
Cooper: Task Colocation with Cooperative Games

Qiuyun Llull, Songchun Fan, Seyed Majid Zahedi, Benjamin C. Lee
Duke University

{qiuyun.wang, songchun.fan, seyedmajid.zahedi, benjamin.c.lee}@duke.edu

Abstract—Task colocation improves datacenter utilization
but introduces resource contention for shared hardware. In
this setting, a particular challenge is balancing performance
and fairness. We present Cooper, a game-theoretic framework
for task colocation that provides fairness while preserving
performance. Cooper predicts users’ colocation preferences
and finds stable matches between them. Its colocations satisfy
preferences and encourage strategic users to participate in
shared systems. Given Cooper’s colocations, users’ performance
penalties are strongly correlated to their contributions to
contention, which is fair according to cooperative game theory.
Moreover, its colocations perform within 5% of prior heuristics.

Keywords-Datacenter Management, Task Colocation, Inter-
ference, Performance Prediction, Fairness, Game Theory

I. INTRODUCTION

Modern datacenters, with their increasingly parallel com-
putation and increasingly capable machines, colocate small
tasks on big servers. A task partially uses a server’s re-
sources, but all resources become available when the server
is powered. When a server’s large power costs are amortized
over little work, energy efficiency suffers [1]. Colocating
multiple tasks on each server increases efficiency but in-
troduces contention for shared resources such as last-level
cache capacity and memory bandwidth [2], [3], [4].

Current colocation policies manage performance by con-
trolling contention, which depends on the tasks colocated.
Because finding the best colocations requires combinatorial
optimization, practical heuristics often colocate tasks if per-
formance penalties are tolerable [5], [6] or use architectural
insights to pair applications with complementary resource
demands [2], [4].

Performance-centric policies are insufficient for privately
shared systems. Conventional wisdom assumes that users
must colocate and policies need only mitigate contention.
Such performance goals are suitable for public systems that
deliver hardware for which users have paid. In contrast, pri-
vate systems consist of users who voluntarily combine their
resources and subscribe to a common management policy.
However, these users also reserve the right to withdraw from
the system if resources are managed poorly.

Therefore, privately shared systems must manage re-
sources fairly to encourage participation and guard against
strategic behavior [7]. Real-world users are selfish and
rational [8], [9], an observation that has motivated numerous
game-theoretic perspectives on systems management [10],

[11], [12], [13], [14]. Neglecting users’ preferences or
fairness induces strategic behavior. Users may circumvent
policies or break away from shared clusters, redeploy-
ing hardware to form smaller, separate systems. Fairness
addresses these challenges, ensuring system integrity and
stability.

For the first time, we present the case for fair colocation.
In economics, fairness is the equal treatment of equals and
the unequal treatment of unequals in proportion to their rele-
vant differences [15], [16]. We say colocations are fair when
similar tasks suffer similar performance losses. When tasks
are dissimilar, the relevant differentiator is contentiousness.
Thus, users’ performance losses from colocation should
increase with their contributions to contention.

In addition to fairness, we seek colocations that satisfy
user preferences and enhance system stability. Users prefer
less contentious co-runners and smaller performance losses.
Satisfied preferences enhance stability by reducing users’
incentives to find better co-runners or break into separate,
less efficient systems.

We pursue our system desiderata with cooperative games.
Game theory is a framework for analyzing outcomes from
strategic behavior. Cooperative games describe how agents’
interactions dictate shared outcomes. Such games are well
suited for colocation as interference between tasks dictates
performance penalties. Cooperative games build a founda-
tion for fair colocation, which encourages strategic users to
share. The following summarizes our contributions:

• Fair Colocation. We present the case for three desider-
ata from colocation: (i) fair attribution such that more
contentious users incur larger penalties, (ii) satisfied
preferences such that more users colocate with pre-
ferred co-runners, (iii) stable colocations such that
fewer users break away from the shared system.

• Cooperative Games. We formalize the colocation
game in which users share hardware and contention
causes performance losses. When assigning coloca-
tions, the game accommodates users’ preferences for
co-runners. The game’s equilibrium produces fair and
stable systems.

• Colocation Framework. We present Cooper, a co-
operative game that predicts preferences and colocates
tasks. It adapts stable matching algorithms to the
colocation problem. It then assesses colocations and

Contentiousness

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0

5
10

15
20

25
30

M
em

or
y

B
an

dw
id

th
 (

G
B

/s
)

Greedy (GR)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.
00

0.
04

0.
08

0.
12

T
hr

ou
gh

pu
t P

en
al

ty

Complementary (CO)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
T

hr
ou

gh
pu

t P
en

al
ty

Figure 1: Unfair colocations show no link between contentiousness and penalties. We colocate 1000
jobs drawn randomly from pool of jobs. Pairs of jobs share last-level cache and memory bandwidth.
Colocation penalties are averaged over those that include a particular job (e.g., bodytrack).

Figure 2: Pursuing performance minimizes system
penalties. Pursuing stability satisfies users’ preferences
for lower penalties. Data for four users: (A) x264,
(B) fluidanimate, (C) decision-tree, (D)
regression.

recommends strategic actions for users.

• Multiprocessor Evaluation. We evaluate Spark and
PARSEC jobs that share chip multiprocessors. We show
that Cooper’s colocations are fair as jobs’ perfor-
mance losses increase with their demands for memory.
Colocations also satisfy users’ preferences, which en-
courages sharing. Cooper performs within 5% of prior
heuristics.

II. CASE FOR FAIR COLOCATION

We approach fair colocation from a game-theoretic per-
spective, describing strategic situations that arise when
strategic users share systems. Cooperative game theory pre-
scribes the fair division of costs that arise from interactions
between strategic agents [17]. Solutions to these games
reconcile agents’ divergent preferences and produce stable
outcomes [18], [19]. We use such theories to design and
analyze colocation policies.

We manage datacenters that colocate strategic users and
their tasks on chip multiprocessors. We define strategic users
as those who selfishly pursue performance and opt out (or
manipulate) management policies when outcomes fail to
satisfy their preferences;1 define contentiousness as user
demand for shared resources such as memory bandwidth;
and define penalty as user disutility such as throughput
loss from contention. Cooperative game theory guides us to
colocation algorithms that satisfy three system desiderata.

• Fair Attribution. More contentious users incur larger
penalties from colocation.

• Satisfied Preferences. More users colocate with their
preferred co-runners.

• Stable Colocations. No subset of users benefits by
breaking away to share separate subsystem.

Fairness and Contention. We argue that a colocation’s
performance penalties are attributed fairly when more con-
tentious users incur larger penalties. In practice, such fair
attribution encourages participation. Suppose Alice’s job is

1See §III for the formal definition of preference.

contentious and Bob’s is not. If Bob contributes little inter-
ference but suffers large performance losses when colocated
with Alice, he has little incentive to share. Bob would rather
form his own private cluster than contribute resources to the
shared system. As Bob-like users leave the system, Alice-
like users dominate and exacerbate contention.

