes system through-

put by favoring workloads that benefit most and starving low-throughput ones (e.g.,

KMeans over Pagerank). These biases increase with workload heterogeneity.

4.7.2 Envy-Freeness

A mechanism is envy-free (EFR) if no agent envies another’s allocation sequence.2

Agent i is envious when utility from its allocation is less than utility from another’s.

2 Agent i’s allocation is a sequence xi = (xi1, . . . , xir) where xir = 1 if i receives a boost in round
r and xir = 0 otherwise.
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Figure 4.10: Envy-free Index. Darker colors mean greater envy. Five types include

(1) KMeans, (2) Regression, (3) ALS, (4) SVM, (5) Pagerank.

We use an index to measure agent i’s envy toward agent j.

EF index (pairwise) = eij =
ui(xi)

max(ui(xi), ui(xj))

Larger indices correspond to less envy. If agent i envies agent j, then ui(xi) < ui(xj)

and eij < 1.

The index of agent i measures the greatest envy induced by any other agent.

EF index (population) = ei = min
j

eij =
ui(xi)

maxj{ui(xj)}

Figure 4.9 evaluates EF indices for diverse agent populations. Figure 4.10 details

EF indices for five representative workload types. A square at row i and column j
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indicates i’s index towards j. Darker squares indicate greater envy.

M-F allocations induce little envy because the token system allows each agent

to customize its sequence of boosts with strategic signals. Allocations tailored for

one agent are often unattractive to others, causing more agents to prefer their own

allocations. Thus, M-F mitigates envy and reports an average EF index of 0.73. In

other words, the average agent’s utility from its allocation of boosts is within 73% of

that from a competitor’s. M-F is competitive with E-D, which avoids envy entirely

by allocating the same 5W boost to every agent.

Strategic signals within the allocation game reduce envy among agents who do

not receive boosts. If these agents did not signal, they did not need boosts and

are not envious despite receiving nominal power budgets. If these agents signaled

unsuccessfully, they must have already spent tokens for boosts in prior rounds. Failed

signals induce little envy because swapping allocation sequences to get a power boost

in the present would have required surrendering valuable boosts from the past.

Other baseline policies all induce substantial envy. R-R offers untimely boosts to

indifferent agents (index=0.15). E-P boosts agents with poor progress who use extra

power inefficiently (index=0.61). These policies induce envy in agents who would

have gained more from boosts.

M-W boosts agents that benefit most but induces envy among many other agents

(index=0.39). In Figure 4.10, M-W favors KMeans, making it envy-free (white row)

while starving and inducing envy in others (dark rows). Envy worsens with increasing

workload diversity.

4.7.3 Performance

The allocation game balances the pursuit sharing incentives and envy-freeness with

performance. Although the game underperforms an approach that seeks throughput

alone, it significantly outperforms other approaches to fairness.

We measure performance in terms of gains in job progress. Suppose that agent

i receives allocation sequence xi = (xi1, xi2, . . .) where xir = 1 if boosted in round

r and xir = 0 otherwise. If boosted, progress improves by uB
ir − uN

ir , the difference
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in utilities under boosted and nominal power. These gains accumulate over time to

determine performance.

pi =
∑
r

xir

(
uB
ir − uN

ir

)
Figure 4.11 presents performance for diverse agent populations. M-F outperforms

R-R by 1.7x, on average, by boosting agents when their benefits are greatest. Boosts

are timely because agents optimize signaling strategies based on evolving utilities

and competitive dynamics. In contrast, R-R performance suffers as agents boost in

fixed rotation regardless of utilities. E-P performance also suffers as it diverts power

to agents with inherently slow computation.

M-F also outperforms E-D by 2x, on average. E-D divides 35KW power budget

among 1000 agents equally (i.e., 35W per agent), which is equivalent to granting

a 5W boost to every agent in every round. Unfortunately for performance, some

workloads may not need extra power (e.g., memory-bound tasks) and boosts could
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Figure 4.13: Sensitivity to Interference. Performance, share uniformity, and

envy-free index are affected due to interference.

have been profitably diverted to others (e.g., compute-intensive tasks).

M-F achieves 74% of M-W’s performance, on average, a modest loss in exchange

for fairness. M-F’s largest losses arise when one type of agent benefits from boosts

much more than others. In such cases, M-W favors the high-utility agents and

starves others. Allocating boosts to low-utility agents, even for a small fraction

of time, significantly degrade M-F’s system throughput. And these degradations

become worse as diversity increases.

4.7.4 Sensitivity to Game Parameters

Figure 4.12 assesses M-F’s performance sensitivity to game parameters. Each study

samples 15 pairs of workloads. For each pair, half the agent population runs the first

workload and half runs the second. We measure performance, average across agents

in the population, average across sampled workload pairs, and normalize to M-W’s

performance.

First, M-F performs better for larger populations. When the number of agents is

small, the game is less likely to produce optimal strategies because mean field equi-

libria assume many agents. As the number of agents increases, threshold strategies

approach optimal game play. This study varies the number of agents while ensuring

enough boosts for 10% of the population.

Supporting more boosts increases M-F performance initially, but then produces

diminishing returns. When boosts are scarce, agents with great need but few tokens
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Figure 4.14: Utility Distribution. Utility with and without interference between

ALS and Connected. Threshold is optimized assuming no interference and averaged across

token holdings.

may lose to agents with modest need but many tokens, which harms performance.

Added boosts mitigate these rare outcomes and improve performance. But when

boosts are abundant, agents inefficiently lower thresholds and signal even when util-

ities are low.

Token holdings also affect signals and performance. As agents’ average token

holdings increase, they lower thresholds and signal more frequently. Because signals

carry less information about agents’ relative utilities, M-F’s performance falls toward

R-R’s. This study varies the number of tokens in circulation for a fixed number of

agents and boosts.

Finally, increasing the time per round increases M-F’s performance initially, but

then produces diminishing returns. Short rounds risk dividing a single workload

phase and increasing correlation between utilities across rounds, which reduces the

likelihood of optimal strategies from mean field analysis. In contrast, long rounds risk

combining distinct phases and producing an uninformative average. When agents

cannot differentiate power demands across rounds, they cannot signal strategically

and M-F’s performance suffers.

4.7.5 Sensitivity to Interference

The evaluation thus far assumes isolation between colocated workloads, but con-

tention for shared resources (e.g., cache capacity and memory bandwidth) may af-
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fect the game’s effectiveness. M-F optimizes threshold strategies according to profiles

of jobs running alone. If those jobs actually colocate with others, profiles will less

accurately capture utility and strategies will fall short of optimal responses to the

competition from other jobs.

Figure 4.13 assesses the effect of interference on game outcomes. First, we opti-

mize agents’ strategies assuming no interference. Then, we evaluate those strategies

with and without interference for nine representative workload pairs. Results, which

are normalized to M-W’s and averaged across workload pairs, show that perfor-

mance, share uniformity, and the envy-free index decrease by 3.3%, 2.0%, and 31.6%

respectively.

Figure 4.14 shows how interference degrades system outcomes weakening models

of workload utility used to optimize game play. Interference shifts utility distribu-

tions leftward and causes thresholds that are optimal without interference to become

conservative. Agents that lose more performance to contention (e.g., Connected

versus ALS) will signal more conservatively.

Conservative signaling strategies induce significant envy without much harming

other outcomes. Agents that signal less often will receive less timely boosts and envy

others more often. Yet performance losses are modest as conservative strategies cause

tokens to accumulate and signals in high-utility rounds to be successful more often.

Furthermore, sharing incentives remain robust because the game’s equal allocation

and redistribution of tokens guarantee each agent its minimum share of boosts.

We can mitigate interference in several ways. First, we could reduce processor

load. We present results on highly-loaded processors with hyper-threaded cores.

When hyper-threading is disabled, interference harms envy-freeness by 18% instead

of 32%. Second, we could deploy new microarchitectures that guarantee isolation for

the last-level cache and memory channel [104, 105, 106, 107]. Finally, agents could

continuously update their utility profiles and re-optimize their thresholds.
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4.8 Related Work

Fairness. Fairness has become important for resource scheduling. Dominant re-

source fairness ensures game-theoretic desiderata, including SI and EF, when al-

locating homogeneous cores and memory capacity [8]. Resource elasticity fairness

makes similar assurances when allocating cache capacity and memory bandwidth [1].

These mechanisms guarantee fairness in space when there are many more resources

than users, whereas our token mechanism guarantees fairness in time.

In a related work, Wang et al. present XChange, a market with dynamic price

discovery and wealth distribution, which balances throughput and fairness [108].

Although the token redistribution in our token mechanism and the wealth redis-

tribution in XChange seem to be similar, they are fundamentally different for one

main reason. The token redistribution happens every round when users receive their

resources, whereas wealth redistribution in XChange happens only one time and be-

fore users receive their final allocations. In the token mechanism, as users receive

their share of resources, they spend their tokens. Spent tokens are then redistributed

among other users equally. In XChange, however, based on a heuristic metric, dif-

ferent wealth is assigned to different users. Users then use their wealth to bid on

different resources.

For fairness in time, Craeynest et al. [109] schedule heterogeneous multi-cores to

ensure equal-progress. In contrast, we study fairness from lenses of microeconomics

and game theory. Adopting a similar approach for a different problem, Gorokh et

al. [110] arbitrate access to a single item between many users in a repeated setting.

They propose a repeated auction using artificial currencies to guarantee truthfulness

and maximize efficiency.

Nesbit et al. propose a memory scheduler that employs fair queuing and provides

sharing incentives [42]. Ghodsi et al. [111] generalize fair queuing to a multi-resource

setting. In fair queuing, resources are allocated at packet-granularity—a link remains

assigned to a flow until its entire packet is sent. Dividing time into slots and switching

between flows at fixed intervals is not desirable. As a result, guaranteeing exact fair
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shares is difficult and fair queuing must be approximated through discrete packet

scheduling decisions [112, 31].

Scrip Systems.

Friedman et al. [113] propose a scrip system for Peer-to-Peer (P2P) networks

where users provide each other with file sharing services. The goal of the scrip

systems is improve system performance while preventing agents to become free riders

(i.e.benefit from the system without contributing to it). The authors prove the

existence of a non-trivial Nash equilibrium at which homogeneous agents play a

well-behaved strategy. Kash et al. [114] extend the scrip system for heterogeneous

users and [115] extends this model by studying the effect of collusion.

Buttyan et al. [116] propose a scrip system to stimulate cooperation in ad hoc

mobile networks. Considering a similar setting, Xu et al. [117] design a token system

to incentivize self-interested users to relay other nodes’ traffic in autonomic wireless

relay networks. Shen et al. [118] consider the same setting and propose a token

exchange framework at which tokens are used to mitigate interference among users.

Unlike the decentralized system models for P2P networks and cooperative routing,

our work focuses on a centralized system for datacenter architectures that allocates

items to users. Our token system is designed to ensure fairness while achieving high

system performance.

Andrews et al. [119] consider the problem of scheduling a time-varying wireless

channel between multiple users. They propose a token system to optimize system

throughput subject to certain lower and upper throughput bounds for different users.

Their token system is proposed for a settings where strategic behavior is not expected

(i.e.users do not lie about their demands). Our token system, however, is designed

for settings when self-interested users report their demands strategically to maximize

their own utility.

Power and Heterogeneity Management. Multi-core schedulers steer tasks

to the most efficient processor cores, but neglect fairness [120, 121, 122, 98]. Un-

like previous works, we focus on game-theoretic notion of fairness while maximizing
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overall performance.

Fan et al. [2] study a computational sprinting game in which multi-core chips

share a power supply and sprint independently. Similar to this chapter, [2] uses

dynamic programming to find mean field equilibrium strategies for power boosts.

However, this chapter differs from [2] as they pursue performance and system sta-

bility and we pursue fairness, defined by sharing incentives and envy-freeness. To

ensure fairness, we design a game defined by tokens exchange rules. We study the

distribution of tokens across agents and drive equilibrium strategies based on users’

token holdings. We show in practice that this chapter’s game satisfies repeated

envy-freeness and sharing incentives and achieves high performance.

Through changes in p-states and clock throttling, power capping technologies

enforce limits on servers’ power consumption [123, 124]. Femal et al. [125] study a

global power allocation mechanism that ensures a node is assigned a local power limit

according to the performance of its workloads. Moreover, many hierarchical frame-

works have been proposed to allocate power budgets dynamically between workloads

[126, 61, 127]. Co-Con [128] uses a power control loop and a performance control

loop to make adjustments on power and performance at the cluster level. PEGASUS

[87] uses a feedback-based controller to dynamically assign power caps to the most

latency critical workloads. Finally, VPM Tokens [129] manages power from virtual

machines’ perspective while considering global performance.

4.9 Conclusions

We present a new approach for fair resource management in dynamic systems. The

token system provides game-theoretic desiderata while offering flexibility, which en-

hances performance by allocating resources to jobs in time periods that benefit per-

formance most. We demonstrate a fair, repeated allocation game for heterogeneous

processors that generalizes to other resources.

Future research could extend the allocation game in several dimensions. First,

the game treats all agents equally and adding priorities is an open problem. One
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mechanism provides more tokens to agents with higher priorities. Another mecha-

nism reduces the number of tokens required for a successful request. Extending the

game theory for these extensions is non-trivial.

Second, the game could manage dynamic and variably sized power boosts. More-

over, the system could dynamically divide the power delivery unit’s capacity to tune

the definitions of nominal and boosted power budgets. Designing and adapting

sprinting policies is an open research problem [130]. We could extend the game

theory for varied degrees of heterogeneity.

Finally, the game manages a single resource type across time. Even for one

resource, the token system advances the state-of-the-art in computational economics

by pursuing game-theoretic desiderata in dynamic settings. Extending the system

for multiple resource types over time is an open problem.
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5

Amdahl’s Law in the Datacenter Era: A Market for
Fair Processor Allocation

5.1 Introduction

Shared computer systems present resource allocation challenges. Users and jobs,

which vary in their demands and importance, must divide limited resources to bal-

ance competing performance, efficiency, and fairness objectives. Fairness is particu-

larly relevant for non-profit systems in which users share capital and operating costs.

Such systems often serve business units within a technology company or research

groups within a university [131, 132, 133]. Allocations are determined by organiza-

tional priorities and service classes rather than explicit payments.

Systems determine users’ shares with one of three mechanisms. With reservations,

users request and pay for resources. Allocations depend on users’ requests but are

inefficient when requests are over-sized and resources are under-utilized [134, 135].

With priorities, allocations depend on users’ computation and relative importance,

exposing users to interference and non-deterministic performance [136, 132]. Finally,

with entitlements, each user is guaranteed a minimum allocation and under-utilized
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resources are redistributed [136, 131, 32, 133]. Entitlements, unlike alternatives,

provide isolation and efficiency.

Entitlements for datacenters differ from those for a server. Within a server,

proportional share schedulers allocate divisible resources [136, 32]. In theory, the

datacenter provides a similar abstraction—a warehouse-scale machine with logically

divisible resources. In practice, however, resources are physically distributed across

servers in ways that constrain allocation. Jobs are assigned to servers and resources

are partitioned along server boundaries. Because processor allocations perform dif-

ferently depending on which servers provide the cores, users often prefer specific

allocations on specific servers.

We design a market mechanism that divides a user’s datacenter-wide entitlement

across the servers that run her jobs. Users receive budgets in proportion to their

entitlements and bid for processor cores on each server. The market sets prices

based on bids and users bid based on prices. The market’s centerpiece is the Amdahl

utility function, which we derive from Amdahl’s Law to model the value of each

server’s cores and calculate bids [137, 22]. In equilibrium, all cores are allocated and

allocations are optimal. This equilibrium is fair because budgets satisfy entitlements

and performs well because bids shift more resources to more parallelizable workloads.

The market for processors offers several attractive properties. First, allocations

incentivize sharing as each user always receives her entitlement and sometimes re-

ceives more. Second, allocations are Pareto-efficient, which means no other allocation

can benefit one user without harming another. Third, the market is strategy-proof

when the user population is large and competitive, which means no user can benefit

by misreporting utility from processors.

The market has modest management overheads. Sampled profiles are sufficient

to fit Amdahl’s Law. Moreover, a market that is customized for processor allocation

and Amdahl utility is computationally efficient. We derive closed-form equations to
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calculate bids that lead to a market equilibrium. In contrast, markets for generic

utility functions can accommodate varied resources, from memory to power, but

require expensive optimization and search to determine allocations [108, 138].

In this chapter, we co-design a utility function and market mechanism for pro-

cessor allocation (Section 5.2). We estimate the utility function’s parameter, the

workload’s parallelizable fraction, by inverting Amdahl’s Law (Sections 5.3–5.4). We

derive a procedure for calculating bids and allocations that produce a market equilib-

rium (Section 5.5). Finally, we find that equilibrium allocations satisfy entitlements

and perform well. (Section 5.6).

5.2 Motivation and Overview

5.2.1 Public vs. Private Datacenters

The trend in public datacenters is toward a resource-as-a-service (RaaS) model [139].

In this model, datacenter providers deploy economic mechanisms to dynamically set

prices for different resources [140, 141]. Unlike public datacenters, in many private

datacenters, users share a non-profit server cluster and its capital and operating costs.

Examples include an academic cluster that combines servers purchased by different

research groups, or a cluster shared by different departments within a company.

In public datacenters, economic mechanisms use monetary transfers to align users’

incentives with provider’s objectives (e.g., maximizing revenue while eliciting truth-

ful reports). In private datacenters, however, monetary transfers between cluster

managers and users are not desirable, and in some cases are not feasible or allowed.

In such settings, aligning users’ incentives with global system objectives becomes

extremely challenging and requires new techniques.

When monetary transfers are not feasible, a common technique is to deploy vir-

tual money in the form of scrip systems. Unlike real money, virtual money is not

intrinsically valuable to users. As a result, classical economic mechanisms that work
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perfectly with real money, are not applicable with virtual money. Despite this fun-

damental challenge, scrip systems have been extensively deployed in many system

settings. For instance, P2P systems have long used scrip systems to address the

free-rider problem [114, 115]. In this chapter, we seek to explore efficient ways to use

virtual money to ensure that users receive their entitlements.

5.2.2 Entitlements

Shared computer systems must allocate resources to satisfy entitlements, which spec-

ify each user’s minimum allocation relative to other users’. Different entitlements

could arise from differences in organizational priorities or users’ contributions to

shared resources. When an Internet services company colocates interactive and batch

jobs, entitlements may specify more resources for online jobs to meet service targets.

When users contribute funds to procure and operate a cluster, entitlements may

specify shares in proportion to contributions to ensure fairness.

For decades, entitlements have been a basis for resource management. Henry

designs the Unix Fair Share Scheduler to assign shares to users and mitigate non-

determinism in performance from the Unix priority scheduler [136]. Kay and Lauder

define fairness in terms of users rather than processes, which mitigates strategic

behavior during heavy system activity [131]. Waldspurger and Weihl propose lottery

scheduling, which allocates resources probabilistically based on users’ holdings of a

virtual currency [32]. Randomization permits fine-grained shares that are fair and

efficient.

Entitlements have several advantages. First, entitlements provide isolation by

explicitly defining minimum shares, unlike priority-based mechanisms that allocate

differently depending on user colocation and system activity. Second, entitlements

are efficient. When a user requires less than her share, unused resources are re-

distributed to others. Redistribution incentivizes sharing by providing not only a
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minimum allocation but also the possibility of additional resources. Finally, entitle-

ments mitigate strategic behavior by specifying shares for users, not jobs, such that

no user gains resources by launching more jobs.

Entitlements are relevant for any user community that shares a non-profit sys-

tem and its capital and operating costs. Early examples include high-performance

computing systems [131, 142, 143]. Today’s examples include academic and indus-

trial datacenters. An academic cluster combines servers purchased by researchers

who have preferred access to their own machines and common access to others’ idle

machines [144]. Microsoft uses tokens, a form of lottery scheduling, to specify and

enforce shares [133]. Google does not use entitlements and, consequently, suffers from

the same challenges as other priority schedulers, which cannot guarantee performance

isolation between users [132, 136].

5.2.3 Processor Allocation

We require new entitlement mechanisms for datacenter processors because each user’s

allocation is distributed across multiple servers. Users may demand more cores on

certain servers that run jobs with greater parallelism. But satisfying demands for

specific servers while enforcing datacenter-wide entitlements is difficult. Moreover,

simply allocating proportional shares in each server may violate entitlements depend-

ing how jobs are assigned to servers.

For example, three users have equal entitlements but varied demands for specific

servers. Three servers–A, B, and C–each have 12 processor cores. User 1 demands

8 cores on A, 4 cores on B, and 0 cores on C, which we denote with vector (8, 4, 0).

Users 2 and 3 have demand vectors of (0, 4, 8) and (8, 8, 8), respectively.

The approach that enforces proportional shares on each server violates entitle-

ments. On each server, a user receives her demand or entitlement, whichever is

smaller. When entitlement exceeds demand, excess cores are redistributed to other
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users on the server according to their relative entitlements. For example, the Fair

Share Scheduler would allocate as follows:

User 1← (6A, 4B, 0C) ,

User 2← (0A, 4B, 6C) ,

User 3← (6A, 4B, 6C) .

Because users 1 and 3 both demand 8 cores on A, they receive their 4-core enti-

tlements and equally divide the remaining 4 cores. Across servers, users 1 and 2

receive 10 cores while user 3 receives 16, which satisfies entitlements in each server

but violates them in aggregate. The equally entitled users should have received 12

cores each.

Alternatively, the system could relax entitlements within servers while preserving

them across the datacenter. Users would start with their proportional shares dis-

tributed uniformly across servers (i.e., 12 cores across 3 servers). Users would then

trade according to their demands on each server.

