
Dynamic Proportional Sharing: A Game-Theoretic Approach
Rupert Freeman∗
Duke University

rupert@cs.duke.edu

Seyed Majid Zahedi∗
Duke University

zahedi@cs.duke.edu

Vincent Conitzer
Duke University

conitzer@cs.duke.edu

Benjamin C. Lee
Duke University

benjamin.c.lee@duke.edu

ABSTRACT
Sharing computational resources amortizes cost and improves uti-
lization and efficiency. When agents pool their resources, each
becomes entitled to a portion of the shared pool. Static allocations
in each round can guarantee entitlements and are strategy-proof,
but efficiency suffers because allocations do not reflect variations
in agents’ demands for resources across rounds. Dynamic alloca-
tion mechanisms assign resources to agents across multiple rounds
while guaranteeing agents their entitlements. Designing dynamic
mechanisms is challenging, however, when agents are strategic and
can benefit by misreporting their demands for resources.

In this paper, we show that dynamic allocation mechanisms
based onmax-min fail to guarantee entitlements, strategy-proofness
or both. We propose the flexible lending (FL) mechanism and show
that it satisfies strategy-proofness and guarantees at least half of
the utility from static allocations while providing an asymptotic
efficiency guarantee. Our simulations with real and synthetic data
show that the performance of the flexible lending mechanism is
comparable to that of state-of-the-art mechanisms, providing agents
with at least 0.98x, and on average 15x, of their utility from static
allocations. Finally, we propose theT -period mechanism and prove
that it satisfies strategy-proofness and guarantees entitlements for
T ≤ 2.
ACM Reference Format:
Rupert Freeman, Seyed Majid Zahedi, Vincent Conitzer, and Benjamin C.
Lee. 2018. Dynamic Proportional Sharing: A Game-Theoretic Approach. In
SIGMETRICS’18 Abstracts: ACM SIGMETRICS International Conference on
Measurement & Modeling of Computer Systems Abstracts, June 18–22, 2018,
Irvine, CA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3219617.3219631

1 INTRODUCTION
Shared systems are defined by the competition for resources be-
tween strategic agents. In this paper, we consider a community of
agents who share a non-profit system and its capital and operating
costs. Sharing increases system utilization and amortizes its costs
over more computation [5]. Examples include supercomputers for
∗These authors contributed equally to this work, ordered alphabetically.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS’18 Abstracts, June 18–22, 2018, Irvine, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5846-0/18/06.
https://doi.org/10.1145/3219617.3219631

scientific computing [9], datacenters for Internet services [12], and
clusters for academic research [4]. Note, however, that our focus
excludes systems in which agents explicitly pay for time on shared
computational resources (i.e., infrastructure-as-a-service).

Shared systems ensure fairness by allocating resources propor-
tionally to entitlements, which specify each agent’s share of system
resources relative to others [8, 13]. Entitlements are dictated by
exogenous factors such as agents’ contributions to the shared sys-
tem or priorities within the organization. A dynamic allocation
mechanism should ensure agents’ entitlements across time while
assigning resources to computational stages that benefit most.

Guaranteeing entitlements and redistributing under-utilized re-
sources are difficult when agents are strategic. The allocation mech-
anism does not know and must elicit agents’ utilities, which are
private information. Strategic agents act selfishly to pursue their
own objectives. Agents will determine whether misreporting de-
mands can improve their performance even at the expense of others
in the system. For example, an agent is likely to over-report her
demand in the current time period to obtain more resources, unless
doing so leads to a reduction in the resources allocated to her in
later periods.

We seek allocation mechanisms that satisfy strategy-proofness
(SP), which ensures that no agent benefits by misreporting her
demand for resources. Strategy-proofness is a key feature contribut-
ing to efficiency as it allows the mechanism to optimize system
performance according to agents’ true utilities. Without SP, agents’
reports may not represent their true utility and allocating based on
reported demands may not produce any meaningful performance
guarantee. Moreover, strategy-proof mechanisms reduce the cogni-
tive load on agents by eliminating the need to optimally construct
resource demands or preemptively respond to misreports by other
agents in the system.

Strategy-proofness is complemented by sharing incentives (SI),
which ensures that agents perform at least as well as they would
have by not participating in the allocation mechanism (i.e., using
their own resources as a smaller, private system). With sharing
incentives, agents would willingly federate their resources and
manage them according to the commonly agreed upon policy. A
mechanism that statically enforces entitlements in every time pe-
riod satisfies strategy-proofness and sharing incentives but its effi-
ciency is poor and fails to realize the advantages of dynamic sharing
across time.