Figure 1 highlights unfairness in existing policies. A
greedy policy assigns jobs to servers that perform well
given prior assignments. A complementary policy pairs
jobs with harmonious demands such as compute and mem-
ory intensive jobs. Neither policy links contentiousness to
penalty (memory intensity and performance loss, respec-
tively). Correlation is the most contentious but penal-
ized no less than Canneal and Dedup under greedy pair-
ing. Dedup is one of the least contentious applications but
penalized more than most applications under complementary
pairing. These outcomes violate fairness in cost attribution.

Our notion of fairness is justified by the Shapley value
in cooperative game theory [20]. Shapley determines each
agent’s fair share of a common outcome based on her
contributions. Equation 1 shows the Shapley calculation.
When applied to colocation, φi is agent i’s fair share of
penalty p, which depends on the agents from N that form
colocation S.

φi(p) =
∑
S⊂N

(s− 1)!(n− s)!
n!

[p(S)− p(S − i)] (1)

Agent i’s marginal contribution to penalties is p(S)−p(S−
i). Shapley states that her fair share φi of penalty p is her
marginal contribution to those penalties, averaged over the
ways that colocations could form.2

Shapley is not meant for direct application because it un-
realistically assumes performance losses can be transferred
arbitrarily between colocated agents. Nonetheless, Shapley
provides the theoretical foundation for a realistic fairness
goal—larger losses for more contentious jobs.

Preferences and Stability. We pursue fairness through

2See Appendix A for Shapley example.

Penalty w/ Performance

Penalty w/ Stability

00
5

1
0

1
5

2
0

2
5

3
0

5.5
4.0

21.0

14.7

Figure 3: Stability enhances fairness. Bars show penalty (throughput
loss) under performance- and stability-centric colocation. Dots show con-
tentiousness (bandwidth demand). Data for four users: (A) x264, (B)
fluidanimate, (C) decision-tree, (D) regression.

stable colocations, which satisfy user preferences and
strengthen system integrity. Figure 2 illustrates instability
from existing policies. Suppose four users share two proces-
sors and compete for the memory subsystem. A colocation
policy minimizes system-wide penalties with colocations
{AD, BC}. However, these colocations do not satisfy pref-
erences, pairing A with D even though A prefers D least.

In addition, they are unstable as A and B prefer each
other over their co-runners. If A and B break away to form
a separate subsystem to improve their utility, the datacenter
fragments and efficiency suffers. In contrast, stable coloca-
tions {AB, CD} satisfy three of four users’ preferences –
A, B and D’s. No pair wants to break away to form their
own subsystem.

Figure 3 indicates that pursuing stability enhances fairness
whereas pursuing performance does not. When optimizing
system-wide performance, user C sees the smallest perfor-
mance penalty although it is most memory-intensive (1%,
21 GB/s). Users A and B see the largest penalties although
they are least contentious (4-9%, 4-5 GB/s). In contrast,
stable policies more closely align penalties with memory
intensity. The penalty for the most contentious user rises
while those for less contentious users fall. Stability furthers
the fair attribution of costs in shared systems.

III. THE COLOCATION GAME

We present a game-theoretic framework that colocates
software on shared hardware in a multi-user setting. Our
framework is an alternative to heuristics that myopically
maximize performance. The colocation game balances the
pursuit of performance with the provision of fairness, which
encourages strategic users to share hardware.

A. System Setting

We consider a shared cluster with homogeneous proces-
sors, each with multiple cores, that serve batch and offline
computation. The colocation game batches and assigns ar-
riving jobs to available processors periodically. The length
of the scheduling period is comparable to job completion

Query Interface

Preference

Predictor

Action

Recommender

Users

Agents Coordinator

System

Profiler

Colocation

Policies

Job

Dispatcher

Machines

Figure 4: Agents act on users’ behalf, playing the colocation game and
interfacing with the system coordinator. The agents and the coordinator
shield hardware complexity from human users.

times (i.e., minutes rather than seconds or milliseconds). If
the system is heavily loaded, jobs queue for scheduling.

Figure 4 illustrates an architecture for the colocation
game, which defines abstraction layers – agents and co-
ordinator – between users and machines. Agents act on
users’ behalf within the game, shielding users from complex
management mechanisms. The coordinator communicates
system information to agents and implements management
mechanisms.

Agents play three roles when interfacing with the coordi-
nator. First, agents query the coordinator’s profiler to obtain
job performance under varied colocations. Second, they use
profiles to predict preferences for co-runners and influence
the coordinator’s colocation assignments. Third, agents as-
sess assigned colocations and recommend strategic actions to
users. An agent recommends participation when assignments
satisfy preferences. Otherwise, an agent recommends better
colocations with others.

B. Game Formulation

We formulate colocation as a cooperative game in which
users form coalitions to share hardware and divide penalties
from resource contetion. We define the game’s components,
introduce actions, and present solution concepts.

Agents, Disutility, and Preferences. An agent represents
a user and her job. In a given epoch, the colocation game
assigns 2N agents to N chip multiprocessors. Colocated
agents comprise a coalition who contribute to shared con-
tention and performance penalties. Each agent defines disu-
tility d ∈ [0, 1].

d = 1− Throughput colocation

Throughput stand-alone

Disutility quantifies a colocation’s performance penalty. For
example, d = 0.3 when a job’s colocated performance is
0.7× that of its stand-alone performance, all else being equal
(e.g., allocation of processor cores).

Disutility dictates an agent’s preferences for co-runners.
Let �i denote agent i’s preferences. If i’s disutility with x is
lower than its disutility with y, then x �i y. In other words,
i performs better with x than with y.

Algorithm 1 Stable Marriage for Colocation Game
1: sets M, W ← 2N tasks such that |M| = |W| = N
2: lists P[i] ← ordered preferences ∀i ∈ M, W
3: single(i) ← True ∀i ∈ M, W
4: while ∃single(m) ∈ M, P[m] 6= ∅ do
5: w ← P[m]
6: if single(w) then
7: pair(m, w)
8: if (m’, w) paired, but m �w m’ then
9: pair(m, w)

10: single(m’) ← True
11: P[m] ← P[m].next

Strategic Action. The datacenter operator would like
all agents to share one monolithically managed cluster
to enhance efficiency. However, subsets of agents could
determine that a colocation policy provides better individual
outcomes when applied to separately managed clusters.
Agents would then create subsystems shared by mutually
preferred co-runners. Breaking away is the act of finding
a subset of agents who form new coalitions on separately
shared subsystems to improve their performance.

Blocking Coalitions and Equilibria. Agents who break
away to pursue better outcomes together comprise a blocking
coalition. Let C denote a datacenter’s colocations and C(i)
denote i’s co-runner, assuming two users share a chip
multiprocessor. Agents i and j are blocking if they prefer
each other over their co-runners: j �i C(i) and i �j C(j).
Colocations with fewer blocking pairs are more stable.