User 1← (8A, 4B, 0C) ,

User 2← (0A, 4B, 8C) ,

User 3← (4A, 4B, 4C) .

In the example, user 1 trades its 4 cores on C for user 2’s 4 cores on A. Resulting

allocations violate entitlements within each server but satisfy them in aggregate.

Moreover, these allocations are efficient and match users’ demands better. This ex-

ample motivates a holistic trading algorithm that finds high-performance allocations

subject to datacenter-wide entitlements.

5.2.4 Market Mechanisms

A market is a natural framework for trading cores in users’ entitlements. Users spend

their budgets on cores that are most beneficial. In effect, users trade their spare cores

on one server for extra cores on others. The market sets prices for cores according to
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Table 5.1: Workloads and Datasets

ID Name Application Dataset (Size)

1 Correlation Statistics webspam2011 [146] (24GB)
2 Decision Tree Classifier webspam2011 (24GB)
3 Fpgrowth Mining wdc’12 [76] (1.4GB)
4 Gradient Des. Classifier webspam2011 (6GB)
5 Kmeans Clustering uscensus [74] (327MB)
6 Linear Reg. Classifier webspam2011 (24GB)
7 Movie Recommender movielens [75] (325MB)
8 Naive Bayes Classifier webspam2011 (6GB)
9 SVM Classifier webspam2011 (24GB)
10 Page Rank Graph Proc. wdc’12 [76] (5.3GB)
11 Connected Cmp. Graph Proc. wdc’12 (6GB)
12 Triangle Cnt. Graph Proc. wdc’12 (5.3GB)
13 Blackscholes Finance native
14 Bodytrack Vision native
15 Canneal Engineering native
16 Dedup Storage native
17 Ferret Search native
18 Raytrace Visualization native
19 Streamcluster Data Mining native
20 Swaptions Finance native
21 Vips Media Proc. native
22 X264 Media Proc. native

server capacities and user demands. Given prices, users bid for servers’ cores based

on their jobs’ demands. The market collects bids, sets new prices, and permits users

to revise bids. This process repeats until prices converge to stationary values. When

users’ budgets are set in proportion to their datacenter-wide entitlements, the market

guarantees proportional shares across the datacenter.

Bids require accurate models of performance given processor allocations on each

server. The example in Section 5.2.3 assumes that demand and utility could be

represented with a single number, a popular approach in systems research [8, 145, 40].

But to understand its limits, suppose a user demands four cores. Hidden in this

demand is a significant implication: increasing an allocation by one core provides

constant marginal returns to performance up to four cores and a fifth core provides

no benefit. This assumption is unrealistic for many parallel workloads.
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Table 5.2: Server Specification

Component Specification
Processor Intel Xeon CPU E5-2697 v2
Sockets 2 Sockets, NUMA Node
Cores 12 Cores per Socket, 2 Threads per Core
Cache 32 KB L1 ICache, 32 KB L1 DCache

256 KB L2 Cache, 32 MB L3 Cache
Memory 256 GB DRAM

5.2.5 Amdahl’s Law and Karp-Flatt Metric

Amdahl’s Law sets aside the constant marginal returns implied by a user’s numerical

request for cores. Instead, it models diminishing marginal returns as the number of

cores increases [137, 22]. Amdahl’s Law models execution time on one core, T1,

relative to the execution time on x cores, Tx. If fraction F of the computation is

parallel, speedup is:

sx =
T1

Tx

=
T1

(1− F )T1 + T1F/x
=

x

x(1− F ) + F
(5.1)

Computer architects use Amdahl’s Law for first-order analysis of parallel speedup.

The Law assumes the parallel fraction benefits linearly from additional cores and the

serial fraction does not benefit. Because these assumptions hold to varying degrees

in real workloads, architects often use Amdahl’s Law to estimate upper bounds on

speedups.

In this chapter, we use Amdahl’s Law directly to assess utility from core allo-

cations. We find that actual performance often tracks Amdahl’s upper bound for

modern datacenter workloads, which exhibit abundant, fine-grained parallelism and

few serial bottlenecks. For example, Spark partitions jobs into many small tasks and

caches data in memory to avoid expensive I/O [147, 53].

Using Amdahl’s Law is challenging because the parallel fraction F is often un-

known. Expert programmers rarely know exactly what fraction of their algorithm or

code is parallel. Fortunately, we can measure speedup sx and estimate F with the
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inverse of Amdahl’s Law, which is known as the Karp-Flatt metric [148].

F =

(
1− 1

sx

)(
1− 1

x

)−1

(5.2)

But for which processor count x should we measure speedup? When Amdahl’s Law is

perfectly accurate, the answer would not matter as measured speedups from varied

x’s would all produce the same estimate of F . In practice, Amdahl’s Law is an

approximation and estimates of F may vary with x.

5.2.6 Mechanism Overview

We design a two-part mechanism for allocating datacenter processors given users’

entitlements. First, the mechanism requires a utility function (Section 5.4). We

propose Amdahl utility, a new class of utility functions based on Amdahl’s Law. We

determine each user’s Amdahl utility with new methods for profiling performance

and estimating a workload’s parallel fraction, the key parameter in the function.

Second, the mechanism requires a market (Section 5.5). We design a market to

allocate processors when users are characterized by Amdahl utility functions. New

utility functions require new bidding algorithms. Our algorithm calculates bids from

workloads’ parallel fractions, which are estimated when fitting Amdahl utility. Bids

are calculated efficiently with closed-form equations.

The mechanism tightly integrates a new utility function that models performance

and a new market that allocates cores. Its two parts are co-designed to quickly find

the market equilibrium. In equilibrium, users perform no worse, and often better,

than they would with their entitlements narrowly enforced in each server (Section

5.6).
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5.3 Experimental Methodology

We construct Amdahl utility functions by profiling parallel workloads on physical

machines. We measure speedups for varied core counts, use Karp-Flatt to estimate

each workload’s parallel fraction, and assess variance in those estimates.

Workloads. Table 5.1 summarizes our PARSEC [36] and Spark benchmarks

[53] with their representative datasets. PARSEC benchmarks represent conven-

tional, multi-threading whereas Spark applications represent datacenter-scale task

parallelism.

Each Spark job is divided into stages and each stage has multiple tasks. The

number of tasks in each stage usually depends on the size of the input data. The

first stage typically reads and processes the input dataset. Given Spark’s default

32MB block size, a 25GB dataset is partitioned into approximately 800 blocks. The

run-time engine creates one task to read and process each block. It then schedules

tasks on cores for parallel processing. We run Spark applications in standalone mode.

Physical Server Profiling. Table 5.2 describes the Xeon E5-2697-v2 nodes in

our experiments. Each node has 24 cores on two chip-multiprocessors. The local

disk holds workload data. We deploy Docker containers for resource isolation [149].

We use cgroup to allocate processor cores and memory to containers.

We measure parallel speedups to fit the Amdahl utility function. We profile

execution on varied core counts using Linux perf stat for PARSEC and the run-

time engine’s event log for Spark. To efficiently determine how execution time scales

with dataset size, we sample uniformly and randomly from original datasets to create

smaller ones and construct simple, linear models.
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Figure 5.1: Calculated Parallel Fraction. F for representative Spark workloads

as processor count varies.

5.4 Performance Model

Equation (5.2) is an idealized estimate of a workload’s parallel fraction. In principle,

inherent properties of the algorithm or code determine parallelizability. The proces-

sor count does not affect the parallel fraction but only determines how much of it

is exploited for speedup. Note that Amdahl’s Law assumes the parallel fraction is

accelerated linearly with processor count.

F (x) =

(
1− 1

s(x)

)(
1− 1

x

)−1

(5.3)

In Equation (5.3), however, we describe the practical link between the workload’s

parallel fraction and system’s processor count. We express parallel fraction F in

terms of measured speedup s(x) on x cores. The difference with Equation (5.2) is

subtle but important. If the linearity assumption behind Amdahl’s Law fails, the
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Figure 5.3: Variance in Parallel Fraction. Var(F ) = |x|−1
∑

x(F (x)− F̄ )2. Lower

variance indicates a better fit with Amdahl’s Law.

number of processors deployed to profile speedup will affect the estimated parallel

fraction.

Figure 5.1 empirically estimates the parallel fraction for representative work-

loads. We allocate x processors, measure speedup s(x), and evaluate the Karp-Flatt

equation for F (x). The estimate is unaffected by processor count, indicating that

Amdahl’s Law accurately models speedup for most workloads. However, for some

workloads, the estimate decreases as processor count increases, indicating paralleliza-

tion overheads such as communication, shared locks, and task scheduling.

We report summary statistics for the estimated parallel fraction. Figure 5.2

presents average estimates from varied processor counts. The parallel fraction ranges

from 0.55 to 0.99 for Spark and PARSEC workloads. Figure 5.3 presents variance

in the estimate. For most workloads, variance is small and the Karp-Flatt analy-

sis is useful. Estimates are consistent across processor counts and Amdahl’s Law

accurately models parallel speedups.
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Although Karp-Flatt characterizes most workloads, it falls short when overheads

increase with processor count. It is inaccurate for graph processing (e.g., pagerank,

connected components, triangle) since tasks for different parts of the graph com-

municate more often as parallelism increases. Karp-Flatt is also inaccurate for com-

putation on small datasets that require few tasks (e.g., kmeans’s 11 tasks) because

adding processors rarely reduces latency and often increases scheduling overheads.

Finally, it is inaccurate for workloads with intensive inter-thread communication

(e.g., dedup) [36] because adding processors increases overheads.

5.4.1 Profiling Sampled Datasets

Estimating the parallel fraction requires profiling performance for varied processor

counts. For efficiency, we reduce dataset sizes by sampling uniformly and randomly

from the original dataset to create varied smaller ones. Sampled datasets are small

enough that we can profile workloads’ complete executions with all computational

phases. Profiled speedups drive the Karp-Flatt analysis.

Sampled profiles reveal broader performance trends. Figure 5.4 shows how ex-

ecution time scales linearly with dataset size when correlation, a representative

workload, computes on 1GB to 6GB, 12GB, and 24GB of data.1 Each line shows the

model for a given processor count. Models are more accurate and data collection is

faster when profiling computation on more processors (e.g., 48 cores). Venkataraman

et al. similarly fit linear models using sampled datasets to predict performance on

other datasets [150].

Although many workloads are well suited to linear performance models, some

require polynomial models because their execution time scales quadratically with

dataset size (e.g., QR decomposition). Although many datasets are amenable to

1 Sampled datasets could be smaller than these as long as the number of partitions, which dictate
the number of tasks, is greater than the number of processors. Otherwise, there is insufficient
parallelism.
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Figure 5.4: Linear Model for Dataset Sampling. Data shown for representative

workload, correlation.

uniform sampling, skewed and irregular datasets (e.g., those for sparse graph ana-

lytics) require more sophisticated sampling.

5.4.2 Predicting Parallel Performance

Figure 5.5 combines Karp-Flatt and linear models to predict parallel performance.

Karp-Flatt estimates parallel fraction from speedups (horizontal flow) and linear

models estimate execution time from dataset size (vertical flow). Specifically, the

procedure is:

• Parallel Fraction F. For each sampled dataset size d, estimate expected

parallel fraction F̄d for sampled core allocations. Report mean of F̄d’s.

• Execution Time T. For each sampled core allocation x, measure execution

time Tx for sampled dataset sizes. Report linear model fitted to Tx’s.

The procedure’s outputs serve two purposes. First, we can estimate execution

time for any processor count x and dataset size d from sparse profiles. Time mea-

surements are scaled twice, by the linear model to account for the target dataset size

and then by Amdahl’s Law to account for the target processor count. Such scaling is
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accurate for varied parallel workloads—see Section 5.4.3. Second, we can construct

Amdahl utility functions with estimated parallel fractions. Accurate functions enable

markets that efficiently allocate processors to users according to entitlements—see

Section 5.5.

5.4.3 Assessing Prediction Accuracy

We find that profiles on reduced inputs supply enough data for analysis. We can

estimate workloads’ parallel fractions, laying the foundation for markets with Amdahl

utility functions. Moreover, we can estimate execution time for a variety of workload

inputs and processor allocations.

Parallel Fraction. Figure 5.6 evaluates accuracy for the estimated parallel

fraction. The estimated value is the geometric mean of Karp-Flatt analyses for

multiple, sampled datasets. The measured value is the same but for the original

dataset. For Spark, sampled datasets include 1GB to 6GB drawn randomly from the

original dataset. For PARSEC, simlarge and native correspond to sampled and

complete datasets, respectively.

Errors are small (i.e., absolute accuracy) and estimates track measurements

123



 Estimated F 

P
ar

al
le

l F
ra

ct
io

n
0.

6
0.

8
1.

0

sv
m

co
rre

.
lin

ea
r

de
cis

io
n

bl
ac

ks
ch

.
bo

dy
.

ca
nn

ea
l

fe
rre

t
vip

s

x2
64

Measured with Real Dataset
Estimated with Sampled Dataset

Figure 5.6: Accuracy of Prediction. Accuracy of predicted parallel fraction when

using sampled datasets.

across workloads (i.e., relative accuracy). Relative accuracy is particularly impor-

tant for processor allocation. Karp-Flatt estimates the key parameter for Amdahl

utility functions. And these utilities determine bids in the market for processors.

Relative accuracy ensures more processors are allocated to users that benefit more,

enhancing efficiency.

Canneal reports particularly high error because it is memory-intensive. Its mem-

ory bandwidth utilization on small datasets is not representative of that on larger

datasets. When smaller datasets under-estimate bandwidth constraints, they over-

estimate speedups from additional processors. The estimated parallel fraction is

much larger than the one measured on the full dataset.

Execution Time. Figure 5.7 evaluates accuracy for execution time. Good pre-

dictions rely on accurate scaling in two dimensions, by the linear model to account for

the target dataset size and by Amdahl’s Law to account for the target processor al-

location. For the representative Decision Tree workload, we demonstrate accurate

predictions for the target dataset and varied processor allocations.

Figure 5.8 broadens the evaluation to our workload suite. For each workload,

a boxplot illustrates the range of errors when predicting execution time on varied

processor allocations. Our models see 5-15% error, on average, and 30% error in
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Figure 5.8: Accuracy of Prediction. Accuracy of predicted execution time for

varied applications. Boxplots show distribution of errors given varied processor allocations.

the worst case. Cache- or memory-intensive applications (e.g., canneal) are poorly

modeled as small, sampled datasets cause the predictor to over-estimate benefits

from parallelism.

Although we evaluate execution time predictions, the broader goal is estimating

parallelizability. The workload’s parallel fraction concisely describes benefits from

processors. Accurately estimating this fraction is a prerequisite for Amdahl utility

functions. And these functions enable a market for processors.
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5.5 Market Mechanism

We begin by formalizing the processor allocation problem. The system has n users

and m servers that hold varied numbers of cores; server j has Cj cores. A user runs

multiple jobs and each job has been assigned to a server. Note that we assume that

the assignment of jobs to servers is fixed and job migration is expensive. Relaxing

these assumption expands the state space of the problem and is an interesting future

direction. In this paper, we focus on the problem of allocating the cores on each

server given users’ preferences and entitlements.

Our solution has two elements. First, we define the Amdahl utility function to

describe users’ preferences for cores. Second, we design a market in which users bid

for cores according to utilities. We derive a new bidding algorithm to find the market

equilibrium because there is no existing theory for Amdahl utility functions.

5.5.1 Amdahl Utility Function

Let fij denote the parallel fraction for user i’s job on server j. From Amdahl’s Law,

allocating xij≤Cj cores to user i on server j produces speedup sij.

sij(xij) =
xij

fi + (1− fi)xij

Suppose that user i’s job on server j completes wij units of work (e.g., tasks) per

unit time. We define the Amdahl utility function as user i’s weighted average utility

from cores across m servers.

ui(xi) =

∑m
j=1wijsij(xij)∑m

j=1 wij

(5.4)

Amdahl utility is consistent with architects’ views of performance. Its parameters

model important determinants of performance—exploitable parallelism (f) and work

completed (w).
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Although Amdahl utility resembles a weighted average of speedups, it actually

measures normalized progress across multiple servers. Per unit time, a job completes

wij units of work with one core and wijsij(xij) units with xij cores. Utility is total

work completed normalized by that when allocated one core. Utility is one when the

user receives one core per server as speedup is one on each server.

5.5.2 Market Model

We design a Fisher market with n participants described by Amdahl utility functions.

Utility ui(xi) describes user i’s value from her allocation of xi = (xi1, . . . , xim) cores

on each of m servers. After the market sets prices p = (p1, . . . , pm) for servers’ cores,

each user maximizes utility subject to her budget bi, which is proportional to her

entitlement.

max ui(xi), (5.5)

s.t.
m∑
j=1

xijpj ≤ bi.

We illustrate market dynamics with an example. Suppose Alice and Bob share

servers, C and D, each of which has ten cores. Alice runs dedup (f = 53%) and

bodytrack (f = 93%) on C and D, respectively. Bob runs x264 (f = 96%) and

raytrace (f = 68%) on C and D, respectively. When Alice receives core allocation

xA = (xAC , xAD) and Bob receives xB = (xBC , xBD), their utilities are as follows.2

uAlice = 0.5

(
xAC

0.53 + 0.47xAC

+
xAD

0.93 + 0.07xAD

)
,

uBob = 0.5

(
xBC

0.96 + 0.04xBC

+
xBD

0.68 + 0.32xBD

)
.

2 Without loss of generality, this example assumes jobs complete one unit of work per unit of time
(i.e., wij = 1).
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Suppose Alice and Bob have equal entitlements and budgets (i.e., b = 1). When

prices are p = (0.04, 0.16), Alice determines her demand for processors as follows.

max
xAC

0.53 + 0.47xAC

+
xAD

0.93 + 0.07xAD

,

s.t. 0.04 xAC + 0.16 xAD ≤ 1.

5.5.3 Market Equilibrium

In market equilibrium, all users receive their optimal allocations and there is no

surplus or deficit of processors. Formally, price vector p∗ = (p∗j) and allocation

vector x∗ = (x∗
ij) comprise an equilibrium under the following conditions.

1. Market Clears. All cores are allocated in each server j. Formally,
∑n

i=1 x
∗
ij =

Cj.

2. Allocations are Optimal. Allocation maximizes utility subject to budget

for each user i. Formally, x∗
i solves Optimization (5.5) at prices p∗.

In the example, equilibrium prices are p = (0.100, 0.099) for the two servers. At

these prices, Alice receives xA = (1.34, 8.68) cores. She requests more processors on

server D because her bodytrack computation has more parallelism. Bob receives

xB = (8.66, 1.32).

Importantly, in a market equilibrium, users perform no worse than they would

under their entitlements. We sketch the proof. First, under some mild conditions

on utilities,3 users exhaust their budgets in equilibrium. This, combined with the

market-clearing condition, implies

∑
j

Cjp
∗
j = B, (5.6)

3 For strictly monotonic, continuous and non-satiable utility functions, optimal allocation exhausts
user’s budget [41].

128



where B is the sum of users’ budgets.

Next, since budgets are proportional to entitlements, user i is entitled to xent
ij =

(bi/B)Cj cores on server j. Given Equation (5.6), it can be shown that users afford

their entitlement allocation under equilibrium prices.

∑
j

xent
ij p∗j = (bi/B)

∑
j

Cjp
∗
j = bi.

Thus, xent
i is a feasible solution of Optimization (5.5) for user i and price vector

p∗. But since the equilibrium allocation x∗
i is the optimal solution,

ui(x
∗
i ) ≥ ui(x

entl
i ).

5.5.4 Finding the Market Equilibrium

Several cluster managers have designed markets and used a particular algorithm—

proportional response dynamics (PRD)—to find their equilibria[151, 152, 153]. PRD

is an iterative algorithm that uses simple and proportional updates for bids and

prices [154, 155]. It is decentralized, inexpensive, and avoids optimization.

In each PRD iteration, users bid by dividing their budget across resources in

proportion to the utility from them. Then, the market allocates by dividing resources

across users in proportion to their bids for them. In response to allocations, users

update bids. PRD ends when bids converge to stationary values.

The Fisher market equilibrium always exists because Amdahl utility is continuous

and concave [156]. And we know that PRD converges to the equilibrium when utility

functions have constant elasticity of substitution (CES) [157].4. But Amdahl utility

is not a CES utility and existing PRD procedures do not apply.

We extend PRD to Fisher markets with Amdahl utilities, detailing the deriva-

tion here and summarizing the algorithm in Section 5.5.5. Our derivation re-writes

4 The CES utility function has the form ui(xi) =
∑

j(wijxij)
ρ
i .
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the utility optimization problem and then assesses the effect on market equilibrium

conditions (i.e., market clears and allocations are optimal).

First, we turn the problem of finding the market equilibrium into a bidding prob-

lem. We re-write Optimization (5.5) with a new variable bij = xijpj, which is user

i’s bid for cores on server j.

max. ui(xi), (5.7)

s.t. xij = bij/pj, ∀j,
m∑
j=1

bij ≤ bi,

bij ≥ 0, ∀j.

The first constraint states that user i is allocated bij/pj processors. The second

constraint ensures that user i’s bids across servers do not exceed her budget.

Next, we re-write the market-clearing condition in terms of equilibrium bids. The

sum of users’ allocations on server j must equal the server’s capacity.

∑
i

x∗
ij =

∑
i

b∗ij/p
∗
j = Cj.

