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Task Colocation in Datacenters
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Datacenters colocate applications to increase server utilization
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Colocation Contention
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Colocation interference can lead to performance degradation
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System Setting

« Alvin, Ben, and Dan are working towards HPCA papers.
- They share a cluster and divide processors equally.

- Ben’s applications are memory intensive.

- Alvin and Dan’s applications are not memory intensive.
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System Setting




Strategic Behavior

 Alvin, Ben, and Dan are strategic.
- Can smaller, separate clusters improve performance?
 Alvin and Dan share separate cluster to improve performance.
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Strategic Behavior




Strategic Behavior

Without incentives, strategic users may...
« Bypass common management policy
- Migrate tasks for better colocations
« Procure private machines

Strategic action fragments cluster and harms efficiency
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Prior Research

Pursues Performance

- Predicts contention quickly and accurately

- Colocates tasks for system performance

- Colocates tasks with complementary demands

Neglects Incentives
- Overlooks strategic behavior
- Fails to encourage users to colocate
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Incentivizing Colocation

Stability

« No group of users break away to form separate system

Satisfied Preferences
- More users colocate with preferred tasks

Fair Attribution of Costs
- Users that contribute more to contention suffer higher losses
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Example

Disutility (Slow-Down %)
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Example

Disutility (Slow-Down %)

Co-Runner Performance
User A B C D
A 1.5 49 9.3 I A B
B 1.8 3.9 12.7 D C
C 0.0 0.3 32.8
D 38 53 1.0

Fairness
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Cooper

A framework that incentivizes strategic users to colocate
by providing desirable system outcomes:

- Stability
- Satisfied Preferences
 Fair Attribution of Costs
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Agenda

- Cooper Colocation Framework
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Cooperative Game

- Strategic agents are users and tasks

- Utility is task performance

- Colocation preferences describe preferred co-runners
* If u(A,B) > u(A,C), then A prefers B over C

- Actions are -- participate or break away
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Game Equilibrium

Colocations are stable when no group of users can
improve their performance by changing colocation.
m ﬁ

~N" l
o
A A

e e

Duke Architecture



Cooper Framework
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ICIES

Colocation Pol

Machines

Coordinator

Agents
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Matching peo

11:52 AM 100% .

Allison, 26
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Stable Matching

Algorithm partitions tasks into two sets
- Tasks in one set propose.
- Tasks in other set accepts, rejects.

Task updates co-runners
« Accept proposal if performance improves

Algorithm terminates when all tasks matched

[1] D. Gale and L. Shapley, “College admissions and the stability of marriage,” American Mathematical Monthly, 1962.
[2] R.Wlrving, “An efficient algorithm for the stable roommates problem,” Journal of Algorithms, pp. 577-595,1985.
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Stable Matching
A
D>F>E g : ﬂ A>B>C

E>F>D @ = ~] A>C>B

A

B
C
) ™ C>B>A
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E>D>F

Duke Architecture



Stable Policies

Stable Marriage Random (SMR)

- Partition tasks randomly

Stable Marriage Partition (SMP)

« Partition tasks with domain-specific knowledge
- Memory-intensive tasks propose

Stable Roommate (SR)
« No partition
« Any task proposes to any other.
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Baseline Policies

Greedy (GR)

- Colocate tasks to minimize performance loss

Complementary (CO)

 Colocate tasks with complementary resource demands
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Machines

Coordinator

Agents

Preference Predictor
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Preference Predictor

- Profile colocation performance with sparse samples
- Rate co-runners with profiles

- Predict ratings with collaborative filtering
- Infer ratings based on task similarity
« Suppose A: B> C and A is similar to D
« ThenD: B> C

- Construct preference list per task based on ratings
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Action Recommender

Machines

Coordinator

Agents
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Action Recommender

- Assess assigned matches for each task

- Search preference list for better co-runners
- Suppose X: A> B, and X matched to B
« X messages A to suggest new match

- Recommend break away
« Suppose A also prefers X over assigned match.
« X, A should break away
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Agenda

- Evaluation
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Experimental Methods

Workloads
- PARSEC for multithreaded benchmarks
- Spark for task-parallel machine learning

System Measurements
- 10 nodes, each with 2 processors and 24 cores
- Two tasks share a processor each with half the cores

System Simulation
- 500 nodes with varied task populations
- Simulate colocations with system profiles
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Fair Attribution of Costs

- Complementary (CO) ., Stable Marriage Random (SMR)
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X-axis sorts applications by memory intensity

Tasks that contribute more to contention suffer higher penalties
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Satisfied Preferences

SR/CO SMR/CO SMP/CO

= Degraded Performance
m Unchanged Performance
= |Improved Performance

600 1000

Number of Agents

0 200

More users colocate with preferred tasks.
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Stability
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x-axis: gains (%) for which tasks break away

Fewer users break away to form separate system
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Performance
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Stable colocations preserve system performance
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More in the paper ...

Cooper Implementation
- Profiler and preference predictor
- Adapted matching algorithms
- Action recommender and job dispatcher

Cooperative Game Theory
- Shapely value for fair division
- Extending beyond pairs

Experimental Results
- Sensitivity to system scale and job mix
- Comprehensive policy comparisons
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Conclusion

Cooperative Games for Shared Systems
- Formalize interactions between strategic users
- Incentivize user participation
- Enable fair task colocation

Management Desiderata
- Fair attribution of costs

- Satisfied preferences
- Stability

Fairness versus Performance
- Stable colocations satisfy more users
- Stable colocations preserve system performance
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Q&A

Thank you!
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