Stability is a system outcome that minimizes the number
of blocking pairs, producing equilibria in which all agents
participate in the shared system. In equilibrium, no subset
of agents can better satisfy preferences and improve perfor-
mance by deviating from assigned colocations. In contrast,
neglecting preferences produces blocking pairs and harms
stability.

C. Game Solutions

Stable matching is a natural fit for colocation. A matching
process builds pairwise coalitions based on mutual consent
from independent, strategic agents. Matches are stable when
no pair of agents prefers each other over their existing
partners. We draw inspiration from stable algorithms for
marriage [21] and roommate assignment [19], adapting them
to the colocation game.

Stable Marriages. The stable marriage algorithm solves
the colocation problem with two sets of agents. Agents in
one set propose colocations while those in the other accept or
reject them. Agents act strategically to pursue their preferred
co-runners.

Algorithm 1 sketches the procedure for finding stable
marriages between two sets of jobs, which are labeled M
and W . Job m proposes to w according to its ordered
preferences. Job w accepts when it prefers m over its current
co-runner m’. If w rejects, m proposes to its next preferred
co-runner. The procedure iterates until all jobs are matched.

Preferences
m1 : c1 � c2 � c3
m2 : c3 � c1 � c2
m3 : c1 � c2 � c3
c1 : m2 � m3 � m1

c2 : m3 � m1 � m2

c3 : m2 � m1 � m3

Round Propose Accept Reject
1 m1 → c1 c1 −m3 m1

m2 → c3 c3 −m2

m3 → c1 c2−
2 m1 → c2 c2 −m1

Figure 5: Stable marriage with compute- and memory-intensive jobs.

The procedure permits a parallel implementation. In each
round, all jobs in M propose to their top-ranked co-runners
simultaneously. Each job in W accepts its best proposal and
rejects the rest in parallel. Those in M that are not accepted
proceed to the next round. The procedure continues until all
jobs are matched.

The procedure provides stable colocations in which no
two agents from opposite sets can break away and improve
their utility [18]. Every job in M has one successful proposal
because a job in M that had all prior proposals rejected is
accepted by the least desirable job in W .

Stability arises from accepted proposals. Suppose m
prefers w′ over its co-runner w. Because m and w′ are
not colocated, m must have proposed to w′ only to have
been rejected because w′ preferred m′. Matches are stable
because m′ �w′ m even though w′ �m w.

Adapting Partitions and Proposals. Marriage matches
jobs from two disjoint sets, requiring a job partitioning
strategy. Some strategies arise from the system. High- and
low-priority jobs should be partitioned, as should compute-
and memory-intensive jobs. When domain expertise indi-
cates jobs within a set should not colocate with each other,
marriage is a solution that precludes intra-set matches.

The algorithm can also partition jobs randomly. In large
systems with diverse jobs, random partitions uniformly dis-
tribute jobs of all types across two sets. Stable marriages
are more likely when each set holds diverse jobs, not
just memory-intensive ones. Diverse preferences produce
diverse proposals and reduce the likelihood of common,
desirable co-runners. Random partitions are as effective as
sophisticated ones for satisfying preferences.

We implement two partitioning mechanisms — partition
based on applications’ memory intensity and partition ran-
domly. Partitioning by memory intensity reflects the source
of hardware contention and tends to favor performance.
Partitioning randomly neglects inherent job characteristics
and tends to favor fairness.

Agents that propose perform nearly optimally and better
than those that receive proposals [22]. Proposers choose co-
runners in order of their preferences where as those that
receive proposals have no influence on their suitors. Agents
accept or reject without knowing which job might propose
next. In practice, we find that proposers’ advantages are
small, especially for randomly partitioned jobs.

Marriage Example. Figure 5 presents an example of
stable marriage. First, the system partitions memory- and

compute-intensive jobs (m and c), based on memory band-
width demands. Second, agents profile and predict pref-
erences, ranking candidate co-runners in the opposite set.
Finally, jobs in set m propose to those in set c.

Specifically, m1 and m3 both propose to c1. Based on its
preferences, c1 accepts m3 and rejects m1. Simultaneously,
m2 proposes to c3, which accepts as it lacks a better
proposal. Rejected, m1 proposes to c2 in the next round.
Lacking a proposal, c2 accepts and the algorithm terminates
with colocation {m1c2, m2c3, m3c1}.

Stable Roommates. Roommate assignment provides a
natural alternative to marriage when an agent may match
with any other. Irving provides a generalized matching
algorithm [19]. First, each agent proposes sequentially to
preferred roommates while simultaneously receiving propos-
als from others. An agent rejects a proposal if she already
holds a better one and accepts otherwise. If any agents are
rejected by everyone, the algorithm terminates and states
that no perfectly stable solution exists.

If all agents hold successful proposals, each agent reduces
her preference list by deleting roommates that are less
desirable than proposals they hold. The algorithm further
reduces preference lists by eliminating preference cycles
(e.g., B �A C, C �B A, A �C B). The algorithm termi-
nates when no cycle exists and produces stable roommate
assignments.

Adapting Stable Roommate. We extend the roommates
algorithm with heuristics when no stable solution exists.
Perfect stability, defined by the absence of blocking pairs,
may be impossible when an agent may pair with any other.
When Irving’s algorithm terminates with no solution, we
greedily pair unmatched agents to minimize their individ-
ual disutilities. In practice, stable roommate assignments
rarely exist for large agent populations. For such settings,
our adapted algorithm significantly reduces the number of
blocking pairs.

Stable matching solves the colocation game efficiently.
The solution satisfies preferences and preempts strategic
behavior. In theory, marriage and roommate algorithms find
pairwise matches in polynomial time. In practice, overheads
are modest in our implementation.

IV. COOPER DESIGN

Figure 6 illustrates Cooper’s architecture and compo-
nents. Decentralized agents act on behalf of users to pursue
preferred colocations. Each agent instantiates three modules.
The query interface requests profiles for sparsely observed
colocations. The preference predictor estimates performance
for unobserved colocations. The action recommender as-
sesses assigned co-runners and suggests user action.

To support agents, Cooper implements a centralized co-
ordinator with three modules. The system profiler responds
to queries with a database of performance measurements.

 Agents

Launch

Query Interface

Figure 6: Cooper Colocation Framework

Colocation policies assign co-runners based on agents’ pref-
erences. The job dispatcher assigns computation to machines
when agents choose to participate.

Cooper’s design emphasizes intelligent agents that sep-
arate strategic users from the shared system. From the
user’s perspective, the system delivers fairness and sta-
bility to encourage participation. Users rely on agents to
assess colocations and recommend strategic action. From
the system’s perspective, agents pursue preferred colocations
independently.

A. Preference Predictor

The predictor receives performance profiles and estimates
preferences for co-runners. It uses sparsely profiled colo-
cations to infer a preference list that ranks co-runners by
the agent’s expected performance. The game’s matching
algorithms use preferences to find stable colocations.