The condition implies that, in equilibrium, server j’s price is the sum of its bids

divided by its capacity.

p∗j =
∑
i

b∗ij/Cj. (5.8)

Finally, the second equilibrium condition states that, given prices p∗, alloca-

tions x∗ and bids b∗ should be the optimal solution for Optimization (5.7). Us-

ing Lagrangian multipliers, for user i, there exists λi such that if x∗
ij > 0, then

∂ui/∂x
∗
ij = λip

∗
j . Using algebra and the fact that b∗ij = x∗

ijp
∗
j , we conclude

b∗ij
2

b∗ik
2 =

fij p
∗
j u2

ij(x
∗
ij)

fik p∗k u2
ik(x

∗
ik)

. (5.9)
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In equilibrium, b∗ij must be proportional to wij sij(x
∗
ij) and

√
f . Users bid more when

the parallel fraction is larger and allocated cores provide larger speedups. Users also

bid more when prices are higher, which indicates more competition for the server’s

cores.

5.5.5 Amdahl Bidding Procedure

Equations (5.8) and (5.9) define the Amdahl Bidding procedure. Users iteratively

bid for servers’ cores. In iteration t, server j’s price is the sum of users’ bids divided

by its capacity.

pj(t) =
∑
i

bij(t)/Cj

Given these prices, user i’s allocation of cores on server j is xij(t) = bij(t)/pj(t). She

updates her bid by dividing her budget bi across servers in proportion to utility from

them.

bij(t+ 1) = biUij(t)/Ui(t),

Uij(t) =
√

fijpj(t) wij sij(xij(t)),

Ui(t) =
∑
j

Uij(t).

Updated bids lead to updated prices. The procedure continues until bids and prices

converge to stationary values. We terminate when prices change by less than a

small threshold ε. We can prove, using KKT conditions, that any fixed point of this

procedure is a market equilibrium and vice versa.

5.6 Processor Allocation

We deploy workloads on physical servers (Section 5.3), profiling execution time on

varied core allocations and datasets to fit Amdahl utility functions (Section 5.4).
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Then, we construct a population of users that shares datacenter servers and run the

market to allocate cores (Section 5.5). Finally, we measure allocation performance

on physical servers.

User Populations. We construct a population of users and define key datacenter

parameters. The number of users n is drawn uniformly from 40 to 1000, in increments

of 80. Each user’s budget and entitlement is drawn uniformly from 1 to 5. The

number of servers m is defined in terms of a multiplier on the number of users.

Specifically, m = sn and s is drawn from {0.25, 0.5, 1, 2, 4}.

The workload density d is the maximum number of colocated jobs on a server.

For each server, the number of jobs is drawn from {d/2, . . . , d} and the job itself is

drawn from Table 5.1. Each job is randomly assigned to a user and every user runs

at least one job. The competition for processors increases with density.

We construct 50 populations. Each population represents a different mix of work-

loads and their assignment to servers and users. We assess system performance and

allocation outcomes for each population. Finally, we report data averaged across

populations.

Rounding Allocations. Fair policies may produce fractional allocations. We

use Hamilton’s method to round fractional allocations to integral ones. Initially, we

assign ⌊xij⌋ cores to user i on server j. Then, we allocate any excess cores, one at a

time, to users in descending order of their fractional parts.

Metrics. Let timeij(xij) denote measured execution time for user i’s job on

server j when allocated xij cores. Let wij denote work completed per unit time when

the job computes with one core. Because multiple cores reduce execution time and

increase work rate, we measure a job’s normalized progress as follows.

JobProgressij(xij) = wij × timeij(1) / timeij(xij)

User i distributes multiple jobs across datacenter servers and her aggregate progress
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is as follows.

UserProgressi =

∑
j wij × timeij(1) / timeij(xij)∑

j wij

The numerator sums work completed across servers given the user’s core allocation.

The denominator sums work completed when the user receives only one core per

server. This definition of progress matches the Amdahl utility function in Section

5.5. It also corresponds to the weighted speedup metric, which is used to study

multi-threaded and multi-core systems [17, 158].

Finally, we define system progress as the weighted average of user progress.

Weights reflect system priorities and are defined by users’ budgets (i.e., entitlements).

Let bi and B denote user i’s budget and sum of all users’ budgets, respectively. User

i has weight bi/B and system progress is as follows.

SysProgress = (1/B)
∑
i

bi UserProgressi (5.10)

5.6.1 Allocation Mechanisms

We evaluate our mechanism, which fits Amdahl utilities and invokes the Amdahl

Bidding (AB) procedure. For each user, the mechanism instantiates an agent that

bids for processors based on users’ utilities and servers’ prices. Bidding allows agents

to shift cores from less parallelizable jobs to more parallelizable ones. Allocations are

efficient and guarantee entitlements. We compare (AB) against several alternatives.

• Greedy (G) is a performance-centric mechanism that greedily allocates each

core to the workload that yields the greatest speedup or progress. (G) uses

an oracle to predict speedup for varied core allocations. This policy ignores

entitlements when pursuing performance.

• Upper-Bound (UB) is a performance-centric mechanism that allocates cores
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to maximize system progress; see Equation (5.10). This policy favors users with

larger budgets and entitlements when pursuing performance.

• Proportional Sharing (PS) is a fair mechanism that allocates each servers’

cores in proportion to users’ entitlements. If a user does not compute on

a server, her share is reassigned to other users on that server in proportion

to entitlements. (PS) enforces entitlements server by server but may violate

them in aggregate. It neglects performance, ignoring users’ unique demands

for specific servers.

• Best Response (BR) is a market mechanism, like (AB), that balances fair-

ness and performance. Users iteratively bid for resources, the market announces

new prices, and users optimize bids with the interior point method [159]. Since

Amdahl utilities are concave, the interior point method finds globally optimal

bids in polynomial time.

In this paper, we focus on two important metrics: sharing incentives and perfor-

mance. We compare against (UB) because its allocations achieve maximum system

performance. We also compare against (PS) because its allocations provide sharing

incentives by definition. We note that in today’s datacenters, more sophisticated

mechanisms are deployed. For instance, VMware DRS [160] implements distributed

cluster-wide proportional shares. Although these mechanisms are considered to be

more realistic baselines, they do not provide the game-theoretic properties we con-

sider in this paper.

(AB) differs from (BR) in several regards. First, (AB) has lower overheads.

(AB)’s bidding process evaluates closed-form equations to update bids given new

prices whereas (BR)’s solves an optimization problem. In large systems, (BR) could

incur prohibitively high overheads.
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Figure 5.9: Average System Performance. Measured in terms of weighted system

progress.

Second, (AB) is better suited to highly competitive systems. (AB) finds the

Fisher market equilibrium when users are price-taking, which means users assume

bids cannot change prices. This assumption is realistic in large systems. When many

users share each server, an individual bid cannot significantly change the prices.

(BR), on the other hand, finds the Nash equilibrium when users are price-

anticipating. Users realize their bids can change prices and that realization affects

their bidding strategies. Individual bids are more likely to change prices in small

systems.

5.6.2 System Performance

Figure 5.9 presents performance for varied allocation policies and workload densities.

Performance is measured in terms of system progress and averaged over sampled user

populations. Data is normalized relative to that from proportional sharing (PS).

The figure illustrates the trade-offs between guaranteeing entitlements and pursuing

progress.

(AB) outperforms (PS), the state-of-the-art in enforcing entitlements within each

server. (PS) allocates cores in proportion to users’ entitlements and redistributes

any unused cores [136]. By focusing exclusively on entitlements, (PS) may allocate

beyond the point of diminishing marginal returns from parallelism. Cores allocated
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to one user could have contributed more to another’s progress.

(AB) achieves more than 90% of (UB)’s performance. (UB) allocates cores to

maximize Equation (5.10). Its performance advantage increases with the competition

for cores. When many workloads share the server, users rarely receive more than

a few cores. (UB) allocates these scarce cores to users that contribute most to

system progress, which improves performance disproportionately because the small

allocations have not yet produced diminishing marginal returns. For example, the

first three cores allocated to a workload has a larger impact than the next ten.

For similar reasons, (G)’s progress decreases with workload density. (G) allocates

cores to the “wrong” user when the objective is system progress because entitlements

are prominent in our measure of progress but ignored by the allocation policy. This

effect gets worse when more users share each server. When cores are scarce and no

workload reaches the point of diminishing returns, every core matters.

(AB) performs comparably with (BR), which has much higher implementation

costs. (AB) finds the market equilibrium using closed-form equations and compu-

tational costs are trivial. In contrast, (BR) requires optimization with costs that

scale with the number of users, workloads, and servers. Our (BR) implementation

optimizes bids with the interior point method, but related studies use hill climbing

[108].

(AB) produces a market equilibrium when users are price-taking whereas (BR)

produces a Nash equilibrium when users are price-anticipating. Although (BR) is

more robust to strategic behavior, price-anticipating users become price-taking ones

when many users share the server and competition for resources is high. As density

increases, (AB)’s market equilibrium approaches (BR)’s Nash equilibrium.
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Figure 5.10: Per-class Performance. Measured in terms of user utility.

5.6.3 Entitlements and Performance

Figure 5.10 presents performance for users with varied entitlement classes. Budgets

are proportional to class. For example, budgets for class 4 users are twice that of

class 2 users. We report average performance over users within a class and normalize

it by (PS)’s.

(G) neglects entitlements and disadvantages high-class users relative to (PS),

which satisfies entitlements. In contrast, (UB) favors high-class users because their

progress is weighted more heavily in Equation (5.10). Thus, performance-centric

policies benefit high-class users while harming low-class ones or vice versa.

(AB) and (BR) guarantee entitlements for all classes. Users in all classes make

similar progress because they have the budget to afford entitled allocations. We

sketch the proof for (AB) in Section 5.5 and a similar one applies to (BR). Figure

5.10 presents the same finding empirically.

Moreover, (AB) and (BR) outperform (PS). Dividing budgets into bids for cores

on specific servers is equivalent to trading cores on servers running less parallel jobs

in return for cores on servers with more parallelism. These trades cause (AB) and

(BR) to outperform (PS), which enforces proportional shares independently on each

server.
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Figure 5.11: Mean Absolute Percentage Error. MAPE of core allocations under

different allocation policies and global core entitlements.

5.6.4 Entitlements and Allocations

Figure 5.11 compare allocations against datacenter-wide entitlements by reporting

the Mean Absolute Percentage Error (MAPE). Error is high, regardless of policy,

when users run jobs on a few servers. Each user’s allocated cores are drawn from the

servers she computes on. Computing on fewer servers constrain allocation and make

satisfying entitlements more difficult.

(G) and (UB)’s errors are large because they disregard entitlements. Under (G),

users who have similar utilities receive similar core allocations despite reporting dif-

ferent entitlements. Under (UB), users that contribute more to system progress

receive more cores, especially when density is high and cores are scarce.

(PS)’s errors are significant due to its proportional shares within each server.

Users receive no more than their share on each server that runs their jobs, and users

receive no compensating credit for servers that they do not use. This effect, first

seen in Section 5.2, explains the gap between (PS)’s allocations and entitlements. In

theory, (PS)’s errors fall to zero when users run jobs on every server in the system,

but this scenario is practically impossible.

(AB) and (BR) address (PS)’s challenges by permitting users to shift and trade

entitlements across servers even in violation of proportional shares within servers.
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Figure 5.13: Convergence Rate. Rate of convergence for (AB).

The ability to trade freely increases with workload density. Although (AB) and

(BR) report similarly low errors, their allocations are different.

Suppose a user runs two jobs, one on server C without co-runners and another on

server D with multiple co-runners. Under (AB), the user is price-taking and divides

her budget between servers. Under (BR), the user anticipates the effect of her bid

on C’s price, assigns a small fraction of her budget to C, and assigns the rest to D.

(BR)’s strategic bids do not affect the user’s allocation on C. But they do increase

her allocation on D relative to what she would have received from (AB).

5.6.5 Interference Sensitivity

We estimate parallel fraction F̄ by profiling workloads in isolation. However, work-

loads in real systems see interference from colocated computation. Colocation de-

grades performance, which implies smaller speedups from parallelism and smaller

effective values for F̄ . By profiling workloads in isolation, we may over-estimate F̄ .
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We assess (AB)’s sensitivity to colocation. We select a random user and reduce

her jobs’ parallel fractions by some percentage to reflect contention and corresponding

estimation error for F̄ . In chip multiprocessors, competition for shared cache and

memory typically degrades performance by 5 to 15% [161]. Finally, we compare

market allocations when using original and adjusted estimates.

Figure 5.12 shows that over-estimating F̄ may cause users to bid more and receive

larger allocations. However, because contention causes the user to over-estimate F̄

for all of her jobs, the net effect on how she divides her budget across jobs is small.

For moderate workload densities, over-estimating F̄ by 5 to 15% shifts an allocation

by one or two cores.

5.6.6 Overheads

Finding equilibrium allocations is computationally efficient and requires 12.35ms,

an average over 600 measurements. In each iteration, users spend 0.10ms updating

bids and the market spends 0.85ms updating prices and checking the termination

condition. Users communicate with the market and round-trip network delay ranges

from 0.20 to 0.30ms.

After prices converge, often within ten iterations, the market distributes equilib-

rium bids to servers. Each server calculates equilibrium allocations, in parallel, with

an overhead of 0.35ms. Of this time, 0.3ms is needed to receive bids and 0.05ms is

needed to calculate and round fractional allocations.5

In BR, users spend on average 22× more time to update their bids than they do

in AB. These overheads are problematic when architects opt for a centralized im-

plementation of the market to avoid congesting networks with thousands of bidding

messages. In centralized implementations, BR’s procedure for updating bids pro-

duces prohibitively high overheads as network communication and calculating final

5 12.35ms = 10×(0.10ms + 0.85ms + 0.25ms) + 0.35ms.
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allocations becomes a smaller share of total overhead and updating bids becomes a

larger share.

Figure 5.13 shows how the number of iterations depends on system parameters.

First, overhead increases with the user population size. As more users bid, the market

requires more time to find stationary prices. Second, more servers implies more jobs

per user and smaller shares of the budget for each job. Smaller bids cause smaller

price updates, which lowers overheads.

Third, workload density affects overheads in non-monotonic ways. (AB) con-

verges faster when workload density is low and only a few users bid for each server.

As density increases, the number of bidders and overheads increases. But even fur-

ther increases in density imply the system has users with many jobs, each with a

small share of the budget and small bids that reduce overheads.

5.7 Related Work

Numerous studies cast hardware management as a market problem in which users

bid for resources [108, 162]. XChange, the study that inspires our best-response (BR)

baseline, is a market for allocating cache capacity, memory bandwidth, and power in

a chip multiprocessor [108]. XChange supports piecewise-linear models that can take

any shape and thus support more resource types. But the flexible models require

search heuristics, which may get caught in local optima, to find the bids and prices

that produce a Nash equilibrium. In contrast, we define Amdahl utility functions

and propose a closed-form bidding mechanism that guarantees a market equilibrium.

Other studies explore game theory for systems management. Many researchers

use the Leontief utility function to allocate datacenter cores and memory [8, 163, 40].

Zahedi et al. use the Cobb-Douglas utility function to allocate cache capacity and

memory bandwidth [1]. Both studies guarantee game-theoretic desiderata such as

sharing incentives, envy-freeness, Pareto efficiency, and strategy-proofness. The
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Fisher market in our study generalizes sharing incentives with entitlements, guaran-

tees Pareto efficiency with its market equilibrium, and is strategy-proof for a large

user population.

Our analysis compares two solution concepts—market and Nash equilibria—but

others are relevant to systems and architecture. For datacenter power manage-

ment, Fan et al. study mean field equilibria in which best responses are optimized

against statistical expectations of competitors’ actions [2]. For workload colocation

in servers, Llull et al. study stable matches, a solution concept for cooperative games

in which users’ interactions determine a shared outcome [161].

Cloud infrastructure providers often require reservations, asking users to specify

their desired resources such as the number of cores, amount of memory, and number

of virtual machines. For example, Hindman et al. implement a request-grant ab-

straction among heterogeneous parallel frameworks [66]. Such systems rely on users

to report resource usage, introducing opportunities for strategic action.

Finally, Gulati et. al enforce entitlements in a virtualized environment with

VMware DRS, which allocates processors and memory to virtual machines across a

distributed cluster [160]. Allocations are determined based on entitlements and de-

mands based on actual consumption, which is vulnerable to manipulation and users’

strategic behaviors. In contrast, we use Amdahl utility functions and Karp-Flatt

metric to estimate users’ demands on each server. The Amdahl bidding mechanism

is theoretically strategy-proof in large systems.

5.8 Conclusion and Future Work

We introduce the Amdahl utility function, which concisely models user value from

processor core allocations. We present a profiling framework that operationalizes

Amdahl’s Law, using its inverse—the Karp-Flat metric—to estimate the paralleliz-

able fraction of a workload. Finally, we design a market mechanism that uses Amdahl
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utilities and a novel bidding procedure to allocate processors. Allocations ensure en-

titlements in a shared datacenter.

We design and evaluate the mechanism for processor cores. In the future, we will

look beyond a single resource type. Amdahl’s Law has been extended for hetero-

geneous core and can be generalized to reason about the diminishing returns from

allocations of any hardware resource [22].
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6

Dynamic Proportional Sharing: A Game-Theoretic
Approach

6.1 Introduction

Shared systems are defined by the competition for resources between strategic agents.

In this chapter, we consider a community of agents who share a non-profit system and

its capital and operating costs. Sharing increases system utilization and amortizes

its costs over more computation [6]. Examples include supercomputers for scientific

computing [164], datacenters for Internet services [133, 132], and clusters for aca-

demic research [165, 144]. Note, however, that our focus excludes systems in which

agents explicitly pay for time on shared computational resources (i.e., infrastructure-

as-a-service).

Shared systems ensure fairness by allocating resources proportionally to enti-

tlements, which specify each agent’s share of system resources relative to others

[136, 131, 32]. Entitlements are dictated by exogenous factors such as agents’ con-

tributions to the shared system or priorities within the organization. A dynamic

allocation mechanism should ensure agents’ entitlements across time while assigning
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resources to computational stages that benefit most.

Guaranteeing entitlements and redistributing under-utilized resources are difficult

when agents are strategic. The allocation mechanism does not know and must extract

agents’ utilities, which are private information. Strategic agents act selfishly to

pursue their own objectives. Agents will determine whether misreporting demands

can improve their performance even at the expense of others in the system. For

example, an agent is likely to over-report her demand in the current time period to

obtain more resources, unless doing so leads to a reduction in the resources allocated

to her in later periods.

We seek allocation mechanisms that satisfy strategy-proofness (SP), which en-

sures that no agent benefits by misreporting her demand for resources. Strategy-

proofness is a key feature contributing to efficiency as it allows the mechanism to

optimize system performance according to agents’ true utilities. Without SP, agents’

reports may not represent their true utility and allocating based on reported demands

may not produce any meaningful performance guarantee. Moreover, strategy-proof

mechanisms reduce the cognitive load on agents by eliminating the need to optimally

construct resource demands or preemptively respond to misreports by other agents

in the system.

Strategy-proofness is complemented by sharing incentives (SI), which ensures

that agents perform at least as well as they would have by not participating in the

allocation mechanism (i.e., using their own resources as a smaller, private system).

With sharing incentives, agents would willingly federate their resources and manage

them according to the commonly agreed upon policy. A mechanism that statically

enforces entitlements in every time period satisfies strategy-proofness and sharing

incentives but its efficiency is poor and fails to realize the advantages of dynamic

sharing across time.

In this chapter, we focus on three fundamental game-theoretic desiderata: sharing

145



incentives, strategy-proofness, and efficiency. We consider agents who derive high

utility per unit of resource up until some amount of resource allocation (i.e., their

demand) and derive low utility beyond that allocation. The high-low formulation is

appropriate for varied resources such as processor cores, cache and memory capacity,

or virtual machines in a datacenter. For example, an agent could derive high utility

when additional processors permit her to dequeue more tasks from a highly critical

job. Once the job’s queue is empty, she derives low utility from using additional

processors to replicate tasks, which guards against stragglers or failures. In another

example, an agent that is allocated more power can turn on more processors, each of

which provides high utility from task parallelism. Once the agent exhausts her job’s

parallelism, it can use additional power to boost processor voltage and frequency for

lower, non-zero utility.

We propose allocation mechanisms for dynamic proportional sharing to address

limitations in existing approaches. We begin by proving that policies used in state-

of-the-art schedulers [166, 167, 168] fail to satisfy SP or SI. We then propose two

alternative mechanisms. First, as our main contribution, we propose the flexible

lending mechanism to satisfy SP, guarantee at least 50% of SI performance, and

provide an asymptotic efficiency guarantee. The mechanism uses tokens to enable

these theoretical guarantees. In practice, our simulations show that performance

is comparable to that of state-of-the-art mechanisms and achieves 98% of SI per-

formance, much better than the lower bound. Second, for situations where SI is a

hard constraint, we propose the T -period mechanism to satisfy SP and SI while still

outperforming static allocations.

6.2 Preliminaries

Consider a dynamic system with n agents and R discrete rounds. Agent i contributes

ei > 0 units of a resource at each round, which we refer to as her endowment. In
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Figure 6.1: Users Utility. A user derives high utility from resources up to her demand

and derives low utility from resources beyond her demand.

other words, ei is agent i’s contribution to the federated system, which does not vary

over time. Let [n] = {1, . . . , n} and E =
∑

i∈[n] ei denote the total number of units

to be allocated at each round. At round r, agent i has a true demand of di,r ≥ 0

units and reports a demand of d′i,r ≥ 0. Let d′
i = (d′i,1, . . . , d

′
i,R) denote the vector of

agent i’s reports, and d′
−i denote the reports of all agents other than i.

