Amdahl's Law in the Datacenter Era A Market for Fair Processor Allocation

Seyed Majid Zahedi* (Duke University), Qiuyun Llull* (VMware/ Duke University), Benjamin C. Lee (Duke University)

*Equal Contributions

Sharing in Federated Data Centers

- Users pool resources in non-profit data centers
 - E.g., research groups within university
- Users are entitled to portion of resources
 - Based on contributions to shared pool

Challenges for Modern Data Centers

- Computing resources are physically distributed across servers
- Users run complex jobs with diverse characteristics
- Users' jobs are assigned to different servers
- Users prefer specific allocations on specific servers

Management Properties

Work Conservation

Never leave servers idle if there are unsatisfied user demands

Sharing Incentives

Guarantee users at least the utility from their entitlements

$$u_i(\mathbf{x_i}) \geq u_i(\mathbf{e_i})$$

Management Questions

- How can we model users' demands for processors?
- How can we fairly allocate processors?

Roadmap

Model user utilities

- Operationalize Amdahl's Law for data center workloads
- Propose Amdahl utility using Karp-Flatt metric

Design market mechanism

- Design market for processor allocation
- Propose Amdahl bidding procedure using closed-form equations
- Find market equilibrium to guarantee fair division

Conclude

Amdahl's Law

[G. Amdahl 1967]

Architects use it to estimate upper bounds on speedups

Parallelizable Portions

Speedup(x) =
$$\frac{T_1}{T_x} = \frac{T_1}{(1-F)T_1 + F\frac{T_1}{x}} = \frac{x}{x(1-F)+F}$$

What Portion of Code is Parallelizable?

[Allen Karp and Horace Flatt 1990]

- Expert programmers may not know!
- Fortunately, we can measure speedup

Karp-Flatt Metric in Practice

- For many Spark and PARSEC workloads, Karp-Flatt has low variance
 - Abundant, fine-grained parallelism
 - Few serial bottlenecks
- Constant Karp-Flatt metric indicates accuracy of Amdahl's Law

Limitations of Karp-Flatt Metric

- There are some exceptions
 - High correlation between serial and parallel portion
 - High scheduling and inter-thread communication
 - Very limited parallelism

Amdahl's Law in Practice

Execution Time Prediction Accuracy for Decision Tree

- Measured performance tracks estimated speedup
 - Amdahl's Law can drive processor allocation

Amdahl Utility

Measures normalized progress across servers

Work completed for user i $\frac{\operatorname{Speedup}_{ij}(x_{ij})}{\operatorname{F}_{ij} + (1 - F_{ij})x_{ij}}$ in unit of time on one core of server j $u_i(\mathbf{x_i}) = \frac{\sum_{j=1}^m w_{ij} s_{ij}(x_{ij})}{\sum_{i=1}^m w_{ij}}$

Roadmap

Model user utilities

- Operationalize Amdahl's Law for data center workloads
- Propose Amdahl utility using Karp-Flatt metric

Design market mechanism

- Design market for processor allocation
- Propose Amdahl bidding procedure using closed-form equations
- Find market equilibrium to guarantee fair division

Conclude

Market for Fair Allocation

- Users receive budgets in proportion to their entitlements
- Market sets prices for processors on each server
- Users demand processors that maximize their utility

max.
$$u_i(\mathbf{x}_i)$$
,
s.t.
$$\sum_{j=1}^m x_{ij} p_j \le b_i$$

At equilibrium prices, market clears

$$\sum_{i=1}^{n} x_{ij} = C_j$$

Amdahl Bidding Procedure

Users iteratively bid for processors using closed-form equation

$$b_{ij}(t+1) \propto \sqrt{f_{ij} p_j(t)} w_{ij} s_{ij}(x_{ij}(t))$$

Market sets prices based on bids

$$p_j(t) = \sum_{i=1}^n b_{ij} / C_j$$

Iterate until prices are stationary

Properties of Amdahl Bidding Procedure

- Allocations are work-conserving
- Market guarantees sharing incentives
- Users bid truthfully in large, competitive systems
- Market does all of these with low overhead

Mechanisms for Evaluation

Proportional Sharing (PS)

Allocate cores in proportion to entitlements on each server

Upper-Bound (UB)

Allocate cores to maximize system progress

Sharing Incentives

- PS provides SI by definition
- UB treats users unfairly, starves users with low entitlements
- AB provides SI with market equilibrium, low overhead

System Performance

- PS ignores demands
- UB achieves highest performance
- AB outperforms PS, low overhead

Computational Overheads

- Updating bids: 0.1ms
- Termination check and setting prices: 0.85ms
- Convergence rate of 10 iterations, on average
- Overhead of 12.5ms with 0.25ms network delay

Summary and Future Direction

- Amdahl utility measures progress using Karp-Flatt metric
- Amdahl bidding procedure finds market equilibrium
 - Allocations are work-conserving
 - Market guarantees sharing incentives
 - Users bid truthfully in large, competitive systems

Thank You