In principle, users could report preferences directly to the
system coordinator; however, they are poorly equipped to
assess preferences for each co-runner. Because self-reported
preferences can be burdensome, inaccurate, and non-truthful,
Cooper relies on agents’ predictors.

Collaborative Filtering. Agents employ light-weight pre-
dictors to estimate preferences. Determining preferences
for each co-runner via direct measurement is intractable.
Fortunately, predicting agents’ preferences from sparse per-
formance profiles is analogous to predicting consumers’
preferences from sparse product ratings. Predictors treat jobs
as consumers, co-runners as products, and profiles as ratings.

Collaborative filtering trains predictors, observing that
consumers who rate many items similarly share preferences
for other items. Cooper implements item-based collabo-
rative filtering, predicting that a co-runner affects similar
agents similarly. When a co-runner degrades one task’s
performance, it will similarly degrade another’s.

Implementation. Cooper predicts preferences using an
R library – recommenderlab [23]. For n agents, a sparse
n×n matrix M [x, y] reports x’s performance with co-runner
y. In each iteration, the recommender predicts the unknown
ratings in the matrix while minimizing error for known
values. Iterations terminate when all matrix elements are
filled. In practice, this process requires one to three iterations
and completes within 100ms for 1000 agents.

Sparsity affects accuracy. Cooper trains the recom-
mender with 25% sparsity. With 20 unique jobs, Cooper uses
100 (20×20×0.25) sampled colocations to predict the dense
matrix. Our experiments indicate that error is unacceptably
high with 20% of profiles sampled, falls quickly with 25%,
and falls slowly beyond 30%.

B. Action Recommender

The coordinator receives predicted preferences from
agents and assigns co-runners. Agents assess assignments
and recommend strategic action – participate or break away
– for their users. If breaking away is recommended, the agent
identifies separately managed colocations (i.e., blocking
pairs) and their expected performance advantages.

Dissatisfied agents seek opportunities to break away.
The agent assesses its assigned co-runner by exchanging
messages with others. It sends messages to agents ahead
of its assigned co-runner in its preference list. Conversely,
it receives such messages from other agents.

Suppose agent X has preferences A �X B �X D �X E
and is assigned co-runner D. X sends messages to A and B.
If X receives messages from A or B, it knows X �A C(A)
or X �B C(B), meaning that A and B both prefer X
than their assigned co-runners. Agents A and B would
recommend breaking away and forming a separate system.

Implementation. We implement the action recommender
as a Java application within each agent. Agents communicate
via network and files. Agents return, to human users, lists of
blocking pairs with suggestions to participate or break away.
In our implementation, agents participate and invoke the job
dispatcher by default. We then assess fairness by counting
blocking pairs created by a colocation policy. Users in a
blocking pair would break away given agents’ suggestions
and her performance goals.

C. Colocation Policies

The coordinator receives preferences and returns colo-
cations. We implement matching algorithms to solve the
colocation game. We compare game-theoretic solutions to
two baselines that reflect conventional wisdom.

• Stable Marriage Partition (SMP) partitions tasks by
resource demands and pairs tasks with stable marriage.
Resource-intensive set proposes.

• Stable Marriage Random (SMR) partitions tasks ran-
domly and pairs tasks with stable marriage. Randomly
selected set proposes.

• Stable Roommate (SR) pairs tasks with stable room-
mates. When no stable solution exists, SR employs GR
to pair tasks rejected by all others.

• Greedy (GR) assigns each task, sequentially, to the
processor that minimizes contention given prior assign-
ments.

• Complementary (CO) partitions tasks by resource
demands and pairs tasks with complementary demands.

Threshold schemes colocate jobs when penalties are less
than 10%, for example, and add a new machine otherwise
[5]. When no machine is held in reserve and ready to supply
capacity, GR performs at least as well as a threshold. GR
minimizes penalties whereas a threshold permits penalties
up to specified tolerance.

Implementation. We implement colocation algorithms in
Java and output co-runner assignments to files, which are
sent to agents. For n agents, stable matching employs O(n2)
algorithms and the complementary mechanism employs an
O(n) heuristic. When necessary, jobs are sorted and par-
titioned by resource demands with O(nlogn) algorithms.
Measured overheads are modest. To colocate 1000 agents,
stable matching requires 1 to 5 seconds. In comparison, job
completion times range from 10 to 15 minutes for Spark and
from 2 to 5 minutes for PARSEC.

D. Other Components
System Profiler. Modern systems can profile any job on

any machine. Google samples servers, profiles continuously,
and builds databases that support SQL-like queries [24].
Queries with job IDs, machine IDs, and timestamps retrieve
performance for varied colocations. We construct a database
for 20 open-source jobs.

Offline, the profiler measures performance for standalone
jobs and sampled colocations. We measure Spark task
throughput, modifying the engine (v1.6.0) to log task, stage,
and job completion. We measure PARSEC runtimes with
perf stat. For microarchitectural profiles (e.g., memory
bandwidth), we read MSR registers once per second with
Intel’s Performance Counter Monitor 2.8.

Online, the profiler responds to queries with a sparse
matrix of performance penalties for sampled co-runners.
Sampling is required for tractability, especially at datacenter
scale. Preference predictors accommodate sparsity, requiring
profiles for only a small fraction of possible colocations.

Job Dispatcher. The job dispatcher sends computation to
machines. After the coordinator assign co-runners and agents
choose to participate, the dispatcher sends jobs’ binaries and
data to available machines. Each machine runs a daemon that
checks periodically for work.

V. EXPERIMENTAL METHODOLOGY

Workloads. Table I summarizes evaluation benchmarks
from Spark [29] and PARSEC 2.0 [30], which are repre-
sentative of batch computation and data analytics. Methods

ID. Name Application Dataset GBps
Apache Spark

1. Correlation Statistics kdda’10 [25] 25.05
2. DecisionTree Classifier kdda’10 21.03
3. Fpgrowth Mining wdc’12 [26] 10.06
4. Gradient Classifier kdda’10 21.06
5. Kmeans Clustering uscensus [27] 0.32
6. Regression Classifier kdda’10 14.66
7. Movie Recommender movielens [28] 5.69
8. Bayesian Classifier kdda’10 23.44
9. SVM Classifier kdda’10 14.59

PARSEC
10. Blackscholes Finance native 0.99
11. Bodytrack Vision native 0.15
12. Canneal Engineering native 3.34
13. Dedup Storage native 0.93
14. Facesim Animation native 1.80
15. Fluidanimate Animation native 5.52
16. Raytrace Visualization native 0.57
17. Stream Data Mining native 18.53
18. Swaptions Finance native 0.07
19. Vips Media native 0.05
20. X264 Media native 4.00

Table I: Application configurations, datasets, and memory intensity.

for multiprogrammed benchmarking vary [31]. We repeat
the shorter workload until the longer one completes. We do
not consider latency-sensitive applications, such as search,
as their stringent targets for service quality often preclude
colocation [6], [32].