A dynamic allocation mechanism M assigns each agent an allocation aMi,r(d
′
i,d

′
−i)

using only information from the first r entries in the demand vectors. We will often

write simply ai,r when the exact mechanism and the demands are clear from context.

Let aM
i (d′

i,d
′
−i), often simply ai, denote the vector of agent i’s allocations. Agents

have high (H) utility per resource up to their demand, and low (L) utility per resource

that exceeds their demand. Formally, the utility of agent i at round r for ai,r units

is denoted by ui,r(ai,r) and modeled as the following.

ui,r(ai,r) =

{
ai,rH if ai,r ≤ di,r,

di,rH + (ai,r − di,r)L if ai,r > di,r.

Figure 6.1 shows ui,r for user i with demand di,r at round r. For simplicity, we

assume H and L are the same for all agents, but all our results extend to the case
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where agents have different values of H and L (with the exception of Section 6.5.5).

While resources and demands are discrete, we allow the allocations ai,r to be

real-valued. Real-valued allocations can be thought of as probabilistic—the realized

allocation is a random allocation where agent i is allocated ai,r resources in expecta-

tion, which is always possible as a result of the Birkhoff-von Neumann theorem [169].

Agent i’s overall utility after R rounds for allocation ai is calculated additively as

follows.

Ui,R(ai) =
R∑

r=1

ui,r(ai,r).

We do not consider discounting for simplicity of presentation, but our mechanisms

readily extend to the case where agents discount their utilities over time.

In this chapter, we focus on three main properties: strategy-proofness, sharing

incentives, and efficiency. First, strategy-proofness says that agents never benefit

from lying about their demands. In other words, agent i’s utility decreases if she

reports d′
i ̸= di.

Definition 1. Mechanism M satisfies strategy-proofness (SP) if

Ui,R(a
M
i (di,d

′
−i)) ≥ Ui,R(a

M
i (d′

i,d
′
−i)) ∀i, ∀R, ∀di, ∀d′

i, and ∀d′
−i.

Next, sharing incentives says that by participating in the mechanism, agents

receive at least the utility they would have received by not participating.

Definition 2. Mechanism M satisfies sharing incentives (SI) if

Ui,R(a
M
i (di,d

′
−i)) ≥ Ui,R(ei) ∀i, ∀R, ∀di, and ∀d′

−i.

We also define a relaxed notion of α-sharing incentives, which says that every agent

gets at least an α fraction of the utility that she would have received without taking

part in the mechanism. Note that 1-SI is equivalent to SI.
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Definition 3. Mechanism M satisfies α-SI if

Ui,R(a
M
i (di,d

′
−i)) ≥ α Ui,R(ei) ∀i, ∀R, ∀di, and ∀d′

−i.

Finally, efficiency says that all resources should be allocated, and an agent with

L valuation should never receive a resource while there are agents with H valuation

for that resource.

Definition 4. Mechanism M satisfies efficiency if

∑
i∈[n]

aMi,r = E,

and if aMi,r > d′i,r for some agent i and round r, then aMj,r ≥ d′j,r for all agents.

Note that efficiency is relative to the agents’ reports, not their actual valuations,

which are hidden from the mechanism. Therefore, in situations where agents lie

about their valuations, it is possible that even an efficient mechanism allocates a unit

inefficiently with respect to the actual valuations. With this in mind, there is little

value in a mechanism that is efficient but not SP. Similarly, if a mechanism does not

satisfy SI, then agents may not want to participate in it. So an efficient mechanism

that does not satisfy SI may not actually exhibit efficiency gains in practice because

agents choose not to participate. In some contexts, SI may not be of concern because

agents are forced to participate or are willing to risk participation if gains are likely

large and losses are likely small.

For readability, some proofs are omitted and appear in the appendix.

6.3 Existing Mechanisms

In this section, we focus on the (weighted) max-min fairness policy, which is one of the

most widely used policies in computing systems. It is deployed in many state-of-the-

art datacenter schedulers such as the Hadoop Fair Scheduler [166], Hadoop Capacity
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Scheduler [167] and Spark Dynamic Allocator [168]. And it has been extensively

studied in the literature [8, 170, 171].

A dynamic allocation mechanism could deploy the max-min policy for two differ-

ent objectives: maximizing the minimum accumulated allocations up to a round, or

maximizing the minimum allocation at each round, independently of previous rounds.

We call the first mechanism Dynamic Max-Min (DMM) and the second mechanism

Static Max-Min (SMM). First, at each round r, DMM selects the allocation that

maximizes mini

∑r
r′=1 ai,r′/ei, the minimum weighted cumulative allocation; subject

to this, it maximizes the second lowest weighted cumulative allocation, and so on.

This maximization is subject to the constraint that no resource is allocated to an

agent with low valuation as long as there are agents with high valuation.

Second, at each round r, SMM selects the allocation that maximizes mini ai,r/ei,

the minimum weighted allocation at that round; subject to this, it maximizes the

second lowest weighted allocation, and so on. This maximization is also subject to

the constraint that no resource is allocated to an agent with low valuation as long as

there are agents with high valuation. Under SMM, agents are guaranteed to receive

their demands as long as they are less than or equal to their endowment. Agents

with demands higher than their endowments receive extra resources from agents

with demands lower than their endowments. Unlike DMM, SMM allocates resources

locally at round r, regardless of agents’ allocations prior to round r.

In the rest of this section, we study properties of these two mechanisms. In

particular, we focus on three properties: strategy-proofness, sharing incentives, and

efficiency. We examine whether the existing mechanisms satisfy these properties for

the special case when L = 0 and for the general case when L > 0.
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6.3.1 Properties of Mechanisms for L = 0

When L = 0, one might think that agents do not have any incentive to misreport

their demands. However, we show that DMM fails to satisfy SI and SP.

Theorem 5. Dynamic max-min mechanism violates sharing incentives, even when

L = 0.

Proof. Suppose that R = 10 and there are three agents, each with ei = 3. For

all rounds r ̸= 10, the demands are d1,r = 1, d2,r = 2, and d3,r = 6. For rounds

r = 1, . . . , 9, each agent is allocated exactly her demand. After round 9, utilities for

agents 1, 2 and 3 are 9H, 18H and 54H, respectively. At round 10, demands are

d1,10 = 9, d2,10 = 9, and d3,10 = 6. DMM allocates all 9 units to agent 1, which

maximizes the minimum weighted cumulative allocation. Consider agent 2. Under

DMM, agent 2’s allocation is a2,r = 2 for all r ̸= 10 and a2,10 = 0. If she had not

participated in the mechanism, then she would have obtained the same utility in

each round r ̸= 10, but a strictly higher utility in round r = 10.

Theorem 6. Dynamic max-min mechanism violates strategy-proofness, even when

L = 0 [172].

Proof. Consider three agents with equal endowments m1 = m2 = m3 = 1 sharing

three units of a resource for three rounds. The demand of agent 1 is 3 for all three

rounds. Agent 2’s demand is 3 for rounds 1 and 3 and 0 for round 2. And agent 3

has a demand of 3 for round 2 and 0 for rounds 1 and 3. Agent 1 achieves utility of

3.375H by truthful reporting. If agent 1 misreports 0 for round 1, her utility would

increase to 3.75H.

Since DMM does not satisfy SP, it cannot guarantee any meaningful notion of

efficiency, as explained in Section 6.2. Next, we show that SMM satisfies SI, SP, and

efficiency.
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Theorem 7. Static max-min mechanism satisfies strategy-proofness, sharing incen-

tives, and efficiency when L = 0.

Proof. We start by proving that SMM satisfies SP. Under SMM, allocations at round

r are independent of allocations at previous rounds. Suppose that agent i reports

d′i,r ̸= di,r at round r. Let a′i,r and ai,r denote i’s allocations at round r for reporting

d′i,r and di,r, respectively. If ai,r ≥ di,r, then i already receives her highest possible

utility, di,rH (because L = 0), and she cannot benefit from misreporting.

If ai,r < di,r, then for all j ̸= i, we have: (1) aj,r ≤ dj,r and (2) ai,r/ei ≥ aj,r/ej.

The former holds by SMM’s definition. The latter holds because SMM maximizes

the minimum weighted allocations in a lexicographical order. If there is j with

aj,r/ej > ai,r/ei, then SMM should decrease aj,r and increase ai,r. Now, suppose for

contradiction that a′i,r > ai,r. Since
∑

k a
′
k,r =

∑
k ak,r, there should be an agent ℓ

with a′ℓ,r < aℓ,r ≤ dℓ,r. Therefore, we have:

a′ℓ,r/eℓ < aℓ,r/eℓ ≤ ai,r/ei < a′i,r/ei.

This is a contradiction because SMM could improve its objective value by decreasing

a′i,r and increasing a′ℓ,r.

To see that SMM satisfies SI, note that an agent can guarantee herself at least

ei resources (her utility from not participating) at each round by reporting d′i,r = ei

for all r. By SP, truthful reporting achieves at least this utility. Therefore, truthful

reporting achieves at least as much utility as not participating in SMM, which proves

SI. Finally, SMM satisfies efficiency by definition, since it either completely fulfills

all demands or allocates all resources to agents that value them highly.

6.3.2 Properties of Mechanisms for L > 0

We now consider the general setting where an agent’s low valuation is still positive.

Unfortunately, SMM no longer retains its properties from the L = 0 case. Agents
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are no longer indifferent to forsaking low-valued resources and may lie in order to

receive them.

Theorem 8. When L > 0, static max-min mechanism violates strategy-proofness

and sharing incentives.

Proof. Consider an instance with 2 agents, each with endowment ei = 1, and a

single round. Agent 1 has demand 2 and agent 2 has demand 0. SMM allocates both

resources to agent 1 and nothing to agent 2. However, had agent 2 not participated

in the mechanism, she would have received one resource and utility L > 0. Similarly,

had she misreported her demand to be 1, she would have received one resource and

utility L > 0.

Indeed, in this general setting, no mechanism can simultaneously satisfy efficiency

and either of the two other desired properties.

Theorem 9. When L > 0, there is no dynamic mechanism that satisfies α-sharing

incentives and efficiency, for any α > 0.

Proof. Consider an instance with two agents, each with endowment ei = 1, and a

single round. Agent 1 has demand 2 and agent 2 has demand 0. Efficiency dictates

that we allocate both resources to agent 1, which would violate α-SI for agent 2 for

any α > 0.

Theorem 10. When L > 0, there is no dynamic mechanism that satisfies strategy-

proofness and efficiency.

Proof. Consider an instance with two agents, each with endowment ei = 1, and

a single round. Both agents have demand 0. For efficiency, the mechanism must

allocate all the resources so that at least one agent receives ai,1 > 0. Supposing

without loss of generality that a1,1 > 0, then a2,1 < 2. If agent 2 misreports d′2,1 = 2,
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by efficiency, the mechanism must allocate both resources to agent 2, which is an

improvement over her utility from reporting truthfully.

Note that SP and SI are compatible. A mechanism that statically allocates

agents their endowments satisfies SP and SI; agents have no incentive to misreport

because allocations do not depend on reports and agents receive their fair share of

resources. This mechanism clearly fails to satisfy efficiency and does not extract any

benefit from sharing. In Section 6.5, we propose a mechanism that satisfies strategy-

proofness, guarantees each user at least 50% of their utilities from sharing incentives,

and provides an asymptotic efficiency guarantee.

6.4 Proportional Sharing With Constraints Procedure

The mechanisms we present in the remainder of this chapter have, at their core, a

procedure we call Proportional Sharing With Constraints (PSWC). The procedure

allocates some amount of resources among agents proportionally to their (exogenous)

weights subject to (agent-dependent) minimum and limit constraints: (1) each agent

receives at least her minimum allocation, and (2) each agent should receives no more

than her limit allocation.

Formally, PSWC procedure takes as input an amount to allocate, A, agents’

weights, w = (w1, . . . , wn), agents’ minimum allocations, m = (m1, . . . ,mn), and

agents’ limit allocations, l = (l1, . . . , ln). PSWC outputs a vector of allocations

a = (a1, . . . , an) defined as the solution to the following program.
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Figure 6.2: Proportional Sharing with Constraints. For six agents with equal

weights, allocations are represented by the height of blue bars.

Minimize x,

s.t. ai/wi ≤ x if mi < ai ≤ li,

ai ≤ li ∀i,

ai ≥ mi ∀i,∑
i∈[n]

ai = A.

PSWC is illustrated in Figure 6.2. The program can be solved in O(n log(n))

time by the Divvy algorithm [173]. The Divvy algorithm proceeds by sorting the

limit and minimum allocation bounds in O(n log(n)) time, and then conducting a

linear time search for the optimal value of x by increasing the allocations in discrete

steps until all resources have been allocated.

The following lemma characterizes the allocations produced by the PSWC pro-

cedure and will be useful in our later proofs.

Lemma 11. Under PSWC, for every agent i, ai = max(mi,min(li, xwi)).

Proof. First, we show that if mi < xwi, then ai = min(li, xwi). If ai > min(li, xwi),

then at least one constraint is violated. If ai < min(li, xwi), then there exists at least
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one agent ℓ such that aℓ = xwℓ because otherwise, x is not optimal. In this case, ai

can be increased while aℓ for all ℓ with aℓ = xwℓ decreases. This allows for a smaller

value of x, which contradicts the optimality of x. Next, we show that if mi ≥ xwi,

then ai = mi. Since ai cannot be less than mi, if ai is not equal to mi, then ai > mi,

which means ai > xwi. However, since ai > mi, the first constraint dictates that

ai ≤ xwi, a contradiction. Combining these two cases gives the desired result.

Our proposed mechanisms all have similar structure. First, agents always receive

exactly the same number of resources that they contribute to the system (over the

entire R rounds). This is a fairness primitive in its own right, but is primarily a

design feature that helps us provide desirable properties. Second, all our proposed

dynamic mechanisms call the PSWC procedure to allocate resources at each round.

Our mechanisms are determined primarily by how we set the minimum and maximum

constraints.

6.5 Flexible Lending Mechanism

We now turn to designing mechanisms that satisfy our game-theoretic desiderata

while increasing efficiency significantly over static allocation. The static allocation

mechanism satisfies both SP and SI, but it does not exhibit any gains from shar-

ing. DMM and SMM sacrifice SP and SI in exchange for efficiency. However, in

the absence of SP, any guarantee on efficiency based on agents’ demands is not

meaningful as agents have incentives to misreport their demands when L > 0. In

this section, we present the flexible lending (FL) mechanism. The flexible lending

mechanism achieves strategy-proofness and an asymptotic efficiency guarantee. FL

satisfies a theoretical 0.5 approximation to SI and our simulation results show that

it significantly outperforms this bound in practice (see Section 6.7).
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6.5.1 Definition

For a fixed number of rounds R, FL allocates exactly Rei resources to each agent

i, which is exactly her contribution to the shared pool over all R rounds. The

mechanism enforces this constraint by simply removing agent i from the list of eligible

agents once she receives Rei resources in total. We keep track of the resources each

agent has received with a running token count ti, effectively ‘charging’ each agent a

token for every resource she receives. We denote by ti,r the number of tokens that

agent i holds at the start of round r. Thus, the number of tokens that an agent holds

puts a hard limit on the number of resources she can receive at any given round.

Algorithm 3 presents the flexible lending mechanism. We define d̄i to be the

allocatable demand of agent i at each round, which is simply the minimum of her

reported demand d′i,r and the number of tokens she has remaining ti. We distinguish

between two cases depending on whether the total allocatable demand is higher or

lower than the total supply of resources.

First, if the total allocatable demand is at least as high as the total supply, then

FL runs PSWC with the minimum allocation for each agent set to 0, and the limit

allocation set to d̄i. This way, resources are allocated proportionally among all agents

that want them. Second, if the total allocatable demand is less than the total supply,

then agents receive their full allocatable demand. Therefore, FL runs PSWC with

minimum allocation for each agent i set to d̄i, and limit allocations set to her number

of tokens ti (which is always at least as large as her allocatable demand). This way,

FL allocates resources proportionally among all agents, subject to the condition that

no agent receives fewer resources than her demand.

We illustrate FL with an example.

Example 12. Consider a system with three agents and four rounds. Each agent has

endowment ei = 1. Suppose that agents’ (truthful) reports are given by the following
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Algorithm 3: Flexible Lending Mechanism

t = Re ▷ Initialize token count
for r ∈ {1, . . . , R} do

d̄← min(d′
·,r, t) ▷ d̄i is i’s allocatable demand

D ←∑
i∈[n] d̄i

if D ≥ E then
a·,r ← PSWC(A = E, l = d̄,m = 0,w = e)

end
else

a·,r ← PSWC(A = E, l = t,m = d̄,w = e)
end
t← t− a·,r

end

table:

di,1 di,2 di,3 di,4
i = 1 3 1 1 0
i = 2 0 2 1 2
i = 3 0 0 0 4

FL allocations are given by the following table:

aFLi,1 aFLi,2 aFLi,3 aFLi,4
i = 1 3 1 0 0
i = 2 0 2 1.5 0.5
i = 3 0 0 1.5 2.5

While all agents have tokens remaining, FL efficiently allocates resources. However,

in round 3, agent 1 has no tokens remaining and therefore the supply of resources

exceeds the allocatable demand. In this case, resources are evenly divided between

agents 2 and 3. In the final round, agent 2 can receive only 0.5 resources before

running out of tokens, so the rest of the resources are allocated to agent 3.

6.5.2 Basic Properties

Next, we study the properties of FL. We first show that FL satisfies strategy-

proofness. We then show that FL guarantees at least 50% of SI performance. And
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finally we show that FL provides an asymptotic efficiency guarantee. Throughout

this section, we extensively use the following lemma which characterizes FL alloca-

tions.

Lemma 13. Let x denote the objective value of FL’s call to PSWC at round r. If

D ≥ E, then ai,r = min(xei, di,r, ti,r). If D < E, then ai,r = min(ti,r,max(di,r, xei)).

Proof. Suppose first that D ≥ E. Substituting the relevant terms into Lemma 11,

we have

ai,r = max(0,min(min(di,r, ti,r), xei)) = min(xei, di,r, ti,r).

If instead D < E, then again substituting into Lemma 11 gives

ai,r = max(min(di,r, ti,r),min(ti,r, xei)) = min(ti,r,max(di,r, xei)).

The final equality, max(min(A,B),min(A,C)) = min(A,max(B,C)) can easily be

checked to hold case by case for any relative ordering of A, B, and C.

We next prove a basic monotonicity result, which states that if we shift some

tokens to a single agent from all other agents, then the agent with more tokens

achieves a (weakly) higher allocation. The proof follows easily from Lemma 13 and

is deferred to the Appendix.

Lemma 14. Consider some agent i, and suppose that t′i,r ≥ ti,r, t
′
j,r ≤ tj,r for all

j ̸= i, and d′k,r = dk,r for all k ∈ [n]. Then a′i,r ≥ ai,r.

As our main technical result, we show in the following subsection that FL is

strategy-proof. At a high level, we show that if an agent receives fewer high-valued

resources as a result of misreporting, then her allocations in all future rounds are

weakly higher. This means that she cannot receive fewer low-valued resources at any

future round, relative to her allocations had she not misreported. Therefore, because

the total number of resources allocated to each agent is fixed (by the initial token
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count), her misreport can only result in trading high-valued resources at an early

round for other, potentially low-valued, resources at later rounds.

6.5.3 Strategy-Proofness

Suppose agent i reports demands that are not equal to her true demands. Let r′ be

the latest round for which i misreports. That is, r′ = max{r : d′i,r ̸= di,r}. Suppose

that d′i,r′ < di,r′ . We show that, all else being equal, i could (weakly) improve her

utility by instead reporting d′i,r′ = di,r′ . The proof that reporting d′i,r′ > di,r′ is also

(weakly) worse than reporting d′i,r′ = di,r′ is almost identical and can be found in

Appendix A.12. It follows from this that FL is strategy-proof, since any non-truthful

reports can be converted to truthful reports one round at a time, (weakly) improving

i’s utility.

We consider parallel universes: one in which agent i misreports d′i,r′ at round r′

(the ‘misreported instance’) and one in which she truthfully reports di,r (the ‘truthful

instance,’ even though i’s reports prior to r′ may yet be non-truthful). All other

reports are identical in both universes. We denote allocations and tokens in the

misreported instance using a′ and t′, respectively, and in the truthful instance by a

and t. We denote by Dr and D′
r the total demand D at round r in the truthful and

misreported instances, respectively.

We first note that for all rounds prior to r′, the allocations in the truthful and

misreported instances are the same.

Lemma 15. For all rounds r < r′ and for all agents j, a′j,r = aj,r.

Proof. The mechanism does not take future reports into account, so because agents’

demands in both instances are identical up to round r′, so are the allocations.

We next show a monotonicity lemma, which says that agent i’s allocation at

round r′ is (weakly) smaller in the misreported instance than the truthful instance,
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and all other agents’ allocations are (weakly) larger.

Lemma 16. For all agents j ̸= i, we have that a′j,r′ ≥ aj,r′. Further, a
′
i,r′ ≤ ai,r′.

Proof. We prove the statement for all j ̸= i. The statement for i follows immediately

because the total number of allocated resources is fixed. Observe first that

D′
r′ =

∑
k∈[n]

min(d′k,r′ , tk,r′) ≤
∑
k∈[n]

min(dk,r′ , tk,r′) = Dr′ ,

since i’s demand decreases in the misreported instances but all other demands and

token counts stay the same. Let x′ denote the objective value in FL’s call to PSWC

in the misreported instance, and x in the truthful instance.