Agent Populations. We evaluate the colocation game with
large, diverse agent populations. We evaluate 1000 agents,
sampling jobs uniformly at random with replacement from
Table I. After agents receive and assess co-runners, the
coordinator dispatches jobs. Jobs dispatch in batches when
the system has fewer multiprocessors than colocated pairs.

Servers. We use a cluster with five nodes, each with two
Intel Xeon E5-2697 v2 chip-multiprocessors (CMPs). Each
CMP has 12 cores and 24 threads, running at 2.7GHz and
sharing 128GB of main memory. Colocated jobs divide the
CMP’s threads equally, sharing cache capacity and memory
bandwidth. The server configuration focuses on memory
contention. Nodes have solid-state drives and 1Gbps Eth-
ernet, precluding I/O and network contention.

VI. EVALUATION

We evaluate system desiderata: (i) fair attribution such that
more contentious users incur larger penalties, (ii) satisfied
preferences such that more users colocate with preferred co-
runners, and (iii) stable colocations such that fewer users
break away. Moreover, we show that Cooper performs
nearly as well as heuristics that minimize contention.

A. Fairness and Desiderata

Fair Attribution of Costs. Figure 7 evaluates fairness
by showing the relationship (or lack thereof) between jobs’
resource demands and colocation penalties. The x-axis
presents jobs ordered by increasing memory intensity. The
y-axis presents each job’s throughput loss, averaged over

its varied colocations when randomly sampled jobs share
the system. When bars extend up and right, penalty is
proportional to contentiousness and costs are fair.

Conventional policies neglect fairness. GR is unfair as
dedup demands among the least from shared memory but
is penalized most. Bodytrack contributes much less to
contention than svm but suffers the same penalty. Similarly,
CO shows no link between application contentiousness and
colocation penalties.

Stable policies can enhance fairness, but mixing them with
conventional wisdom does not work. SMP builds atop CO,
partitioning jobs into two sets based on memory intensity
before invoking stable marriage. However, SMP ignores the
fact that jobs in one set could prefer each other over jobs in
the opposite set. Restricting permissible matches overrides
preferences and induces unfairness.3

Stable matching improves fairness in less structured game
formulations. SMR partitions jobs randomly such that, with
some probability, a job might colocate with any other to
satisfy preferences. SR permits unrestricted matches. Both
SMR and SR produce colocations in which jobs’ perfor-
mance penalties increase with their contentiousness.

Figure 8 illustrates relative fairness, ranking each job’s
penalty and bandwidth demands. For example, Swaptions
ranks first with the smallest performance penalties and
bandwidth demands while correlation ranks 10th in
penalties and 11th in demands. Bars present ranked penalties
and the line presents ranked demands, which is linear
because jobs are ordered by contentiousness on the x-axis.

Bars that track the line illustrate equal treatment of equals
and unequal treatment of unequals in proportion to their
differences. GR, CO, and SMP are unfair as ranked penalties
are unrelated to ranked demands. In contrast, SMR and SR
are fair as more demanding jobs experience larger penalties.

Satisfied Preferences. Figure 9 shows how stable colo-
cations satisfy more users’ preferences. Bars show the
number of agents with improved, degraded, or unchanged
performance when switching from conventional colocations
(GR, CO) to stable ones (S*). For example, choosing stable
roommate over greedy colocation improves performance for
more than half of the agents – see SR/GR.

A large majority of agents performs at least as well, if
not better, with colocations that reflect preferences. Among
stable policies, SR performs best as each agent proposes
to all others according to its preferences. SMR and SMP
perform slightly worse as partitions restrict proposals and
satisfy fewer preferences. The minority who suffer larger
penalties are those held responsible for their larger contri-
butions to contention, a fair outcome.

Stable Colocations. Figure 10 counts agents that rec-
ommend breaking away from assigned colocations for new,

3Tasks occasionally perform better colocated than alone due to variance
across system measurements.

Greedy (GR)
sw

ap
t.

bo
dy

tr.
de

du
p

ca
ne

al
sv

m
lin

ea
r

st
re

am
c.

de
ci

si
on

gr
ad

ie
nt

na
iv

e
co

rre
la

t.0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

T
hr

ou
gh

pu
t P

en
al

ty

Complementary (CO)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

T
hr

ou
gh

pu
t P

en
al

ty

Stable Marriage Partition (SMP)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
T

hr
ou

gh
pu

t P
en

al
ty

Stable Marriage Random (SMR)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
T

hr
ou

gh
pu

t P
en

al
ty

Stable Roommate (SR)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
T

hr
ou

gh
pu

t P
en

al
ty

Figure 7: (a) and (b) show contention-induced performance losses from conventional colocation policies. (c)-(e) show losses from stable colocation policies.
Jobs are ordered by increasing contentiousness on x-axis, as shown in Figure 1. Data is averaged over varied colocations when 1000 randomly sampled
jobs share system.

Unfair Cost Atrribution

sw
ap

tio
ns

bo
dy

tra
ck

de
du

p

ca
nn

ea
l

sv
m

lin
ea

r

str
ea

m
c

de
cis

ion

gr
ad

ien
t

na
ive

co
rre

lat
ion

0
2

4
6

8
10 GR

CO
SMP

P
er

fo
rm

an
ce

 P
en

al
ty

 R
an

ki
ng

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

8

10

M
em

or
y

B
an

dw
id

th
 R

an
ki

ng

Fair Cost Atrribution

sw
ap

tio
ns

bo
dy

tra
ck

de
du

p

ca
nn

ea
l

sv
m

lin
ea

r

str
ea

m
c

de
cis

ion

gr
ad

ien
t

na
ive

co
rre

lat
ion

0
2

4
6

8
10 SMR

SR

P
er

fo
rm

an
ce

 P
en

al
ty

 R
an

ki
ng

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

8

10

M
em

or
y

B
an

dw
id

th
 R

an
ki

ng

Figure 8: Correlation between ranked performance penalties (bars) and bandwidth demands (line). When the bars track the line, colocations are fair. See
Figures 7 for absolute measures of performance and bandwidth.

SR/GR SMR/GR SMP/GR SR/CO SMR/CO SMP/CO

0
20

0
60

0
10

00
N

um
be

r
of

 A
ge

nt
s

Improved Performance
Unchanged Performance

Degraded Performance

Figure 9: Performance impact when adopting cooperative game (S*) instead
of performance-centric policies (GR, CO). Data is averaged over 10
populations, each with 1000 randomly sampled jobs.

mutually beneficial ones. Boxplots present the distribution
of these counts for 50 populations of 1000 sampled jobs.
Parameter α is the minimum performance benefit for which
an agent breaks away. Increasing α reduces the number of
blocking pairs and improves stability.

GR colocations are less stable, ignoring preferences in
pursuit of performance and producing dissatisfied agents.

In contrast, CO produces fewer blocking pairs, especially
when agents break away only for large gains (e.g., α=5%).
By pairing complementary jobs, CO bounds performance
penalties and avoids instability. But it delivers neither fair
attribution nor satisfied preferences.

SMR colocations are most stable. Its random partitions
reduce the likelihood that an agent prefers but cannot match
with co-runners in its own set, which is a major cause of
blocking pairs. SMR distributes contentious tasks across two
sets, reducing agents’ risks of poor matches. Note that we
count blocking pairs wherever they arise. If the population
is partitioned, agents in a blocking pair could belong to the
same or opposite set.

SMP and SR are less stable because they force some
agents into undesirable matches. SMP places contentious
agents into the same set. Less contentious agents cannot
match with each other and must match with opposite agents,
which creates blocking pairs. Although SR finds stable
solutions if they exist, they rarely do and heuristics that
match agents rejected by all others create blocking pairs.

Summary. Stable Marriage Random most effectively de-

●

●

●

●●

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0

GR

alpha

N
um

be
r

of
 B

lo
ck

in
g

P
ai

rs

●

●
●
●

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0

CO

alpha

N
um

be
r

of
 B

lo
ck

in
g

P
ai

rs

●

●
●●

●
●
●●

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0

SMP

alpha

N
um

be
r

of
 B

lo
ck

in
g

P
ai

rs

● ● ●● ●

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0

SMR

alpha

N
um

be
r

of
 B

lo
ck

in
g

P
ai

rs

●

●

●

●●
●

●

●

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0

SR

alpha

N
um

be
r

of
 B

lo
ck

in
g

P
ai

rs

Figure 10: Stability analysis, which measures the number of blocking pairs (y-axis) for varied policies and α (x-axis), the minimum benefit for which an
agent breaks away. When α=2%, agents break away for new colocations that improve both agents’ performance by 2%. Here, we show data distributions
and boxplots for 50 populations, each with 1000 randomly sampled jobs.

p
d
f

high

 Gaussian

 Beta-Low

 Beta-High

 Uniform

memory intensity

low

p
d
f

p
d
f

p
d
f

high

memory intensity

low

high

memory intensity

low high

memory intensity

low

●●●●

●●

●

●●●●●

●●

●●●●●●●●●

●

●

●●●●●●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●●

●●●

●●
●●●

●●●●●
●
●●

●●

●●
●

●

●●

●●●

●●●

●

●●

●●

●

●

●●●●●

●

●

●●

●●●●

●

●

●
●

●

●

●

●

●●●●

●

●

●
●●
●●●

●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●●●●●

●

●
●●●●

●

●

●●

●●●●

●●

●

●

●

●

●●●●

●●

●

●

●●

●●

●●●●

●

●

●●

●

●

●●

●●●●

●

●

●●●●

●●●●●●

●●●●

●●●●●●

●●

●

●●

●●●●●●●●●●●●

●●

●

●

●

●●

●●

●

●

●

●

●
●●●●●●●●

●

●

●

●

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Uniform

P
er

fo
rm

an
ce

 P
en

al
tie

s

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●●●

●●●

●●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●●●●

●●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●

●

●●●●

●●

●●

●
●

●

●●●●●●

●●●●●●●●

●●●●●

●

●

●

●●●●●●

●●●●●●

●●

●

●

●

●●●●

●●●●

●●●●●●

●

●

●●

●●

●●●●●

●●

●●

●●

●●

●●●●

●●●

●●●●

●

●●●●

●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●

●●●●

●

●●●●●●●●●●

●

●

●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●●

●
●●●●●●●●●●●●

●●●●

●

●●

●

●●●●●●●●

●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
Beta−Low

P
er

fo
rm

an
ce

 P
en

al
tie

s

●●●●●

●●●●

●●●●●

●

●●●●●●●●

●

●

●●●●●●

●

●

●

●
●●

●

●●

●

●
●●

●●●●●

●

●

●

●●

●●

●●●●●●●●●●●●

●

●

●●

●●●

●●

●●

●

●

●●●●●●

●●●●●●●●●●●●●

●●●

●●●

●●●

●

●●●●●●●

●

●●●●●●●

●
●●●●
●

●●

●●●●●●

●

●

●●●●●

●●●●

●●●●●

●●●●●●●●

●●●●

●●●

●●

●●●●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●●●●●●

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Gaussian

P
er

fo
rm

an
ce

 P
en

al
tie

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Beta−High

P
er

fo
rm

an
ce

 P
en

al
tie

s

GR CO SMP SMR SR

Figure 11: Performance penalties measured for varied colocation polices (GR, CO, SMP, SMR, SR) and workload mixes (Uniform, Beta-Low, Gaussian,
Beta-High).

livers system desiderata – fair attribution, satisfied pref-
erences, stable colocations. Fortunately, SMR is also the
easiest to implement. It always produces a solution and
randomly partitioning agents needs no extra profiling.

B. Performance and Sensitivity

Figure 11 presents performance penalties and assesses
sensitivity to workload mix. We vary the probability density
used to sample jobs that comprise an agent population. Thus
far, we have used the Uniform density, in which every job is
represented equally. The Beta density represents populations
skewed toward more or less memory intensive jobs. The
Gaussian density represents populations of moderate jobs.

In theory, the performance gap between optimal and stable
colocations is unbounded [22]. In practice, stable policies
(S*) perform as well, if not better, than conventional ones
(GR, CO). Penalties are larger when the Beta density skews
populations toward memory-intensive jobs. SMP performs
best, avoiding large penalties by partitioning jobs such that
contentious jobs cannot match with each other. The Beta-

High density with many contentious jobs is a challenging
scenario, requiring effective policies and more resources for
service quality.

Some systems specify penalty thresholds, accepting colo-
cations if performance degrades less than some tolerance
(e.g., 10%). By this measure, stable policies (S*) perform
comparably with GR and better than CO. The upper whisker,
which is 3× the inter-quartile range away from the third
quartile, is within tolerances. Service quality from fair
policies, which may sacrifice performance for contentious
jobs, is comparable to that from conventional policies.

Summary. The colocation game delivers desiderata with
little effect on performance. Stable and conventional policies
perform similarly for varied system scenarios. A pessimistic
scenario with many contentious tasks reveals a particularly
advantageous policy – stable marriage with partitions.

C. Preference Prediction

Figure 12 evaluates collaborative filtering and the ac-
curacy of its predicted preferences. The rank coefficient

●●●
●●●●●

●●●●●●●
●●●●

●●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

60
70

80
90

10
0

Portion of Sampled Data Points

%
 o

f C
or

re
ct

 P
re

fe
re

nc
e

P
re

di
ct

io
n

● One Iteration
Two Iterations

Figure 12: Prediction accuracy, which evaluates the percentage of correctly
predicted preferences (Equation 2). x-axis shows various sample ratios.

τ compares a predicted list against the true list, counting
inconsistencies.

τ = 1−

∑
a∈A

∑
i,j∈Ca

Kij

× [n(n
2

)]−1
(2)

The double summation counts incorrect predictions across
agents a∈A and potential matches i, j∈Ca for each agent.
Kij = 1 when an agent’s preference for i relative to j
differs across true and predicted preferences, and Kij = 0
otherwise. The number of incorrect predictions is divided
by the number of pairwise preferences and subtracted from
one to calculate the fraction of correct predictions.