Suppose that E ≤ D′
r′ ≤ Dr′ . Suppose first that x′ > x. Then, by Lemma 13,

for all j ̸= i, we have

a′j,r′ = min(x′ej, dj,r′ , tj,r′) ≥ min(xej, dj,r′ , tj,r′) = aj,r′ .

Next, suppose that x′ ≤ x. Then, again by Lemma 13 and the fact that d′i,r′ < di,r′ ,

a′i,r′ = min(x′ei, d
′
i,r′ , ti,r′) ≤ min(xei, di,r′ , ti,r′) = ai,r′ .

And, for all j ̸= i,

a′j,r′ = min(x′ej, dj,r′ , tj,r′) ≤ min(xej, dj,r′ , tj,r′) = aj,r′ .

Because a′k,r′ ≤ ak,r′ for all agents k, and
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ , it must be the

case that a′k,r′ = ak,r′ for all k, which satisfies the statement of the lemma.

Next, suppose thatD′
r′ < E ≤ Dr′ . By the definition of FL, a′k,r′ ≥ min(d′k,r′ , tk,r′)

for all k, and ak,r′ ≤ min(dk,r′ , tk,r′) for all k. Since min(d′j,r′ , tj,r′) = min(dj,r′ , tj,r′)

for all j ̸= i, we have that a′j,r′ ≥ aj,r′ , implying also that a′i,r′ ≤ ai,r′ .

Finally, suppose that D′
r′ ≤ Dr′ < E. Suppose first that x′ ≤ x. Then, by

Lemma 13 and the assumption that d′i,r′ < di,r′ , we have

a′i,r′ = min(ti,r′ ,max(x′ei, d
′
i,r′)) ≤ min(ti,r′ ,max(xei, di,r′)) = ai,r′
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and

a′j,r′ = min(tj,r′ ,max(x′ej, dj,r′)) ≤ min(tj,r′ ,max(xej, dj,r′)) = aj,r′

for all j ̸= i. Because a′k,r′ ≤ ak,r′ for all agents k, and
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ , it

must be the case that a′k,r′ = ak,r′ for all k, which satisfies the lemma’s statement.

Next, suppose that x′ > x. Then, again by Lemma 13, for all j ̸= i, we have

a′j,r′ = min(tj,r′ ,max(x′ej, dj,r′)) ≥ min(tj,r′ ,max(xej, dj,r′)) = aj,r′ .

If it is the case that a′i,r′ = ai,r′ , then it must also be the case that a′j,r′ = aj,r′ for

all j ̸= i. That is, allocations at round r′ are the same in the misreported instance as

the truthful instance. Therefore, for all rounds r ≤ r′, allocations in both universes

would be the same. In all rounds r > r′, reports in both universes are the same.

Together, these imply that allocations for all rounds r > r′ would be the same in

both universes. In particular, i does not profit from her misreport and could weakly

improve her utility by reporting d′i,r′ = di,r′ . So, for the remainder of this section, we

assume that a′i,r′ < ai,r′ .

Our next lemma states that the resources that i sacrifices in round r′ are high-

valued resources for her. The intuition is that if it were the case that i was being

forced to receive low-valued resources under truthful reporting, then she will still be

forced to receive the same number of resources when she under-reports her demand

(since there is no agent with excess demand to absorb extra resources).

Lemma 17. If a′i,r′ < ai,r′, then ai,r′ ≤ di,r′.

Proof. Suppose for contradiction that ai,r′ > di,r′ . It must therefore be the case that

D′
r′ ≤ Dr′ < E, where the first inequality holds because d′j,r′ = dj,r′ for all j ̸= i and

d′i,r′ < di,r′ . Let x denote the objective value of FL’s call to PSWC in the truthful
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instance, and x′ in the misreported instance. Suppose that x′ ≤ x. Then, by Lemma

13 and the assumption that d′i,r′ < di,r′ ,

a′i,r′ = min(ti,r′ ,max(x′ei, d
′
i,r′)) ≤ min(ti,r′ ,max(xei, di,r′)) = ai,r′ ,

and for all j ̸= i,

a′j,r′ = min(tj,r′ ,max(x′ej, dj,r′)) ≤ min(tj,r′ ,max(xej, dj,r′)) = aj,r′ .

Because a′k,r′ ≤ ak,r′ for all agents k, and
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ , it must be the

case that a′k,r′ = ak,r′ for all k. This contradicts the assumption that a′i,r′ < ai,r′ .

Now suppose that x′ > x. Note that xei > di,r′ > d′i,r′ , where the first inequality

holds because ai,r′ > di,r′ . Then, again by Lemma 13 and the previous observation,

we have

a′i,r′ = min(ti,r′ ,max(x′ei, d
′
i,r′)) = min(ti,r′ , x

′ei)

≥ min(ti,r′ , xei) = min(ti,r′ ,max(xei, di,r′)) = ai,r′ ,

which contradicts a′i,r < ai,r. Since we arrive at a contradiction in all cases, the

lemma statement must be true.

As a corollary, we can write the difference in utility between the truthful and

misreported instances that i derives from round r′.

Corollary 18. ui,r′(ai,r′)− ui,r′(a
′
i,r′) = H(ai,r′ − a′i,r′).

Proof. Because a′i,r′ < ai,r′ ≤ di,r′ , we can substitute the utility values from Equation

(6.2):

ui,r′(ai,r′)− ui,r′(a
′
i,r′) = ai,r′H − a′i,r′H = H(ai,r′ − a′i,r′).

For a fixed agent k, denote by rk the round at which agent k runs out of tokens

in the truthful instance. That is, rk is the first (and only) round with ark = tk,rk > 0.
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Note that ri ≥ r′, since ai,r′ > 0. Given this, our next lemma states that, under

certain conditions, the effect of i’s misreport, d′i,r < di,r, is to increase the objective

value of FL’s call to PSWC.

Lemma 19. Let r < ri (i.e. ai,r < ti,r). Suppose t′j,r ≤ tj,r for all agents j ̸= i.

Suppose that either min(Dr, D
′
r) ≥ E or max(Dr, D

′
r) < E. Then x′ ≥ x, where x′

denotes the objective value of FL’s call to PSWC in the misreported instance and x

in the truthful instance.

Proof. First, suppose that min(Dr, D
′
r) ≥ E. Suppose for contradiction that x′ < x.

By Lemma 13, for all j ̸= i,

a′j,r = min(x′ej, dj,r, t
′
j,r) ≤ min(xej, dj,r, tj,r) = aj,r,

where the inequality follows from the assumption that x′ < x and that t′j,r ≤ tj,r.

Further,

a′i,r = min(x′ei, di,r, t
′
i,r) ≤ min(x′ei, di,r) ≤ min(xei, di,r) = min(xei, di,r, ti,r) = ai,r,

where the second inequality follows from the assumption that x′ < x, and the second

to the last equality follows from the assumption that ai,r < ti,r. Therefore, a
′
k,r ≤ ak,r

for all agents k. Since
∑

a′k,r =
∑

ak,r, it must be the case that a′k,r = ak,r for all

agents k. Now, by the definition of FL in this case, ak,r/ek ≤ x′ < x for all agents

k with ak,r > 0. Therefore x is not the optimal objective value of PSWC in the

truthful instance, a contradiction. Thus, x′ ≥ x.

Next, suppose that max(Dr, D
′
r) < E. Suppose for contradiction that x′ < x. By

Lemma 13,

a′j,r = min(t′j,r,max(x′ej, dj,r)) ≤ min(tj,r,max(xej, dj,r)) = aj,r,

for all j ̸= i, where the inequality follows from the assumption that x′ < x and that
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t′j,r ≤ tj,r. Further, we have

a′i,r = min(t′i,r,max(x′ei, di,r)) ≤ max(x′ei, di,r)

≤ max(xei, di,r) = min(ti,r,max(xei, di,r)) = ai,r,

where the second inequality follows from the assumption that x′ < x and the second

to last equality from the assumption ai,r < ti,r. Therefore, a
′
k,r ≤ ak,r for all agents k.

Since
∑

a′k,r =
∑

ak,r, it must be the case that a′k,r = ak,r for all agents k. Consider

all agents with min(dk,r, tk,r) < ak,r (i.e. those agents for which the first constraint

in the PSWC program binds in the truthful instance). For all such agents, we have

min(dk,r, tk,r) < ak,r =⇒ dk,r < ak,r ≤ tk,r =⇒ dk,r < a′k,r ≤ t′k,r

=⇒ min(dk,r, t
′
k,r) < a′k,r,

which implies that the constraints bind in the misreported instance as well. There-

fore, a′k,r/ek ≤ x′ < x for all agents k for which the first constraint binds in the

truthful instance. Therefore x is not the optimal objective value of the PSWC pro-

gram in the truthful instance, a contradiction. Thus, x′ ≥ x.

Using Lemma 19, we show our main lemma. This lemma allows us to make an

inductive argument that, after giving up some resources in round r′, i’s allocation is

(weakly) larger for all future rounds in the misreported instance than the truthful

instance.

Lemma 20. Let r′ < r < ri (i.e. ai,r < ti,r). Suppose that t′j,r ≤ tj,r for all agents

j ̸= i. Then for all j ̸= i, either: (1) a′j,r = t′j,r, or (2) a′j,r ≥ aj,r.

Proof. Note that t′j,r ≤ tj,r for all j ̸= i implies that t′i,r ≥ ti,r, which we use in the

proof. Also, because r > r′, we know that d′i,r = di,r, as r
′ is the last round for which

d′i,r ̸= di,r. We assume that condition (1) from the lemma statement is false (i.e.

a′j,r < t′j,r) and show that condition (2) must hold. Suppose first that Dr < E. Then,
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because ai,r < ti,r, we know that di,r ≤ ti,r ≤ t′i,r. This implies that min(di,r, ti,r) =

min(di,r, t
′
i,r) = di,r. Let j ̸= i. Since t′j,r ≤ tj,r, we have min(dj,r, t

′
j,r) ≤ min(dj,r, tj,r).

Therefore, it is the case that D′
r ≤ Dr < E. By Lemma 13 and the assumption that

a′j,r < t′j,r, it must be the case that a′j,r = max(dj,r, x
′ej). Further, by Lemma 19, we

know that x′ ≥ x. Therefore, we have

aj,r = max(dj,r, xej) ≤ max(dj,r, x
′ej) = a′j,r.

That is, condition (2) from the lemma statement holds.

Now suppose that Dr ≥ E. Then, from the definition of the mechanism, we have

that aj,r ≤ min(dj,r, tj,r) ≤ dj,r. If it is the case that D′
r < E, then we have that

a′j,r ≥ min(dj,r, t
′
j,r) = dj,r, where the equality holds because otherwise we would have

a′j,r ≥ t′j,r, violating the assumption that a′j,r < t′j,r. Using these inequalities, we have

a′j,r ≥ dj,r ≥ aj,r, so condition (2) from the statement of the lemma holds. Finally, it

may be the case that Dr ≥ E and D′
r ≥ E. By Lemma 13 and the assumption that

a′j,r < t′j,r, we have

a′j,r = min(dj,r, x
′ek) ≥ min(dj,r, xek) = aj,r,

where the inequality follows from Lemma 19. Thus, condition (2) of the lemma

statement holds.

Finally, we prove that the flexible lending mechanism is strategy-proof. This

proof establishes that misreporting d′i,r is never beneficial for an agent.

Theorem 21. The flexible lending mechanism satisfies SP.

Proof. We first observe that for every r ≤ ri, t
′
j,r ≤ tj,r for every j ̸= i. This is

true for every r ≤ r′ because a′j,r = aj,r for r < r′, by Lemma 15. For r = r′ + 1,

it follows from Lemma 16, which says that a′j,r′ ≥ aj,r′ . For all subsequent rounds,

up to and including r = ri, it follows inductively from Lemma 20: t′j,r ≤ tj,r implies
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that either a′j,r = t′j,r, in which case t′j,r+1 = 0 ≤ tj,r+1, or a
′
j,r ≥ aj,r, in which case

t′j,r+1 = t′j,r − a′j,r ≤ tj,r − aj,r = tj,r+1).

Consider an arbitrary round r ̸= r′, with r ≤ ri. By the above argument, we

know that t′j,r ≤ tj,r for all j ̸= i. Further, because reports in the truthful and

misreported instances are identical on all rounds r ̸= r′, we have that dk,r = d′k,r for

all k ∈ [n]. Therefore, by Lemma 14, a′i,r ≥ ai,r. For rounds r > ri, it is also true

that a′i,r ≥ ai,r, since ai,r = 0 for these rounds by the definition of ri. Finally,

Ui,R(ai)− Ui,R(a
′
i) =

R∑
r=1

(ui,r(ai,r)− ui,r(a
′
i,r))

= (ui,r′(ai,r′)− ui,r′(a
′
i,r′)) +

∑
r ̸=r′

(ui,r(ai,r)− ui,r(a
′
i,r))

= H(ai,r′ − a′i,r′)−
∑
r ̸=r′

(ui,r(a
′
i,r)− ui,r(ai,r))

≥ H(ai,r′ − a′i,r′)−H(ai,r′ − a′i,r′) = 0

Here, the third transition follows from Lemma 18, and the final transition follows

because
∑

r ̸=r′(a
′
i,r − ai,r) = ai,r′ − a′i,r′ , and every term in the sum is positive.

The proof for the case where d′i,r′ > di,r′ is in the Appendix. Together, they show

that i achieves (weakly) higher utility by truthfully reporting her demand di,r′ at

round r, rather than misreporting d′i,r′ ̸= di,r′ . By the argument at the start of this

subsection, this is sufficient to prove strategy-proofness.

6.5.4 Approximating Sharing Incentives

Unfortunately, FL fails to satisfy SI, and may give an agent as little as half of her SI

share.

Theorem 22. FL does not satisfy α-SI for any α > 0.5.

Proof. Consider an instance with R rounds, and R+1 agents, each with endowment

ei = 1. Agent 1 has d1,1 = d1,R = 1 and d1,2 = . . . = d1,R−1 = 0, agent 2 has
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d2,r = R for all rounds r, and all other agents have di,r = 0 for all rounds r. In round

1, agent 1 receives allocation a1,1 = 1 and agent 2 receives a2,1 = R. For rounds

r = 2, . . . , R − 1, each agent j ̸= 2 receives allocation aj,r = 1 + 1/R. Therefore, in

round R, agent 1 receives a1,R = R−1− (R−2)(1+1/R) = 2/R. Her total utility is

therefore ((R+2)/R)H+(R− (R+2)/R)L, compared to total utility 2H+(R−2)L

that she would have received by not participating in the mechanism. For L = 0, the

ratio of these utilities approaches 0.5 as R→∞.

However, FL does provide a 0.5 approximation guarantee to SI, as we show in the

remainder of this subsection. We suppose that agent i truthfully reports her demand

di,r for all rounds (since FL is SP, she could do no better by lying), and show that

she receives at least half as much utility as she would by not participating.

Recall that for every agent i, we denote by ri the first round at which ai,ri =

ti,ri > 0. For every agent i, define sets Bi and Ai to be the agents that run out of

tokens before and after i, respectively. Formally,

Bi = {j : rj ≤ ri and aj,ri/ej < ai,ri/ei}

Ai = {j : rj ≥ ri and rj = ri =⇒ aj,ri/ej ≥ ai,ri/ei}.

For a round r, define

si,r = ai,r − ei

∑
j∈Ai

aj,r∑
j∈Ai

ej
.

That is, si,r is the number of resources i gets more than the (endowment weighted)

average number of resources for agents in Ai. Note further that

R∑
r=1

si,r =
R∑

r=1

ai,r −
ei∑

j∈Ai
ej

∑
j∈Ai

R∑
r=1

aj,r = ei −
ei∑

j∈Ai
ej

∑
j∈Ai

ej = 0.

Lemma 23. For every agent i and every round r, si,r ≤ min(di,r, ai,r).
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Proof. If ai,r ≤ di,r, then the lemma statement says that si,r ≤ ai,r, which is obviously

true by the definition of si,r. If ai,r > di,r, then we know from the definition of FL

that
∑

j∈[n] min(dj,r, tj,r) < E, and ai,r = min(xei, ti,r), where x is the objective

value of FL’s call to the PSWC program. Further, all agents with
aj,r
ej

<
ai,r
ei
≤ x are

those with aj,r = tj,r, so by definition, rj ≤ ri and
aj,r
ej

<
ai,r
ei
, which means j ∈ Bi.

Therefore,
aj,r
ej
≥ ai,r

ei
for all j ∈ Ai, which implies

∑
j∈Ai

aj,r∑
j∈Ai

ej
≥ ai,r

ei
. To complete the

proof, note that

si,r = ai,r − ei

∑
j∈Ai

aj,r∑
j∈Ai

ej
≤ ai,r − ei

ai,r
ei

= 0 ≤ di,r = min(di,r, ai,r).

Theorem 24. Under FL, agents receive at least half the number of high-valued re-

sources that they would have received under static allocations.

Proof. Let S denote the number of high-valued resources that agent i receives under

static allocations. While i has tokens remaining, under FL, she is guaranteed to get

as many resources as she demands up to her endowment ei. Thus, for these rounds,

she would obtain no additional high-valued resources from not participating in the

mechanism. However, there is the possibility that by participating in the mechanism,

she runs out of tokens prematurely, thus missing out on resources in later rounds

that she wants, and would have received by not participating in the mechanism (as

in the proof of Theorem 22). The proof proceeds by showing that for every resource

that i does not receive due to a lack of tokens, she must have received at least one

high-valued resource in an earlier round.
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Suppose first that ai,ri ≥ ei. We have the following inequality:

∑
r≤ri

min(di,r, ai,r) ≥
∑
r≤ri

si,r = −
∑
r>ri

si,r =
∑
r>ri

(
ei

∑
j∈Ai

aj,r∑
j∈Ai

ej

)
(6.1)

=
∑
r>ri

(
E∑

j∈Ai
ej

)
ei ≥ (T − ri)ei. (6.2)

The first inequality follows from Lemma 23, and the second inequity follows because∑
j∈Ai

ej ≤ E. The first equality holds because
∑R

r=1 si,r = 0, and the second

equality holds because ai,r = 0 for all r > ri. The third equality holds because for

rounds r > ri, only agents in Ai remain active, so all resources are allocated to them.

Note that S, the number of high-valued resources that i receives by not sharing,

is upper bounded by

S ≤
R∑

r=1

min(di,r, ei) ≤
∑
r≤ri

min(di,r, ei) +
∑
r>ri

ei

≤
∑
r≤ri

min(di,r, ai,r) +
∑
r>ri

ei

=
∑
r≤ri

min(di,r, ai,r) + (T − ri)ei

≤ 2
∑
r≤ri

min(di,r, ai,r).

The third inequality holds because under FL guarantees each agent min(di,r, ei) re-

sources, provided they have sufficient tokens remaining, which is the case because

we assume ai,ri ≥ ei. The final inequality follows from Equation (6.1). Since agent

i receives exactly
∑

r≤ri
min(di,r, ai,r) ≥ S/2 resources from participating in FL, the

lemma holds in this case.
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Second, suppose that ai,ri < ei. We have the following inequality:∑
r≤ri

min(di,r, ai,r) ≥
∑
r<ri

min(di,r, ai,r)

≥
∑
r<ri

si,r = −
∑
r>ri

si,r − si,ri

≥ ei(T − ri) + ei

∑
j∈Ai

aj,ri∑
j∈Aj

ej
− ai,ri

≥ ei(T − ri) + ei − ai,ri = ei(T − ri + 1)− ai,ri . (6.3)

The first inequality holds because min(di,ri , ai,ri) ≥ 0. The second inequality follows

from Lemma 23, and the third inequality holds from Equation (6.1) and the definition

of si,ri . The fourth inequality holds because at round ri, agent i receives allocation

ai,ri < ei, therefore every agent j ∈ Bi receives allocation aj,ri < ej, therefore∑
j∈Ai

aj,ri ≥
∑

j∈Ai
ej.

As with the previous case, we can derive an upper bound on S, the number of

high-valued resources i would receive by not sharing. First, suppose that ai,ri > di,ri .

Then we have

S ≤
R∑

r=1

min(di,r, ei) ≤
∑
r<ri

min(di,r, ei) + di,ri +
∑
r>ri

ei

≤
∑
r<ri

min(di,r, ai,r) + min(di,ri , ai,ri) +
∑
r>ri

ei

=
∑
r≤ri

min(di,r, ai,r) + (T − ri)ei

≤
∑
r≤ri

min(di,r, ai,r) + (T − ri + 1)ei − ai,ri

≤ 2
∑
r≤ri

min(di,r, ai,r)

The third inequality holds because FL guarantees each agent min(di,r, ei) resources,

provided they have sufficient tokens remaining, and by the assumption that ai,ri >
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di,ri , the fourth inequality from the assumption that ai,ri < ei, and the final inequality

from Equation (6.3). Next, suppose that ai,ri ≤ di,ri . Then we have

S ≤
R∑

r=1

min(di,r, ei) ≤
∑
r<ri

min(di,r, ei) + ei +
∑
r>ri

ei

≤
∑
r<ri

min(di,r, ai,r) + ai,ri + (ei − ai,ri) +
∑
r>ri

ei

=
∑
r≤ri

min(di,r, ai,r) + (T − ri + 1)ei − ai,ri

≤ 2
∑
r≤ri

min(di,r, ai,r)

The third inequality holds because FL guarantees each agent min(di,r, ei) resources,

provided they have sufficient tokens remaining, the equality from the assumption

that ai,ri ≤ di,ri , and the final inequality from Equation (6.3).

As with the previous case, ei(T − ri+1)− ai,ri is an upper bound on the number

of H valued resources that i may have been able to receive in rounds r ≥ ri had

she not participated in the mechanism, over and above those she receives by par-

ticipating.
∑

r≤ri
min(di,r, ai,r) is the number of H valued resources she receives by

participating in the mechanism. Therefore
∑

r≤ri
min(di,r, ai,r)+ei(T−ri+1)−ai,ri ≤

2
∑

r≤ri
min(di,r, ai,r) is an upper bound on the number of H valued resources i would

receive by not participating in the mechanism. Therefore, i receives at least half as

many H valued resources from participating as she would have by not participat-

ing.

Note that Theorem 24 implies the desired approximation. Suppose that i obtains

utility SH + (Rei − S)L by not participating in the mechanism. Theorem 24 in

combination with the fact that she will receive the same number of resources overall

whether she participates or not, implies that, by participating, she gets at least

SH/2 + (Rei − S/2)L ≥ SH/2 + (Rei/2− S/2)L = (SH + (Rei − S)L)/2.
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6.5.5 Limit Efficiency for Symmetric Agents

In this section, we prove that, under certain assumptions, FL is efficient in the

limit as the number of rounds grows large. Suppose that each agent has the same

endowment. Without loss of generality, suppose that each agent has ei = 1. Further,

suppose that demands are drawn i.i.d. across rounds and that the distribution within

rounds treats agents symmetrically, either demands are drawn i.i.d. across agents,

or there is correlation that treats all agents symmetrically.

Theorem 25. When demands are drawn i.i.d. across rounds and agents are sym-

metric, FL achieves an (R−R2/3)/R fraction of the optimal efficiency with probability

at least 1−n3/R1/3. In particular, FL approaches full efficiency with high probability

in the limit as the number of rounds grows large.

Proof. Suppose we are in a world where tokens are unlimited. Let Q be a random

variable denoting how many tokens a single agent i would spend (i.e. how many

resources i would be allocated) in a single round. Note that Q can never take a

value larger than n, since only n resources are allocated per round. Note that by

the symmetry of the agents, Q is independent of the identity of any single agent,

and independent of the particular round since FL allocates independently of the

round. By symmetry, E(Q) = 1. Let StdDev(Q) = σ ≤ n, where the inequality

holds because Q is bounded by n. Let r = R−R2/3 and let Qr be a random variable

denoting the number of tokens i would spend before the start of round r+1. Because

demands are drawn independently across rounds, and no agent runs out of tokens,

E(Qr) = r and StdDev(Qr) =
√
rσ.
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Consider the probability that agent i spends at least R tokens in the first r rounds:

P (Qr ≥ R) = P (Qr − E(Qr) ≥ R− r)

= P (Qr − E(Qr) ≥ R2/3

= P (Qr − E(Qr) ≥
R1/6

σ

√
Rσ)

≤ P (Qr − E(Qr) ≥
R1/6

σ

√
rσ)

≤ σ2

R1/3

Here the final inequality follows from Chebyshev’s concentration inequality, because
√
rσ is the standard deviation of Qr. Taking a union bound over all n agents, the

probability that any agent spends at least R tokens in the first r rounds is at most

nσ2/R1/3 ≤ n3/R1/3.

Now suppose agents are limited by R tokens. If some agent runs out of tokens

within r rounds in this world, then it must also be the case that some agent spent

at least R tokens within r rounds in the unlimited token world. Therefore, the

probability that any agent runs out of tokens is at most the probability that some

agent spends more than R tokens in the unlimited token world, which is at most

n3/R1/3. This approaches 0 as R → ∞. So, with probability going to 1, no agent

runs out of tokens before round r.

By the definition of FL, full efficiency is achieved on all rounds for which no

agents have their allocation limited by lack of tokens. Therefore, with probability

going to 1, FL allocates efficiently for the first r rounds. Therefore, because demands

are i.i.d. across rounds, the expected efficiency of the mechanism approaches at least

an r/R = (R − R2/3)/R fraction of the optimal efficiency. This fraction approaches

1 as R→∞.
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6.6 T-Period Mechanism

We have shown that FL satisfies strategy-proofness and a theoretical asymptotic

efficiency guarantee. Further, as we show in Section 6.7, FL exhibits only small

efficiency loss in practice in settings where our theoretical guarantee does not apply.

However, FL does not achieve (full) sharing incentives. In settings where agents

require a strong guarantee in order to participate, it may be desirable to strictly

enforce sharing incentives, in which case FL is not a suitable choice. In this section,

we introduce the T -Period mechanism, which satisfies both SP and SI. While the T -

Period mechanism does exhibit some gains from sharing (i.e., is more efficient than

static allocation), it sacrifices some efficiency relative to FL.

6.6.1 Definition

The T -Period mechanism splits the rounds into periods of length 2T .1 For the first

T rounds of each period, we allow the agents to ‘borrow’ unwanted resources from

others. In the last T rounds of each period, the agents ‘pay back’ the resources so

that their cumulative allocation across the entire period is equal to their endowment,

2Tei.

The allocations in the second set of T rounds are independent of reports and

determined completely by the allocations in the first set of T rounds. Note that

because the number of resources that an agent i can pay back over T rounds is

bounded by Tei, we allow an agent to borrow at most Tei resources (i.e., receive at

most 2Tei resources) over the first T rounds of a period.

In Algorithm 4, each agent i has a borrowing limit, bi, which is defined to be the

maximum amount of resources that agent i can borrow in whatever remains of the

first T rounds of each period. For our analysis, we denote the value of bi at the start

1 For convenience, we suppose that R is a multiple of 2T . If this is not the case, we can adapt the
mechanism by returning each agent their endowment for any leftover rounds.
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Algorithm 4: T -Period Mechanism

input : Agents’ reported demands, d′, and their endowments, e
output: Agents’ allocations, a
for r ∈ {1, . . . , R} do

if (r mod 2T ) = 1 then
b← Te ▷ bi is the amount that i is able to borrow
y← 0 ▷ resources received so far this period.

end
if 1 ≤ (r mod 2T ) ≤ T then

d̄← min(d′
·,r, e+ b) ▷ d̄i is i’s allocatable demand

D ←∑
i∈[n] d̄i

if D ≥ E then
a·,r ← PSWC(A = E, l = d̄,m = 0,w = e)

end
else

a·,r ← PSWC(A = E, l = e+ b,m = d̄,w = e)
end
y← y + a·,r
b← b−max(0, a·,r − e)

end
else

a·,r ← 1
T
(2Te− y)

end

end

of round r by bi,r. At the beginning of each period, we set bi,r to be Tei, because

agent i can at most pay back her whole endowment, ei, at every T ‘payback’ rounds.

We again define d̄i to be the allocatable demand of agent i at each round of the first

T rounds and refer to d̄′i,r as agent i’s allocatable demand at round r. At each round

r, the allocatable demand of agent i is the minimum of her reported demand d′i,r,

and her endowment plus her borrowing limit, ei + bi,r.

We illustrate the T -Period mechanism with an example.

Example 26. Consider the instance from Example 12, where each agent has endow-

ment ei = 1 and demands are given by:

176



di,1 di,2 di,3 di,4
i = 1 3 1 1 0
i = 2 0 2 1 2
i = 3 0 0 0 4

When T = 1, agents can ‘borrow’ resources at odd rounds and ‘pay back’ those

resources at even rounds. Therefore, the maximum allocatable demand for each agent

and at each round is 2, because the ‘payback’ period only has one round. The 1-Period

(1-P) mechanism allocates resources as follows.

a1-Pi,1 a1-Pi,2 a1-Pi,3 a1-Pi,4

i = 1 2 0 1 1
i = 2 0.5 1.5 1 1
i = 3 0.5 1.5 1 1

At round 1, agent 1 wants 2 extra resources in addition to her endowment. How-

ever, under 1-P, she can only afford 1 extra resource. She borrows 0.5 resources from

agent 2 and 0.5 resources from agent 3. At round 2, agent 1 pays back agents 2 and

3 and receives zero resources. When T = 1, the mechanism rigidly forces agents

to pay back resources right after they borrow them. Agent 1 would prefer to get her

high-valued resource at round 2 and delay paying back agents 2 and 3 until the last

round where her demand is zero. Note that agent 3 would also prefer to be paid back

in the last round, the only round in which she has non-zero demand.

To see how increasing T allows more flexibility, consider T = 2 for the same

example. The 2-Period (2-P) mechanism allocates resources as follows.

a2-Pi,1 a2-Pi,2 a2-Pi,3 a2-Pi,4

i = 1 3 1 0 0
i = 2 0 2 1 1
i = 3 0 0 2 2

Agent 2 is allowed to borrow 2 extra resources over the first two rounds, whereas,

under the 1-P mechanism, she is never allowed to borrow more than one resource per

round. She borrows these two resources at the first round from agents 2 and 3, and
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pays them back at rounds 3 and 4.

Since the T -Period mechanism increases flexibility over the static mechanism, it

provides some gains from sharing. We would expect that increasing T , in general,

will improve efficiency as it allows for ‘borrowed’ resources to be spent more flexibly.

In the following subsection, we show that these efficiency gains do not harm SI or

SP when T ≤ 2. Many proofs closely follow those in Section 6.5 and are deferred to

the Appendix.

6.6.2 Axiomatic Properties of T-Period Mechanism

We first state a lemma characterizing the allocations of the T -Period mechanism that

is analogous to Lemma 13

Lemma 27. Let x denote the objective value of a call to PSWC. Suppose that 1 ≤ (r

mod 2T ) ≤ T . If D ≥ E, then ai,r = min(ei + bi, d
′
i,r, xei). If D < E, then

ai,r = min(ei + bi,max(d′i,r, xei)).

To prove strategy-proofness of the 1-Period and 2-Period mechanisms, we show

that no agent has an incentive to report d′i,r ̸= di,r for any round r. We again consider

parallel cases, one in which agent i misreports d′i,r and one in which she truthfully

reports di,r with all other reports the same across the two cases. Allocations and

borrowing limits in the former case is denoted by a′ and b′ respectively, and by a

and b in the latter case. Let Dr denote the total allocatable demand at a round r

in the truthful case and D′
r denote the total allocatable demand at a round r in the

misreported case.

Since the T -Period mechanism resets every 2T rounds, we can assume without

loss of generality that R = 2T for the sake of reasoning about SP and SI. For rounds

r > T , the allocations depend completely on the allocations at earlier rounds, and

not on the agents’ reports, so there is clearly no benefit to an agent for misreporting

178



in these rounds. It remains to show that reporting d′i,r = di,r is optimal for rounds

r ≤ T .

Our next lemma is analogous to Lemma 16.

Lemma 28. Let ai,r and a′i,r denote the allocations of agent i at round r when she

reports di,r and d′i,r, respectively, holding fixed the reports of all agents j ̸= i and agent

i’s reports on all rounds other than r. If d′i,r < di,r then a′i,r ≤ ai,r, and a′j,r ≥ aj,r

for all j ̸= i.

Suppose that i reports d′i,r ̸= di,r for some round r, but this misreport does not

change i’s allocation (that is, a′i,r = ai,r). By Lemma 28, a′j,r = aj,r for all j ̸= i.

Therefore, i’s misreport has not changed the allocations at round r. Since all future

rounds take into account allocations at previous rounds but not reports, i’s misreport

has had no effect on the allocations in any round. Thus, i did not benefit from this

misreport. We therefore assume that a′i,r ̸= ai,r for any round r where i reports

d′i,r ̸= di,r in the remainder of this section.

The next lemma and corollary are analogous to Lemma 17 and Corollary 18.

They say that if i obtains fewer resources from misreporting at round r, then those

resources are all high-valued resources.

Lemma 29. Hold the reports of all agents j ̸= i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d′i,r < di,r and receives a′i,r < ai,r, then

ai,r ≤ di,r.

As a corollary we obtain a formula for the difference between the utility that

agent i receives at round r under truthful reporting and misreporting, when i gets

fewer resources in the misreported instance.

Corollary 30. Hold the reports of all agents j ̸= i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d′i,r < di,r and receives a′i,r < ai,r, then

ui,r(ai,r)− ui,r(a
′
i,r) = H(ai,r − a′i,r).
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The next lemma and corollary complement Lemma 29 and Corollary 30 in the

case where i receives more resources in the misreported instance than the truthful

instance at round r.

Lemma 31. Hold the reports of all agents j ̸= i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d′i,r > di,r and receives a′i,r > ai,r, then

ai,r ≥ di,r.

Corollary 32. Hold the reports of all agents j ̸= i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d′i,r > di,r and receives a′i,r > ai,r, then

ui,r(a
′
i,r)− ui,r(ai,r) = L(a′i,r − ai,r).

We can now show that misreporting in round T is never beneficial to an agent.

Lemma 33. An agent never improves her utility by reporting d′i,T ̸= di,T .

As a corollary, we immediately have that the 1-Period mechanism is strategy-

proof, because misreporting at round r = 1 = T is not beneficial, and misreporting

at round r = 2 > T is not beneficial by our earlier argument.

Corollary 34. The 1-Period mechanism satisfies strategy-proofness.

Our next lemma is a monotonicity statement for the borrowing limits: if i’s bor-

rowing limit at round r increases, and all other agents’ borrowing limits decrease,

then i’s allocation (weakly) increases and all other agents’ allocations (weakly) de-

crease.

Lemma 35. Suppose that r ≤ T . If b′i,r ≥ bi,r and b′j,r ≤ bj,r for all j ̸= i, and

d′k,r = dk,r for all agents k, then a′i,r ≥ ai,r.

We now show that the 2-Period mechanism is strategy-proof.

Theorem 36. The 2-Period mechanism satisfies strategy-proofness.
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Proof. By Lemma 33, no agent can benefit by reporting d′i,2 ̸= di,2. Similarly, no

agent can benefit by reporting d′i,r ̸= di,r for r ∈ {3, 4}, because the 2-Period mecha-

nism ignores reports for those rounds. We may therefore assume that d′i,r = di,r for

all agents i and all rounds r ≥ 2.

We show that an agent cannot benefit from reporting d′i,1 < di,1. The proof that

reporting d′i,1 > di,1 is not beneficial is very similar. If a′i,1 = ai,1, then a′j,1 = aj,1 for

all j ̸= i, by Lemma 28. Therefore, the allocations are unchanged for all rounds i,

as the 2-Period mechanism takes into account allocations at earlier rounds, but not

reports, and the allocations at round 1 are the same in the truthful and misreported

instances. We therefore assume that ai,1 = a′i,1+k, for some k > 0. This implies that

bi,2 = b′i,2− ki, for some ki ≤ k. By Corollary 30, i receives kH more utility in round

1 under truthful reporting than under misreporting. For every j ̸= i, aj,1 ≤ a′j,1, and

bj,2 = b′j,2 + kj, where
∑

j ̸=i kj ≤ k. By Lemma 35, a′i,2 ≥ ai,2. In the following, we

show that a′i,2 ≤ ai,2 + k. Let x and x′ denote the objective value in the T-Period

mechanism’s call to PSWC when i reports di,r and d′i,r, respectively. We consider four

cases, corresponding to whether resources in the truthful and misreported instances

are over or under demanded at round 2. Suppose first that D2 ≥ E and D′
2 ≥ E.

First, suppose that x′ < x. Then, by Lemma 27,

a′i,2 = min(ei + b′i, di,2, x
′ei) = min(ei + bi,2 + ki, di,2, x

′ei)

≤ min(ei + bi,2, di,2, x
′ei) + ki ≤ min(ei + bi,2, di,2, xei) + ki ≤ ai,2 + k

Next, suppose that x′ ≥ x. Then for all j ̸= i,

a′j,2 = min(ej + b′j, dj,2, x
′ej) = min(ej + bj,2 − kj, dj,2, x

′ej)

≥ min(ej + bj,2, dj,2, x
′ej)− kj ≥ min(ej + bj,2, dj,2, xej)− kj = aj,2 − kj

Taking the sum over all j ̸= i and noting that
∑

j ̸=i kj ≤ k, we have that
∑

j ̸=i a
′
j,2 ≥∑

j ̸=i aj,2 − k. Therefore, a′i,2 ≤ ai,2 + k. Second, suppose that D2 ≥ E and D′
2 < E.
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Then, by the definition of the T -Period mechanism, aj,2 ≤ min(ej + bj,2, dj,2) for all

j ̸= i. Further

a′j,2 ≥ min(ej + b′j, dj,2) = min(ej + bj,2 − kj, dj,2)

≥ min(ej + bj,2, dj,2)− kj ≥ aj,2 − kj

By the same argument as in the previous case, this implies that a′i,2 ≤ ai,2+k. Third,

suppose that D2 < E and D′
2 ≥ E. Then

a′i,2 ≤ min(ei + b′i, di,2) = min(ei + bi,2 + ki, di,2) ≤ min(ei + bi,2, di,2) + ki ≤ ai,r + k

Finally, suppose that D2 < E and D′
2 < E. First, suppose that x′ < x. Then

a′i,2 = min(ei + b′i,max(di,2, x
′ei)) = min(ei + bi,2 + ki,max(di,2, x

′ei))

≤ min(ei + bi,2,max(di,2, x
′ei)) + ki

≤ min(ei + bi,2,max(di,2, xei)) + ki ≤ ai,2 + k

Next, suppose that x′ ≥ x. Then for all j ̸= i,

a′j,2 = min(ej + b′j,max(dj,2, x
′ej)) = min(ej + bj,2 − kj,max(dj,2, x

′ej))

≥ min(ej + bj,2,max(dj,2, x
′ej))− kj

≥ min(ej + bj,2,max(dj,2, xej))− kj = aj,2 − kj

Again, this implies that a′i,2 ≤ ai,2 + k.

In all cases, we have that ai,2 ≤ a′i,2 ≤ ai,2 + k. Therefore, a′i,1 + a′i,2 ≤ ai,1 + ai,2,

which means that a′i,3 ≥ ai,3 and a′i,4 ≥ ai,4. Consider the difference in utility across

all four rounds between the truthful and misreported instances.

Ui,4(ai)− Ui,4(a
′
i) =

4∑
r=1

(
ui,r(ai,r)− ui,r(a

′
i,r)
)

= kH +
4∑

r=2

(
ui,r(ai,r)− ui,r(a

′
i,r)
)
≥ kH − kH = 0
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The second transition is by Corollary 30, and the third transition because each

a′i,r ≥ ai,r for all r ∈ {2, 3, 4}, ∑4
r=2(a

′
i,r − ai,r) = k, and each resource can be worth

at most H to agent i.

Given that the 1-P and 2-P mechanisms satisfy SP, it is easy to see that they

satisfy SI also. By strategy-proofness, the utility that an agent gets from truthfully

reporting her demands is at least the utility she gets from reporting d′i,r = ei for

all rounds r. Sharing incentives therefore follows as a corollary of the following

proposition.

Proposition 37. Under the T -Period mechanism, any agent that reports d′i,r = ei

for all rounds r receives ai,r = ei for all rounds r.

Corollary 38. The T-Period mechanism satisfies SI for T ≤ 2.

One may hope to continue increasing flexibility, and therefore performance, by

increasing the length of the ‘borrowing’ and ‘payback’ periods, potentially all the

way to having a single borrowing period of length R/2 and a single payback period

of length R/2. Unfortunately, even for periods of length 3, strategy-proofness is

violated.

Example 39. Consider the 3-P mechanism. Suppose that n = 5 and R = 6. Each

agent has endowment ei = 1 (so each agent can borrow a total of three resources over

the first three rounds, corresponding to the sum of their endowment across the final

three rounds). Truthful demands are given by the following table.

di,1 di,2 di,3 di,4 di,5 di,6
i = 1 3 3 0 1 1 1
i = 2 0 3 3 1 1 1
i = 3 0 0 0 0 0 0
i = 4 0 0 0 0 0 0
i = 5 0 0 0 0 0 0
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The corresponding allocations are given by:

a3−P
i,1 a3−P

i,2 a3−P
i,3 a3−P

i,4 a3−P
i,5 a3−P

i,6

i = 1 3 2 0.75 0.08 0.08 0.08
i = 2 0.5 3 2 0.17 0.17 0.17
i = 3 0.5 0 0.75 1.58 1.58 1.58
i = 4 0.5 0 0.75 1.58 1.58 1.58
i = 5 0.5 0 0.75 1.58 1.58 1.58

Agent 1’s utility is 5.25H + 0.75L. If agent 1 misreports d′1,1 = 2, it can be

checked that her allocations become 2, 2.5, 0.625, 0.292, 0.292, 0.292. Her utility is

then 5.375H + 0.625L, which is higher than her utility from reporting truthfully.

6.7 Evaluation

In this section, we evaluate different mechanisms using real and synthetic bench-

marks. For real benchmarks, we use a Google cluster trace [174, 175], which data

collected from a 12.5k-machine cluster over a month-long period in May 2011. All

the machines in the cluster share a common cluster manager that allocates agent

tasks to machines.

Agents submit a set of resource demands for each task (e.g. required processors,

memory, or disk space). Agent demands are normalized relative to the largest ca-

pacity of the resource on any machine in the traces. The cluster manager records

any changes in the status of tasks (e.g. being evicted, failed, or killed) during their

life cycle in a task event table. We use the task event table to track agents’ demands

for processors over time. Note that since all demands are scaled by the same factor,

we safely use normalized demands as actual demands.

We divide time into 15 min intervals.2 We define agents’ demands for each interval

to be the sum of their demands for all tasks they run in that interval. After processing

the traces, we remove agents with constant demands or with average demand less

2 We have created demands for varying time intervals. Since results do not change significantly
for different interval lengths, we only include results on 15-min-long intervals.
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than some marginal threshold. We assume that agents’ endowments are equal to

their average demands.