Figure 12 indicates the accuracy of collaborative filtering
improves with more data, starting at 83% with 25% of colo-
cations profiled and rising to 95% with 75% profiled. With
such accuracy, our stable policies deliver the same desiderata
whether using oracular knowledge or collaborative filtering.

D. Scalability

Figure 13 evaluates fairness as the number of agents
increases. For SMR, the correlation between a job’s perfor-
mance penalty and bandwidth demand strengthens with more
agents. Smaller populations exhibit less diversity across jobs,
hindering the search for matches that satisfy preferences.
Larger populations increase the likelihood that an agent finds
a satisfactory co-runner. Standard deviations shrink with
population size, reducing the risk of unfairness. Cooper
is more effective for larger systems with hundreds of mul-
tiprocessors.

VII. RELATED WORK

Fair Resource Management. Computer architects have
explored hardware mechanisms for fair sharing in chip mul-
tiprocessors, especially when partitioning caches or schedul-
ing memory accesses [33], [34], [35], [36]. We develop a
system-level colocation framework to management memory
subsystem contention.

Many studies focus on game-theoretic desiderata when
allocating resources to strategic users whereas we focus on
such desiderata for colocation, a novel objective. Ghodsi et

Sensitivity to Population Size (SR)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

T
hr

ou
gh

pu
t P

en
al

ty

population = 10 population = 100 population = 1000

Figure 13: Scalability analysis and SMR fairness as the number of agents
increases. Link between contentiousness and penalty is weak in small
systems. In larger systems, more contentious jobs have larger penalties.

al. propose Dominant Resource Fairness to allocate cores
and memory [11]. Zahedi et al., proposes Resource Elasticity
Fairness using Cobb-Douglas utility function for cache and
memory bandwidth allocation [13]. DRF and REF guar-
antee sharing incentives, Pareto efficiency, envy-freeness,
and strategy-proofness. Grandl et al. propose Tetris [37],
a multi-resource colocation mechanism that assigns tasks
to machines according to resource demands. These studies
assume hardware isolation and neglect interference. We
pursue game-theoretic desiderata for contentious colocations
on bare metal.

Colocation and Scheduling. Prior studies focus on mod-
eling contention and anticipating performance penalties, but
neglect preferences and fairness during colocation. Mars et
al. predict contention in shared memory systems [5], [38].
Delimitrou et al. models interference and machine hetero-
geneity with recommenders [6]. Multiple studies schedule
complementary workloads on chip multiprocessors [3], [39],
[40], [41], [42].

The discussion of related work should separate colocation
profiling and policy. Prior studies provide sophisticated pro-
filers to predict contention and drive simple, greedy policies.
In contrast, Cooper is a sophisticated policy balances
performance and fairness.

On profiling, Bubble-Up/Flux predict contention between
colocated jobs, Bubble-Up for two co-runners and Bubble-
Flux for more. In contrast, Cooper uses recommendation
system to predict colocation preferences. On policy, Bubble-
up/flux assign jobs to machines when penalties <10%. When
a job cannot colocate given this tolerance, it adds a machine.
In contrast, Cooper colocates applications with limited
machines. When extra machines are unavailable, our greedy
baseline performs at least as well as the threshold policy.

Cooperative Games and Systems. In mobile systems,
Dong et al. apply the Shapley value to attribute energy costs
to apps on shared devices [43]. In networks, Feigenbaum
et al. use cooperative games to attribute shared bandwidth
costs during multicast transmission [44]. Han et al. use a
repeated game that optimizes packet forwarding for strategic

and distributed users [45]. Finally, in wireless networks,
Saad et al. formalize time division multiple access (TDMA)
as a cooperative game and develop distributed algorithms
that direct users to better coalitions [46]. In contrast, we
bring cooperative games to datacenter colocation and seek
solutions that balance fairness, stability, and performance for
strategic users.

VIII. CONCLUSIONS AND FUTURE WORK

Cooper is a colocation framework that fairly attributes
performance penalties, satisfies user preferences, and finds
stable matches that are robust to strategic behavior. The
framework employs sparse colocation profiles to predict
preferences. It then employs preferences to find stable colo-
cations in which no pair of strategic users would perform
better by breaking away from the shared system. In addition
to its game-theoretic properties, Cooper performs compa-
rably with greedy and contention-minimizing mechanisms.

Extending Cooper to more than two co-runners and
assessing stability guarantees is one of the future directions.
In theory, stable matching for arbitrary group size cannot
be solved in Polynomial time. Approximation algorithms
exist for three co-runners under certain constraints[47]. In
practice, a hierarchical approach could match applications
and then match pairs. A clustering approach could classify
applications into types and then match types. Stability guar-
antees in these heuristics may vary.

Stable matching is used in real, large-scale problems (e.g.,
assigning residents to hospitals, or students to schools).
Microsoft has deployed stable matching in production sys-
tems for locality-aware scheduling [48]. In a similar spirit,
Cooper operationalizes stable matching for future datacen-
ters shared by strategic users.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful
comments and suggestions. We also extend special thanks to
Janardhan Kulkarni, Brandon Fain, and Kamesh Munagala
for their valuable discussions and insights.

This work is supported by the National Science Founda-
tion under grants CCF-1149252 (CAREER), CCF-1337215
(XPS-CLCCA), SHF-1527610, and AF-1408784. This work
is also supported by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of these sponsors

APPENDIX

We apply Shapley to motivate larger colocation penalties
for more contentious users. Consider a simple model of
colocation and its contention-induced penalties.

Users A, B, and C perform normally when alone but suffer
penalties when colocated. Each user contributes interference

Coalition (S) Penalty (p)
{A} 0
{B} 0
{C} 0
{A, B} 3
{A, C} 4
{B, C} 5
{A, B, C} 6

Permutation MA MB MC

{A, B, C} 0 3 3
{A, C, B} 0 2 4
{B, A, C} 3 0 3
{B, C, A} 1 0 5
{C, A, B} 4 2 0
{C, B, A} 1 5 0
φi = E[Mi] 1.5 2.0 2.5

Figure 14: Shapley permutes users, calculates their contributions to penal-
ties M and expected values φ over permutations.

{IA = 1, IB = 2, IC = 3}. Suppose system-wide penalty is
the sum of each user’s contribution to interference such that
p =

∑
Ii. Shapley determines users’ marginal contributions

to penalties, averaged over permutations of users in the
coalition – see Equation 1.

To understand Shapley, suppose n agents arrive sequen-
tially and n! orderings are equally likely. Agent i arrives
after agents in coalition S−i and is the s-th agent in S with
probability (s − 1)!(n − s)!/n!. Agent i’s arrival increases
coalition penalty by p(S)− p(S − i).