We observe that, for each agent, demands computed from Google traces have

high correlations over time. An agent with high demand at 12am has typically high

demand at 12:15am as well. In some deployment scenarios, demands may not be

highly correlated. For example, when university cluster machines are allocated to

professors and researchers on a daily basis, a researcher may have some jobs today,

but may not want to use the cluster tomorrow.

To evaluate mechanisms in scenarios without correlated demands, we use syn-

thetic benchmarks. We create random agent populations and random number of

rounds. For each agent, we uniformly and randomly assign an endowment from 1

to 20. Once agents’ endowments are set, we uniformly and randomly generate agent

demands such that their average is equal to agents’ endowments (i.e. di,r ∼ u[0, 2ei])

Metrics. We report social welfare and Nash welfare, focusing on the number of

high-valued resources that each mechanism allocates. For social welfare, we report

the following.

Social Welfare =
∑
i

∑
r

min(di,r, ai,r).

Social welfare is a measure of efficiency but fails to distinguish between fair and

unfair outcomes. For instance, suppose agent A with endowment 100 and agent B

with endowment 1 both have demand 101. Allocating 100 units to agent A and 1

unit to agent B has the same social welfare as allocating 1 unit to A and 100 units to

B. To distinguish between these two allocations, we also report the (weighted) Nash

welfare as follows.

Nash Welfare =
∑
i

ei log(
∑
r

min(di,r, ai,r)).
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Figure 6.3: Normalized Social Welfare. Social welfare achieved by different dy-

namic allocation mechanisms normalized to that of static allocations for Google cluster

traces and 100 instances of random demands.
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Figure 6.4: Normalized Nash Welfare. The Nash welfare achieved by different

dynamic allocation mechanisms normalized to that of static allocations for Google cluster

traces and 100 instances of random demands.

Observe that the Nash welfare metric is higher for the former scenario than the latter,

which is in line with our intuition about which allocation is more fair.

6.7.1 Performance Evaluation

Figure 6.3 presents social welfare from varied allocation mechanisms for both Google

and random traces normalized to social welfare of static allocations. DMM and

SMM produce the same, highest social welfare as they always allocate resources to

those agents with high valuations. Note that SMM and DMM both fail to guarantee

strategy-proofness when L > 0. Therefore, when agents report strategically, for all

the mechanism knows, SMM and DMM’s allocations could be as inefficient as static
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Figure 6.5: Sensitivity of the Flexible Lending Mechanism. Social welfare of

the flexible lending mechanism normalized to that of static allocations for varying agent

population sizes and numbers of rounds.

allocations. But this is not captured in the figure, which implicitly assumes truthful

reporting.

The 1-Period mechanism produces the lowest social welfare. Increasing the period

length to 2 slightly improves the welfare of the T -Period mechanism. Note that both

mechanisms outperform static allocations. The R/2-Period mechanism achieves 87%

of SMM welfare for Google traces, but fails to provide strategy-proofness.

The social welfare of FL is competitive with state-of-the-art dynamic allocation

mechanisms. FL achieves 97% of SMM’s welfare for Google traces and 98% for

random demands. In practice, strong game-theoretic desiderata do not come with

high welfare costs.

Figure 6.4 compares the normalized Nash welfare from varied mechanisms. Once

again, DMM and SMM outperform other mechanisms, but DMM and SMM’s out-

comes are no longer equal because the number of high-valued resources that each

agent receives differs across mechanisms. FL achieves 99.7% of DMM welfare for

both Google cluster and random traces. This high Nash welfare could be explained

by FL’s high social welfare and the fact that FL allocates agents their exact endow-

ment across rounds.

Figure 6.5 shows how social welfare changes when varying population size and

number of rounds under FL. As the population size increases, the diversity between
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Figure 6.6: Sorted Sharing Index for Google Cluster Traces.
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Figure 6.7: Sorted Sharing Index for a Random Trace.

agents’ demands at each round increases. Agents’ complementary demands improve

welfare from FL as fewer agents are forced to spend tokens on low-valued resources.

Moreover, as the number of rounds increases, agents’ flexibility in spending their

tokens on high-valued resources increases. We prove in Section 6.5.5 that, at least

when endowments are equal, FL approximates efficiency.

6.7.2 Sharing Incentives

We define the sharing index of agent i to be the ratio between the number of high-

valued resources agent i receives under FL and under static allocations. In Section

6.5.4, we show that FL guarantees that the sharing index of each agent is always at

least 0.5. In practice, however, our simulations show that the sharing index is much

higher.
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Figure 6.6 shows the sharing index for all agents in the Google cluster traces,

sorted in increasing order and shown on a log scale. The minimum sharing index

across all agents is 0.98, and on average agents receive 15x more utility under FL

compared to static allocations. As can be seen, there is high variance in sharing

index across agents. Agents with high index are those who have zero demand at

most of the rounds and very high demand at a few rounds. These agents benefit the

most from sharing. When they have zero demand, they do not spend any tokens.

Once they have a high demand they spend their tokens to receive the resources they

need.

Figure 6.7 shows agents’ sharing index for an instance with random demands.

Since agents do not have correlated demands, the variance in sharing index is sig-

nificantly lower compared to the Google cluster traces. Moreover, across all agents

over 100 random instances, we do not observe a single violation of SI (i.e. no agent

has a sharing index less than 1)

6.8 Related Work

There is a body of work in the mechanism design without money literature that is

related to our work. Gorokh et al. [110] consider a setting where a single item is

to be allocated repeatedly, and extend to more general settings in a follow-up paper

[176]. They do so by endowing each user with a fixed amount of artificial currency

and then treating it similarly to if it were real money. They show that, for a large

enough number of rounds, incentives to misreport and welfare loss both vanish.

However, their notion of strategy-proofness is ex-ante Bayesian, requiring users (and

the mechanism) to know the distribution from which other users’ demands are drawn

and truthful reporting is optimal only in expectation. Our notion of SP is ex-post,

meaning that an agent never regrets truthful reporting.

Various other work does not explicitly use artificial currency, but by keeping track
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of how much utility an agent should receive in the future, achieve guarantees in a

way that resembles the use of artificial currency [177, 178, 179]. Again, these results

are for a weaker notion of SP.

In a similar setting, Aleksandrov et al. [172, 180] consider a stream of resources

arriving one at a time that must be allocated among competing strategic agents.

They consider two mechanisms, one of which is similar to SMM and the other similar

to DMM. They obtain both positive and negative results for these mechanisms,

however their positive results are primarily obtained for the case where agent utilities

are 0 or 1, corresponding to our L = 0 case. They also consider only the symmetric

agent setting, rather than our setting that allows unequal endowments.

There also exists literature on dynamic fair division [181, 182, 183], but this work

predominantly focuses on agents arriving and departing over time, rather than the

preferences themselves being dynamic, as in our work.

In the systems literature, in recent years, there has been a growing body of work

on using economic game-theory to allocate resources [8, 1, 108]. These works only

consider one-shot allocations and do not study allocations over time. Ghodsi et al.

[111] consider dynamic allocations over time but in a completely different alloca-

tion setting than ours. Their proposed mechanism allocates resources to packets in a

queue. In such a setting, time cannot be divided into fixed intervals, because process-

ing packets take different times, which means a packet could stall all other packets

until its processed. As a result, proportional allocations have to be approximated

through discrete packet scheduling decisions [112, 31].

To allocate CPU time proportionally across applications, Duda et al. [184]

propose Borrowed-Virtual-Time (BVT) Scheduling and show that it provides low-

latency for real-time and interactive applications for general-purpose systems. In

BVT, applications effectively borrow virtual time from their future CPU allocation

and thus do not disrupt long-term CPU sharing. Although this idea is very close to
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the main idea of the flexible lending mechanism, unlike FL, BVT does not provide

any guarantees on strategy-proofness.

In a work that is close to our setting, Tang et al. [185] propose a dynamic

allocation policy that resembles DMM. We study the characteristics of DMM in

Section 6.3 and evaluate its performance in Section 6.7. Another related work in

this area is that of [186]. The authors propose a scheduler that allocates resources

between users with dynamically changing demands. This work deploys heuristics

and does not provide any theoretical guarantees that we study in this chapter.

6.9 Conclusion

We have considered the problem of designing mechanisms for dynamic proportional

sharing in a high-low utility model that both incentivize users to participate and

share their resources (sharing incentives), as well as truthfully report their resource

requirements to the system (strategy-proofness). We show that while each of these

properties is incompatible with full efficiency, it is possible to satisfy both of them

and still obtain some efficiency gains from sharing.

The main mechanism that we present, the flexible lending mechanism, is strategy-

proof and provides each user a theoretical guarantee of at least half her sharing

incentives share. While we do not guarantee full sharing incentives, we show via

simulations on both real and synthetic data that in practical situations, no users

are significantly worse off by participating in the sharing scheme (and the majority

are vastly better off). We show that under certain assumptions, the flexible lending

mechanism provides full efficiency in the large round limit, which is supported by

our simulation results. By incentivizing truthful reporting, we posit that the flexible

lending mechanism will in fact produce significant efficiency gains in settings where

agents are strategic.

Many directions for future work remain. The 2-Period mechanism fully satisfies
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both SP and SI, but remains very inflexible in its allocations. A key challenge is the

design of a more flexible mechanism that satisfies both properties (or some upper

bound on the efficiency that such mechanisms can achieve). Another direction is

to extend the utility model. The high/low model is crucial to the positive strategic

results that we obtain because trade-offs are well-defined: swapping an L resource for

an H resource is always bad. Even introducing a medium (M) value complicates the

situation considerably, and extending to such a setting would represent an exciting

step forward.
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7

Conclusion

Drawing on game theory, this thesis encourages new thinking in designing manage-

ment platforms robust to strategic behavior. In this thesis, we present five pieces

of work on data center management platforms. First, REF provides an allocation

mechanism to encourage sharing. We show that Cobb-Douglas utilities are well suited

to modeling user preferences in computer architecture. For Cobb-Douglas utilities,

we present an allocation mechanism that provides sharing incentives, envy-freeness,

Pareto efficiency, and strategy-proofness in the large. By linking hardware resource

management to robust, game-theoretic analysis, computer architects can qualita-

tively change the nature of performance guarantees in hardware platforms shared by

strategic users.

Second, computation sprinting game presents a management framework that de-

termines when each chip should sprint. We formalize sprint management as a re-

peated game. Agents represent chip multiprocessors and their workloads, executing

sprints strategically on their behalf. Strategic behaviors produce an equilibrium in

the game. We show that, in equilibrium, the computational sprinting game out-

performs prior, greedy mechanisms by 4-6× and delivers 90% of the performance
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achieved from a more expensive, globally enforced mechanism.

Third, our proposed token mechanism presents a new approach for fair resource

management in dynamic systems. The token system provides game-theoretic desider-

ata while offering flexibility, which enhances performance by allocating resources to

jobs in time periods that benefit performance most. We demonstrate a fair, repeated

allocation game for heterogeneous processors that generalizes to other resources.

Fourth, the Amdahl utility function concisely models user value from processor

core allocations. We present a profiling framework that operationalizes Amdahl’s

Law, using its inverse—the Karp-Flat metric—to estimate the parallelizable fraction

of a workload. We co-design with the Amdahl utility function, a market mechanism

and a novel bidding procedure to allocate processors. Allocations ensure entitlements

in a shared datacenter.

Finally, the flexible lending mechanism dynamically allocate resources between

users with high-low utility model. We prove that our proposed mechanism is strategy-

proof and provides each user a theoretical guarantee of at least half her sharing

incentives share. While we do not guarantee full sharing incentives, we show via

simulations on both real and synthetic data that in practical situations, no users

are significantly worse off by participating in the sharing scheme (and the majority

are vastly better off). We show that under certain assumptions, the flexible lending

mechanism provides full efficiency in the large round limit, which is supported by

our simulation results. By incentivizing truthful reporting, we posit that the flexible

lending mechanism will in fact produce significant efficiency gains in settings where

agents are strategic.
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Appendix A

Omitted Proofs

A.1 Proof of Strategy Proofness in the Large For REF

Suppose user i decides to lie about her utility function, reporting α′
ir instead of the

true value αir for resource r. Given other users’ utilities, user i would choose to

report the α′
ir that maximizes her utility. As mentioned in Section 2.4, in a large

system 1 ≪ ∑
j αjr, for all resources r. Since α′

ir ≤ 1, we have α′
ir ≪

∑
j αjr.

Therefore:

ui =
R∏

r=1

(
α′
ir

α′
ir +

∑
j ̸=i αjr

Cr

)αir

≈

R∏
r=1

(
α′
ir∑

j ̸=i αjr

Cr

)αir

=

Ai

R∏
r=1

α′αir
ir ,
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where Ai =
∏R

r=1Cr/
∑

j ̸=i αjr is a constant. Let us consider the following optimiza-

tion problem:

maximize
∏
r

α′αir
ir

subject to
∑
r

α′
ir = 1.

Now, consider the Lagrangian form:

L(α′, λ) =
∏
r

α′αir
ir − λ(1−

∑
r

α′
ir),

where λ is a Lagrange multiplier. Then, based on the KKT conditions:

∂L

∂α′
ir

= αir

∏
r α

′αir
ir

α′
ir

− λ = 0 ∀r

∂L

∂λ
= 1−

∑
r

α′
ir = 0

The solution to these equations is α′
ir = αir, for all resources r.

A.2 Proof of Lemma 14

We use the characterization of the FL mechanism allocations from Lemma 13. We

consider four cases, corresponding to whether or not supply exceeds demand in the

truthful and misreported instances. Let x′ denote the objective value in the FL

mechanism’s call to PSWC in the misreported instance, and x in the truthful in-

stance. Suppose first that Dr ≥ E and D′
r ≥ E. Suppose that x′ ≤ x. Then, for all

j ̸= i,

a′j,r = min(x′ej, dj,r, t
′
j,r) ≤ min(xej, dj,r, tj,r) = aj,r,

which implies that a′i,r ≥ ai,r, since
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ . On the other hand, if

x′ > x, then

a′i,r = min(x′ei, di,r, t
′
i,r) ≥ min(xei, di,r, ti,r) = ai,r.
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Second, suppose that Dr ≥ E and D′
r < E. Then

a′i,r ≥ min(di,r, t
′
i,r) ≥ min(di,r, ti,r) ≥ ai,r.

Third, suppose that Dr < E and D′
r ≥ E. Then

a′j,r ≤ min(dj,r, t
′
j,r) ≤ min(dj,r, tj,r) ≤ aj,r

for all j ̸= i, which implies that a′i,r ≥ ai,r. Finally, suppose that Dr < E and

D′
r < E. If x′ ≤ x, then for all j ̸= i, we have that

a′j,r = min(t′j,r,max(dj,r, x
′ej)) ≤ min(tj,r,max(dj,r, xej)) = aj,r,

which implies that a′i,r ≥ ai,r. If x
′ > x, then

a′i,r = min(t′i,r,max(di,r, x
′ei)) ≥ min(ti,r,max(di,r, xei)) = ai,r.

Thus, the lemma holds in all cases.

A.3 Proof of Lemma 27

If D ≥ E, substituting the relevant terms into Lemma 11 gives us the following.

ai,r = max(0,min(min(d′i,r, ei + bi), xei)) = min(ei + bi, d
′
i,r, xei).

If D < E, then again by substituting into Lemma 11 we have the following.

ai,r = max(min(ei + bi, d
′
i,r),min(ei + bi, xei)) = min(ei + bi,max(d′i,r, xei)).

The final equality, max(min(A,B),min(A,C)) = min(A,max(B,C)), can easily be

checked to hold case by case for any relative ordering of A, B, and C.

A.4 Proof of Lemma 28

If r > T , then the allocation of agent i is independent of her reported demand,

thus ai,r = a′i,r. Now suppose that r ≤ T . Let d̄i,r = min(di,r, ei + bi,r) and d̄′i,r =
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min(d′i,r, ei + bi,r). Also, let x and x′ denote the objective value in the T -period

mechanism’s call to PSWC when i reports di,r and d′i,r, respectively. Observe first

that D′ = d̄′i,r +
∑

j ̸=i d̄j,r ≤ d̄i,r +
∑

j ̸=i d̄j,r = D.

Suppose first that E ≤ D′ ≤ D. Let aj,r and a′j,r denote the allocations of

j/not = i when i reports di,r and d′i,r, respectively. If x′ ≥ x, then for all j ̸= i, by

Lemma 27 we have:

a′j,r = min(ej + bj,r, dj,r, x
′ej) ≥ min(ej + bj,r, dj,r, xej) = aj,r.

This immediately implies that a′i,r ≤ ai,r, because
∑

k∈[n] ak,r =
∑

k∈[n] a
′
k,r = E. If

x′ < x, then again by Lemma 27 we have the following:

a′i,r = min(ei + bi,r, d
′
i,r, x

′ei) ≤ min(ei + bi,r, di,r, xei) = ai,r.

By the same lemma, for all j ̸= i, we also have:

a′j,r = min(ej + bj,r, dj,r, x
′ej) ≤ min(ej + bj,r, dj,r, xej) = aj,r.

Therefore, for all k ∈ [n], ak,r ≥ a′k,r. However, since
∑

k∈[n] ak,r =
∑

k∈[n] a
′
k,r = E,

it has to be the case that ak,r = a′k,r for all k.

Next, suppose that D′ < E ≤ D. By the definition of the T -period mechanism,

for all j ̸= i, a′j,r ≥ d̄j,r , and aj,r ≤ d̄j,r. Therefore, a′j,r ≥ aj,r which implies that

a′i,r ≤ ai,r.

Finally, suppose that D′ ≤ D < E. If x′ ≥ x, then by Lemma 27, for all j ̸= i,

we have:

a′j,r = min(ej + bj,r,max(dj,r, x
′ej)) ≥ min(ej + bj,max(dj,r, xej)) = aj,r.

This implies a′i,r ≤ ai,r. If x
′ < x, then, by Lemma 27 we have:

a′i,r = min(ei + bi,r,max(d′i,r, x
′ei)) ≤ min(ei + bi,r,max(di,r, xei)) = ai,r

By the same lemma, for all j ̸= i, we also have:

a′j,r = min(ej + bj,r,max(dj,r, x
′ej)) ≤ min(ej + bj,r,max(dj,r, xej)) = aj,r.
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Therefore, for all k ∈ [n], a′k,r ≤ ak,r. However, since
∑

k∈[n] ak,r =
∑

k∈[n] a
′
k,r = E,

it has to be the case that ak,r = a′k,r for all k.

A.5 Proof of Lemma 29

Note that D′ ≤ D, since d′i,r < di,r and d′j,r = dj,r for all agents j ̸= i. If E ≤ D,

then by the definition of the T -period mechanism we have:

ai,r ≤ d̄i,r = min(ei + bi, di,r) ≤ di,r.

Next, assume that D′ ≤ D < E. Then a′i,r < ai,r implies that there is at least

one agent j with a′j,r > aj,r. In the proof of Lemma 28 we show that if x′ < x, then

a′k,r = ak,r for all k. Therefore, it has to be the case that x′ ≥ x. By Lemma 27,

ai,r = min(ei+ bi,r,max(di,r, xei)) and a′i,r = min(ei+ bi,max(d′i,r, x
′ei)). It is easy to

see that if di,r < xei, then a′i,r ≥ ai,r, which contradicts the assumption in the lemma

statement. Therefore, we have:

ai,r = min(ei + bi,max(di,r, xei)) = min(ei + bi, di,r) ≤ di,r.

A.6 Proof of Corollary 30

Because a′i,r < ai,r ≤ di,r, we can substitute the utility values from Equation (6.2),

ui,r(ai,r)− ui,r(a
′
i,r) = ai,rH − a′i,rH = H(ai,r − a′i,r).

A.7 Proof of Lemma 31

Note that D′ ≥ D, since d′i,r > di,r and d′j,r = dj,r for all agents j ̸= i. If D < E,

then ai,r ≥ d̄i,r = min(ei + bi,r, di,r). We show that ei + bi,r ≥ di,r, and therefore,

ai,r ≥ di,r. Suppose for contradiction that ei + bi,r < di,r < d′i,r, which means d̄i,r =

d̄′i,r = ei + bi,r. By definition of the T -period mechanism, d̄i,r ≤ ai,r ≤ ei + bi,r, which

implies ai,r = ei+ bi,r. Also, by the definition of the mechanism, a′i,r ≤ d̄′i,r = ei+ bi,r
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if D′ ≥ E, and a′i,r ≤ ei+b′i,r = ei+bi,r if D
′ < E. In both cases, a′i,r ≤ ei+bi,r = ai,r,

a contradiction to the assumption in the lemma statement.

If D′ ≥ D ≥ E, then a′i,r > ai,r implies that there is at least an agent j with

a′j,r < aj,r. In the proof of Lemma 28 we show that if x < x′, then a′k,r = ak,r

for all k. Therefore, it has to be the case that x ≥ x′. By Lemma 27, ai,r =

min(ei + bi,r, di,r, xei) and a′i,r = min(ei + bi,r, d
′
i,r, x

′ei). It is easy to see that if ai,r is

xei or ei + bi,r, then a′i,r ≤ ai,r. Therefore, ai,r = di,r, which means the lemma holds.

A.8 Proof of Corollary 32

Because di,r ≤ ai,r < a′i,r, we can substitute the utility values from Equation (6.2),

ui,r(a
′
i,r)− ui,r(ai,r) = di,rH + (a′i,r − di,r)L− (di,rH + (ai,r − di,r)L) = L(a′i,r − ai,r).