Figure 14 enumerates penalties and orderings for our
example. Consider ordering {A, C, B}.
• A’s marginal penalty is MA = v(A)− v(∅) = 0;

• C’s marginal penalty is MC = v(AC)− v(A) = 4;

• B’s marginal penalty is MB = v(ABC)− v(AC) = 2.

Each user’s Shapley value is her average marginal con-
tribution to penalties across permutations. From Shapley,
a fair assignment of penalties is φ = {1.5, 2.0, 2.5},
which correlates with users’ contributions to interference
I = {1, 2, 3}.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as
a computer: An introduction to the design of warehouse-scale
machines,” Synthesis Lectures on Computer Architecture, pp.
1–154, 2013.

[2] A. Snavely and D. Tullsen, “Symbiotic job scheduling for a
simultaneous multithreading processor,” in International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2000.

[3] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Address-
ing shared resource contention in multicore processors via
scheduling,” in International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2010.

[4] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. Soffa,
“The impact of memory subsystem resource sharing on dat-
acenter applications,” in International Symposium on Com-
puter Architecture (ISCA), 2011.

[5] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. Soffa,
“Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations,” in International Sympo-
sium on Microarchitecture (MICRO), 2011.

[6] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware
scheduling for heterogeneous datacenters,” in International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2013.

[7] S. M. Zahedi and B. C. Lee, “Sharing incentives and fair
division for multiprocessors,” IEEE Micro, 2015.

[8] S. Clearwater and S. Kleban, “ASCI Queueing Systems:
Overview and comparisons,” in International Parallel and
Distributed Processing Symposium (IPDPS), 2002.

[9] J. Ang, R. Ballance, L. Fisk, J. Johnston, and K.Pedretti.,
“Red Storm capablity computing queueing policy,” in Cray
Users’ Group (CUG), 2005.

[10] O. A. Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster,
and A. Mu’alem, “Ginseng: Market-driven memory allo-
cation,” in International Conference on Virtual Execution
Environments (VEE), 2014.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness: Fair
allocation of multiple resource types.” in USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
2011.

[12] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica, “Fairride:
near-optimal, fair cache sharing,” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2016.

[13] S. M. Zahedi and B. C. Lee, “REF: Resource elasticity fair-
ness with sharing incentives for multiprocessors,” in Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[14] S. Fan, S. M. Zahedi, and B. C. Lee, “The computational
sprinting game,” in International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[15] Aristotle, Nicomachean Ethics.
[16] H. Moulin, Fair division and collective welfare. MIT Press

Cambridge, 2004.
[17] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani,

Algorithmic game theory. Cambridge University Press
Cambridge, 2007, vol. 1.

[18] D. Gale and L. Shapley, “College admissions and the stability
of marriage,” American Mathematical Monthly, 1962.

[19] R. W. Irving, “An efficient algorithm for the stable roommates
problem,” Journal of Algorithms, pp. 577–595, 1985.

[20] A. Roth, “Introduction to the Shapley value,” in The Shapley
value: Essays in honor of Lloyd S. Shapley. Cambridge
University Press, 1988.

[21] D. Gusfield and R. W. Irving, The stable marriage problem:
structure and algorithms. MIT press Cambridge, 1989.

[22] K. Iwama and S. Miyazaki, “A survey of the stable marriage
problem and its variants,” in Informatics Education and
Research for Knowledge-Circulating Society. IEEE, 2008.

[23] H. Michael, “recommenderlab: A framework for developing
and testing recommendation algorithms,” 2011.

[24] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-wide profiling: A continuous profiling infrastructure
for data centers,” IEEE Micro, Computer Society, 2010.

[25] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and
K. Koedinger, “Algebra i 2006-2007. challenge data set
from kdd cup 2010 educational data mining challenge,”
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[26] “Web data commons: Hyperlink graphs,” http:
//webdatacommons.org/hyperlinkgraph/index.html.

[27] “Us census data (1990) data set,” https://archive.ics.uci.edu/
ml/datasets/US+Census+Data+(1990).

[28] “Movielens,” http://grouplens.org/datasets/movielens/.
[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M. Franklin, S. Shenker, and I. Stoica, “Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

[30] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implica-
tions,” Tech. Rep., 2008.

[31] A. Jacobvitz, A. Hilton, and D. Sorin, “Multi-program bench-
mark definition,” in International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015.

[32] D. Lo, L. Chengn, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: improving resource efficiency at
scale,” in International Symposium on Computer Architecture
(ISCA), 2015.

[33] O. Mutlu and T. Moscibroda, “Stall-time fair memory ac-
cess scheduling for chip multiprocessors,” in International
Symposium on Microarchitecture (MICRO). IEEE Computer
Society, 2007.

[34] E. Ebrahimi, C. Lee, O. Mutlu, and Y. Patt, “Fairness via
source throttling: a configurable and high-performance fair-
ness substrate for multi-core memory systems,” in Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2010.

[35] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith, “Fair
queuing memory systems,” in International Symposium on
Microarchitecture (MICRO), 2006.

[36] M. Qureshi and Y. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches,” in International Symposium on Mi-
croarchitecture (MICRO), 2006.

[37] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,”
in Conference on Special Interest Group on Data Communi-
cation (SIGCOMM). ACM, 2014.

[38] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
Precise online qos management for increased utilization in
warehouse scale computers,” in International Symposium on
Computer Architecture (ISCA), 2013.

[39] Y. Jiang, K. Tian, and X. Shen, “Combining locality analysis
with online proactive job co-scheduling in chip multipro-
cessors,” in International Conference on High Performance
Embedded Architectures and Compilers, 2010.

[40] M. Liu and T. Li, “Optimizing virtual machine consolidation
performance on numa server architecture for cloud work-
loads,” in International Symposium on Computer Architecture
(ISCA). IEEE, 2014.

[41] A. Fedorova, M. Seltzer, and M. Smith, “Improving perfor-
mance isolation on chip multiprocessors via an operating
system scheduler,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2007.

[42] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory
bandwidth contention through bandwidth-aware scheduling,”
in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2010.

[43] M. Dong, T. Lan, and L. Zhong, “Rethink energy accounting
with cooperative game theory,” in International Conference
on Mobile Computing and Networking (MobiCom), 2014.

[44] J. Feigenbaum, C. Papadimitriou, and S. Shenker, “Sharing
the cost of muliticast transmissions (preliminary version),” in
Symposium on Theory of Computing (STOC), 2000.

[45] Z. Han, C. Pandana, and K. Liu, “A self-learning repeated
game framework for optimizing packet forwarding networks,”
in Wireless Communications and Networking Conference,
2005.

[46] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar,
“Coalitional game theory for communication networks,” Sig-
nal Processing Magazine, IEEE, 2009.

[47] E. Arkin, S. Bae, A. Efrat, K. Okamoto, J. Mitchell, and
V. Polishchuk, “Geometric stable roommates,” Information
Processing Letters, 2009.

[48] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: scalable and coordinated
scheduling for cloud-scale computing,” in USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2014.