A.9 Proof of Lemma 33

Suppose first that agent i reports d′i,T < di,T . Then, by Lemma 28, a′i,T ≤ ai,T .

If a′i,T = ai,T , then the misreport has had no effect on the allocations, since the

allocation at rounds r ≤ T is unchanged, and the allocations at rounds r > T

depend only on the allocations at rounds r ≤ T , not the reports. So assume that

a′i,T = ai,T − k for some k > 0. By the definition of the T -Period mechanism, i’s

allocation increases by k
T
for each of rounds T + 1, . . . , 2T . The difference between

her utility from truthfully reporting at round T and from misreporting at round T
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is given by

Ui,R(ai)− Ui,R(a
′
i) =

R∑
r=1

(
ui,r(ai,r)− ui,r(a

′
i,r)
)

= ui,T (ai,T )− ui,T (a
′
i,T ) +

2T∑
r=T+1

(
ui,r(ai,r)− ui,r(a

′
i,r)
)

= kH +
2T∑

r=T+1

(
ui,r(ai,r)− ui,r(ai,r +

k

T
)

)
≥ kH − kH = 0

where the second transition follows because d′i,r = di,r for all rounds r < T , the

third transition from Corollary 30, and the final transition because each of the extra

resources received in the misreported case for rounds r > T can each be worth at

most H to i.

Next suppose that agent i reports d′i,T > di,T . Then, by Lemma 28, a′i,T ≥ ai,T .

As before, assume that a′i,T ̸= ai,T . That is, a′i,T = ai,T + k for some k > 0. By

the definition of the T -Period mechanism, i’s allocation decreases by k
T
for each of

rounds T + 1, . . . , 2T . The difference between her utility from truthfully reporting

at round T and from misreporting at round T is given by

Ui,R(ai)− Ui,R(a
′
i) =

R∑
r=1

(
ui,r(ai,r)− ui,r(a

′
i,r)
)

= ui,T (ai,T )− ui,T (a
′
i,T ) +

2T∑
r=T+1

(
ui,r(ai,r)− ui,r(a

′
i,r)
)

= −kL+
2T∑

r=T+1

(
ui,r(ai,r)− ui,r(ai,r −

k

T
)

)
≥ −kL+ kL = 0

where the second transition follows because d′i,r = di,r for all rounds r < T , the

third transition from Corollary 32, and the final transition because each of the extra

resources received in the truthful case for rounds r > T are each worth at least L to

i.
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A.10 Proof of Lemma 35

We treat four cases, corresponding to whether or not supply exceeds demand in

the truthful and misreported instances. Let x′ denote the objective value in the T -

Period mechanism’s call to PSWC in the misreported instance, and x in the truthful

instance. All cases rely heavily on the characterization of the allocation from Lemma

27.

Suppose first that Dr ≥ E and D′
r ≥ E. Suppose that x′ ≤ x. Then, for all

j ̸= i, a′j,r = min(x′ej, dj,r, ej + b′j,r) ≤ min(xej, dj,r, ej + bj,r) = aj,r, which implies

that a′i,r ≥ ai,r, since
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ . On the other hand, if x′ > x, then

a′i,r = min(x′ei, di,r, ei + b′i,r) ≥ min(xei, di,r, ei + bi,r) = ai,r. Second, suppose that

Dr ≥ E and D′
r < E. Then a′i,r ≥ min(di,r, ei + b′i,r) ≥ min(di,r, ei + bi,r) ≥ ai,r).

Third, suppose that Dr < E and D′
r ≥ E. Then a′j,r ≤ min(dj,r, ej + b′j,r) ≤

min(dj,r, ej + bj,r) ≤ aj,r for all j ̸= i, which implies that a′i,r ≥ ai,r.

Finally, suppose that Dr < E and D′
r < E. If x′ ≤ x, then for all j ̸= i, we

have that a′j,r = min(ej + b′j,r,max(dj,r, x
′ej)) ≤ min(ej + bj,r,max(dj,r, xej)) = aj,r,

which implies that a′i,r ≥ ai,r. If x′ > x, then a′i,r = min(ei + b′i,r,max(di,r, x
′ei)) ≥

min(ei + bi,r,max(di,r, xei)) = ai,r. Thus, the lemma holds in all cases.

A.11 Proof of Proposition 37

Let r ≤ T . First suppose that D < E. Then i’s minimum allocation is d̄i,r =

min(d′i,r, ei + bi,r) = ei. So we know that ai,r ≥ ei. Suppose for contradiction that

ai,r > ei. Then there must be some agent j ̸= i with aj,r ≤ ej. But now we

could obtain a smaller value of x in the PSWC program by assigning slightly higher

allocation to j, and slightly lower allocation to any agent with ak,r/ek = x (we know

that j is not one of these agents since aj,r/ej < 1 < ai,r/ei ≤ x). This contradicts

optimality of the PSWC program, therefore ai,r = ei.
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Next, suppose that D ≥ E. Then i’s limit allocation is d̄i,r = min(d′i,r, ei+ bi,r) =

ei. So we know that ai,r ≤ ei. Suppose for contradiction that ai,r < ei. Then

there must exist some agent j with aj,r > ej. But now the objective value x of the

call to PSWC could be improved by transferring some small amount of allocation

to i from all agents k with ak,r/ek = x (we know that i is not one of these agents

since ai,r/ei < 1 < aj,r/ej ≤ x). This contradicts optimality of the PSWC program,

therefore ai,r = ei.

A.12 Over-reporting Demand is not Advantageous

In this section we assume that d′i,r′ > di,r′ . The setup otherwise mirrors that of

Section 6.5.3.

Lemma 40. For all agents j ̸= i, we have that a′j,r′ ≤ aj,r′. Further, a
′
i,r′ ≥ ai,r′.

Proof. We prove the statement for all j ̸= i. The statement for i follows immediately

because the total number of resources to allocate is fixed.

Observe first that

Dr′ =
∑
k∈[n]

min(dk,r′ , tk,r′) ≤
∑
k∈[n]

min(d′k,r′ , tk,r′) = D′
r′ ,

since i’s demand increases in the misreported instances but all other demands and

token counts stay the same. Let x′ denote the objective value in FL’s call to PSWC

in the misreported instance, and x in the truthful instance.

Suppose that E ≤ Dr′ ≤ D′
r′ . Suppose first that x′ < x. Then, by Lemma 13,

aj,r′ = min(xej, dj,r′ , tj,r′) ≥ min(x′ej, dj,r′ , tj,r′) = a′j,r′

for all j ̸= i. Next, suppose that x′ ≥ x. Then, again by Lemma 13 and the fact

that d′i,r′ > di,r′ ,

a′i,r′ = min(x′ei, d
′
i,r′ , ti,r′) ≥ min(xei, di,r′ , ti,r′) = ai,r′ .
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And, for all j ̸= i,

a′j,r′ = min(x′ej, dj,r′ , tj,r′) ≥ min(xej, dj,r′ , tj,r′) = aj,r′ .

Because a′k,r′ ≥ ak,r′ for all users k, and
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ , it must be the

case that a′k,r′ = ak,r′ for all k, which satisfies the statement of the lemma.

Next, suppose thatDr′ < E ≤ D′
r′ . By the definition of FL, ak,r′ ≥ min(dk,r′ , tk,r′)

for all k, and a′k,r′ ≤ min(d′k,r′ , tk,r′) for all k. Since min(d′j,r′ , tj,r′) = min(dj,r′ , tj,r′)

for all j ̸= i, we have that aj,r′ ≥ a′j,r′ , implying also that ai,r′ ≤ a′i,r′ .

Finally, suppose that Dr′ ≤ D′
r′ < E. Suppose first that x ≤ x′. Then, by

Lemma 13 and the assumption that di,r′ < d′i,r′ , we have

ai,r′ = min(ti,r′ ,max(xei, di,r′)) ≤ min(ti,r′ ,max(x′ei, d
′
i,r′)) = a′i,r′

and

aj,r′ = min(tj,r′ ,max(xej, dj,r′)) ≤ min(tj,r′ ,max(x′ej, dj,r′)) = a′j,r′

for all j ̸= i. Because ak,r′ ≤ a′k,r′ for all users k, and
∑

k∈[n] a
′
k,r′ =

∑
k∈[n] ak,r′ , it

must be the case that ak,r′ = a′k,r′ for all k, which satisfies the lemma statement.

Next, suppose that x > x′. Then, again by Lemma 13, for all j ̸= i, we have

aj,r′ = min(tj,r′ ,max(xej, dj,r′)) ≥ min(tj,r′ ,max(x′ej, dj,r′)) = a′j,r′ .

If it is the case that a′i,r′ = ai,r′ , then it must also be that a′j,r′ = aj,r′ for all j ̸= i.

So allocations at round r′ are the same in the misreported instance as the truthful

instance. Therefore, for all rounds r ≤ r′, allocations in both universes are the same.

In all rounds r > r′, reports in both universes are the same. Together, these imply

that allocations for all rounds r > r′ are the same in both universes. In particular, i

does not profit from her misreport and could weakly improve her utility by reporting

d′i,r′ = di,r′ . So, for the remainder of this section, we assume that a′i,r′ > ai,r′ .

204



Our next lemma says that the additional resources that i receives in round r′

are low valued resources for her. The intuition is that if it were the case that i

was receiving only high-valued resources under truthful reporting, then she will not

receive any extra resources by misreporting (since no agent donates any additional

resources for i to receive).

Lemma 41. If a′i,r′ > ai,r′, then ai,r′ ≥ di,r′.

Proof. Suppose for contradiction that ai,r′ < di,r′ . We also know that ai,r′ < a′i,r′ ≤

t′i,r′ = ti,r′ , where the equality holds because allocations before round r′ are identical

in the truthful and misreported instances. It must therefore be the case that D′
r′ ≥

Dr′ > E, where the first inequality holds because d′j,r′ = dj,r′ for all j ̸= i and

d′i,r′ > di,r′ , and the second because ai,r′ < min(ti,r′ , di,r′). Let x denote the objective

value of FL’s call to PSWC in the truthful instance, and x′ in the misreported

instance. Suppose that x ≤ x′. Then, by Lemma 13 and the assumption that

di,r′ < d′i,r′ ,

ai,r′ = min(ti,r′ , xei, di,r′) ≤ min(ti,r′ , x
′ei, d

′
i,r′) = a′i,r′ ,

and for all j ̸= i

aj,r′ = min(tj,r′ , xej, dj,r′) ≤ min(tj,r′ , x
′ej, dj,r′) = a′j,r′ .

Because ak,r′ ≤ a′k,r′ for all agents k, and
∑

k∈[n] ak,r′ =
∑

k∈[n] a
′
k,r′ , it must be the

case that a′k,r′ = ak,r′ for all k. This contradicts the assumption that ai,r′ < a′i,r′ .

Now suppose that x > x′. Note that xei < di,r′ < d′i,r′ , where the first inequality

holds because ai,r′ < min(ti,r′ , di,r′). Then, again by Lemma 13 and the previous

observation, we have

a′i,r′ = min(ti,r′ , x
′ei, d

′
i,r′) ≤ min(ti,r′ , xei, di,r′) = ai,r′ ,

which contradicts that ai,r′ < a′i,r′ .
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Since we arrive at a contradiction in all cases, the lemma statement must be

true.

As a corollary, we can write the difference in utility between the truthful and

misreported instances that i derives from round r′.

Corollary 42. ui,r′(a
′
i,r′)− ui,r′(ai,r′) = L(a′i,r′ − ai,r′).

Proof. Because di,r′ ≤ ai,r′ < a′i,r′ , we can substitute the utility values from Equation

(6.2):

ui,r′(a
′
i,r′)−ui,r′(ai,r′) = di,r′H+(a′i,r′−di,r′)L−di,r′H−(a′i,r−di,r′)L = L(a′i,r′−ai,r′).

For a fixed agent k, denote by r′k the round at which agent k runs out of tokens in

the misreported universe. That is, r′k is the first (and only) round with a′rk = t′k,rk > 0.

Note that r′i ≥ r′, since a′i,r′ > 0. Given this, our next lemma states that, under

certain conditions, the effect of i’s misreport, d′i,r > di,r, is to decrease the objective

value of FL’s call to PSWC.

Lemma 43. Let r < r′i (i.e.a′i,r < t′i,r). Suppose tj,r ≤ t′j,r for all agents j ̸= i.

Suppose that either min(Dr, D
′
r) ≥ E or max(Dr, D

′
r) < E. Then x′ ≤ x, where x′

denotes the objective value of FL’s call to PSWC in the misreported instance and x

in the truthful instance.

Proof. First, suppose that min(Dr, D
′
r) ≥ E. Suppose for contradiction that x < x′.

By Lemma 13,

aj,r = min(xej, dj,r, tj,r) ≤ min(x′ej, dj,r, t
′
j,r) = a′j,r
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for all j ̸= i, where the inequality follows from the assumption that x < x′ and that

tj,r ≤ t′j,r. Further,

ai,r = min(xei, di,r, ti,r) ≤ min(xei, di,r) ≤ min(x′ei, di,r)

= min(x′ei, di,r, t
′
i,r) = a′i,r,

where the second inequality follows from the assumption that x < x′ and the second

to last equality from the assumption a′i,r < t′i,r.

Therefore, ak,r ≤ a′k,r for all agents k. Since
∑

a′k,r =
∑

ak,r, it must be the case

that a′k,r = ak,r for all agents k. Therefore, by the definition of FL, a′k,r/ek ≤ x < x′

for all agents k with a′k,r > mk = 0. Therefore x′ is not the optimal objective value

of the PSWC program in the misreported instance, a contradiction. Thus, x ≥ x′.

Next, suppose that max(Dr, D
′
r) < E. Suppose for contradiction that x < x′. By

Lemma 13,

aj,r = min(tj,r,max(xej, dj,r)) ≤ min(t′j,r,max(x′ej, dj,r)) = a′j,r

for all j ̸= i, where the inequality follows from the assumption that x < x′ and that

tj,r ≤ t′j,r. Further,

ai,r = min(ti,r,max(xei, di,r)) ≤ max(xei, di,r) ≤ max(x′ei, di,r)

= min(t′i,r,max(x′ei, di,r)) = a′i,r,

where the second inequality follows from the assumption that x < x′ and the second

to last equality from the assumption a′i,r < t′i,r.

Therefore, ak,r ≤ a′k,r for all agents k. Since
∑

a′k,r =
∑

ak,r, it must be the case

that a′k,r = ak,r for all agents k. Consider all agents with min(dk,r, t
′
k,r) < a′k,r (that

is, those agents for which the first constraint in the PSWC program binds in the

misreported instance). For all such agents, we have

min(dk,r, t
′
k,r) < a′k,r =⇒ dk,r < a′k,r ≤ t′k,r =⇒ dk,r < ak,r ≤ tk,r

=⇒ min(dk,r, tk,r) < ak,r,
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so the constraints bind in the truthful instance as well. Therefore, ak,r/ek ≤ x < x′

for all agents k for which the first constraint binds in the misreported instance. There-

fore x′ is not the optimal objective value of the PSWC program in the misreported

instance, a contradiction. Thus, x ≥ x′.

Using Lemma 43, we show our main lemma. It allows us to make an inductive ar-

gument that, after gaining some extra resources in round r′, i’s allocation is (weakly)

smaller for all other rounds in the mireported instance than the truthful instance.

Lemma 44. Let r′ < r < r′i (that is, a′i,r < t′i,r). Suppose that tj,r ≤ t′j,r for all

agents j ̸= i. Then for all j ̸= i, either: (1) aj,r = tj,r, or (2) aj,r ≥ a′j,r.

Proof. Note that tj,r ≤ t′j,r for all j ̸= i implies that ti,r ≥ t′i,r, which we use in the

proof. Also, because r′ < r, we know that d′i,r = di,r, as r
′ is the last round for which

d′i,r ̸= di,r. We assume that condition 1) from the lemma statement is false (i.e.aj,r <

tj,r) and show that condition 2) must hold. Suppose first that D′
r < E. Then,

because a′i,r < t′i,r, we know that d′i,r ≤ t′i,r ≤ ti,r. This implies that min(di,r, t
′
i,r) =

min(di,r, ti,r) = di,r. Let j ̸= i. Since tj,r ≤ t′j,r, we have min(dj,r, tj,r) ≤ min(dj,r, t
′
j,r).

Therefore, it is the case that Dr ≤ D′
r < E. By Lemma 13 and the assumption that

aj,r < tj,r, it must be the case that aj,r = max(dj,r, xej). Further, by Lemma 43, we

know that x ≥ x′. Therefore, we have

a′j,r = max(dj,r, x
′ej) ≤ max(dj,r, xej) = aj,r.

That is, condition (2) from the lemma statement holds.

Now suppose that D′
r ≥ E. Then, from the definition of the mechanism, we have

that a′j,r ≤ min(dj,r, t
′
j,r) ≤ dj,r. If it is the case that Dr < E then we have that

aj,r ≥ min(dj,r, tj,r) = dj,r, where the equality holds because otherwise we would

have aj,r ≥ min(dj,r, tj,r) = tj,r, violating the assumption that aj,r < tj,r. Using these

inequalities, we have aj,r ≥ dj,r ≥ a′j,r, so condition (2) from the statement of the
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lemma holds. Finally, it may be the case that D′
r ≥M and Dr ≥M . By Lemma 13

and the assumption that aj,r < tj,r, we have

aj,r = min(dj,r, xek) ≥ min(dj,r, x
′ek) = a′j,r,

where the inequality follows from Lemma 43. Thus, condition (2) of the lemma

statement holds.

We now show an analogous result to Lemma 14.

Lemma 45. Suppose that tj,r ≤ t′j,r for all j ̸= i, and dk,r = d′k,r for all k ∈ [n].

Then ai,r ≥ a′i,r.

Proof. Note that the condition that tj,r ≤ t′j,r for all j ̸= i implies that ti,r ≥ t′i,r.

We use these assumptions, along with the characterization of the FL mechanism

allocations from Lemma 13, to prove the lemma.

We treat four cases, corresponding to whether or not supply exceeds demand

in the truthful and misreported instances. Let x′ denote the objective value in the

FL mechanism’s call to PSWC in the misreported instance, and x in the truthful

instance. Suppose first that D′
r ≥ E and Dr ≥ E. Suppose that x ≤ x′. Then,

for all j ̸= i, aj,r = min(xej, dj,r, tj,r) ≤ min(x′ejdj,r, t
′
j,r) = a′j,r, which implies that

ai,r ≥ a′i,r, since
∑

k∈[n] a
′
k,r′ =

∑
k∈[n] ak,r′ . On the other hand, if x > x′, then

ai,r = min(xei, di,r, ti,r) ≥ min(x′ei, di,r, t
′
i,r) = a′i,r. Second, suppose that D′

r ≥ E

and Dr < E. Then ai,r ≥ min(di,r, ti,r) ≥ min(di,r, t
′
i,r) ≥ a′i,r). Third, suppose that

D′
r < E and Dr ≥ E. Then aj,r ≤ min(dj,r, tj,r) ≤ min(dj,r, t

′
j,r) ≤ a′j,r for all j ̸= i,

which implies that ai,r ≥ a′i,r.

Finally, suppose that D′
r < E and Dr < E. If x ≤ x′, then for all j ̸=

i, we have that aj,r = min(tj,r,max(dj,r, xej)) ≤ min(t′j,r,max(dj,r, x
′ej)) = a′j,r,

which implies that ai,r ≥ a′i,r. If x > x′, then ai,r = min(ti,r,max(di,r, xei)) ≥

min(t′i,r,max(di,r, x
′ei)) = a′i,r. Thus, the lemma holds in all cases.
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Finally, we show that the mechanism is strategy-proof.

Theorem 46. Agent i never benefits from reporting di,r′ > di,r′.

Proof. We first observe that for every r ≤ r′i, tj,r ≤ t′j,r for every j ̸= i. This is

true for every r ≤ r′ because a′j,r = aj,r for r < r′, by Lemma 15. For r = r′ + 1,

it follows from Lemma 40, which says that aj,r′ ≥ a′j,r′ . For all subsequent rounds,

up to and including r = r′i, it follows inductively from Lemma 44: tj,r ≤ t′j,r implies

that either aj,r = tj,r (in which case tj,r+1 = 0 ≤ t′j,r+1), or aj,r ≥ a′j,r (in which case

tj,r+1 = tj,r − aj,r ≤ t′j,r − a′j,r = t′j,r+1).

Consider an arbitrary round r ̸= r′, with r ≤ r′i. By the above argument, we

know that tj,r ≤ t′j,r for all j ̸= i. Further, because reports in the truthful and

misreported instances are identical on all rounds r ̸= r′, we have that dk,r = d′k,r for

all k ∈ [n]. Therefore, by Lemma 45, ai,r ≥ a′i,r. For rounds r > r′i, it is also true

that ai,r ≥ a′i,r, since a′i,r = 0 for these rounds by the definition of r′i.

Finally,

Ui,R(ai)− Ui,R(a
′
i) =

R∑
r=1

(ui,r(ai,r)− ui,r(a
′
i,r))

=
∑
r ̸=r′

(ui,r(ai,r)− ui,r(a
′
i,r)) + (ui,r′(ai,r′)− ui,r′(a

′
i,r′))

=
∑
r ̸=r′

(ui,r(ai,r)− ui,r(a
′
i,r))− L(a′i,r′ − ai,r′)

≥ L(a′i,r′ − ai,r′)− L(a′i,r′ − ai,r′) = 0

Where the third transition follows from Corollary 42, and the final transition because∑
r ̸=r′(a

′
i,r − ai,r) = ai,r′ − a′i,r′ , and every term in the sum is positive.
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