In this paper, we focus on three fundamental desiderata: sharing
incentives, strategy-proofness, and efficiency. We consider agents
who derive high utility per unit of resource up until some amount
of resource allocation (i.e., their demand) and derive low utility

https://doi.org/10.1145/3219617.3219631
https://doi.org/10.1145/3219617.3219631
https://doi.org/10.1145/3219617.3219631


Allocation (ai,r)

U
ti

li
ty

 (
u i
,r
)

Demand (di,r)H

L

Figure 1: Users’ Utility. A user derives high utility from re-
sources up to her demand and derives low utility from re-
sources beyond her demand.

beyond that allocation. The high-low formulation is appropriate
for varied resources such as processor cores, cache and memory
capacity, or virtual machines in a datacenter. For example, an agent
could derive high utility when additional processors permit her to
dequeue more tasks from a highly critical job. Once the job’s queue
is empty, she derives low utility from using additional processors
to replicate tasks, which guards against stragglers or failures. In
another example, an agent that is allocated more power can turn
on more processors, each of which provides high utility from task
parallelism. Once the agent exhausts her job’s parallelism, it can
use additional power to boost processor voltage and frequency for
lower, non-zero utility.

We propose allocation mechanisms for dynamic proportional
sharing to address limitations in existing approaches. We begin by
proving that policies used in state-of-the-art schedulers [2, 3] fail
to satisfy SP or SI. We then propose two alternative mechanisms.
First, as our main contribution, we propose the flexible lending
mechanism to satisfy SP, guarantee at least 50% of SI performance,
and provide an asymptotic efficiency guarantee. The mechanism
uses tokens to enable these theoretical guarantees. In practice, our
simulations show that performance is comparable to that of state-
of-the-art mechanisms and achieves 98% of SI performance, much
better than the lower bound. Second, for situations where SI is a
hard constraint, we propose the T -period mechanism to satisfy SP
and SI while still outperforming static allocations.

2 BACKGROUND AND MOTIVATION
Consider a dynamic system with n agents and R discrete rounds.
Agent i contributes ei > 0 units of a resource at each round, which
we refer to as her endowment. In other words, ei is agent i’s con-
tribution to the federated system, which does not vary over time.
Let [n] = {1, . . . ,n} and E =

∑
i ∈[n] ei denote the total number of

units to be allocated at each round. At round r , agent i has a true
demand of di,r ≥ 0 units and reports a demand of d ′i,r ≥ 0.

At round r , a dynamic allocation mechanism assigns each agent
an allocation ai,r using only information from users’ reported de-
mands for the first r rounds. Agents have high (H ) utility per re-
source up to their demand, and low (L) utility per resource that
exceeds their demand. Figure 1 shows ui,r for user i with demand
di,r at round r . Agent i’s overall utility after R rounds is the sum of
her utility at each round.

In this paper, we focus on three main properties: sharing incen-
tives, strategy-proofness, and efficiency. First, sharing incentives
says that by participating in the mechanism, agents receive at least
the utility they would have received by not participating. Next,
strategy-proofness says that agents never benefit from lying about
their demands. Finally, efficiency says that all resources should be
allocated, and an agent with L valuation should never receive a
resource while there are agents with H valuation for that resource.

In our paper, we focus on the (weighted) max-min fairness policy,
which is one of the most widely used policies in computing systems.
It is deployed in many state-of-the-art datacenter schedulers [2,
3], and has been extensively studied in the literature [7, 11]. A
dynamic allocation mechanism could deploy the max-min policy
for two different objectives: maximizing the minimum accumulated
allocations up to a round, or maximizing the minimum allocation
at each round, independently of previous rounds. We call the first
mechanism Dynamic Max-Min (DMM) and the second mechanism
Static Max-Min (SMM). We show that SMM and DMM violate SP
and SI. Indeed, in the general setting, we show that no mechanism
can simultaneously satisfy efficiency and either of SP and SI.

3 PROPOSED MECHANISMS
Our aim is to design mechanisms that satisfy our game-theoretic
desiderata while increasing efficiency significantly over static allo-
cation. First, we propose the flexible lending (FL) mechanism. FL
allocates exactly Rei resources to each agent i , which is exactly her
contribution to the shared pool over all R rounds. The mechanism
enforces this constraint by simply removing agent i from the list
of eligible agents once she has received Rei resources in total. We
keep track of the resources each agent has received with a running
token count ti , effectively ‘charging’ each agent a token for every
resource she receives. We show that FL satisfies strategy-proofness
and guarantees each agent at least 50% of her SI performance. We
also show that FL provides an asymptotic efficiency guarantee.

In settings where agents require a strong guarantee in order to
participate, it may be desirable to strictly enforce sharing incentives,
in which case FL is not a suitable choice. To address this problem, we
propose the T -Period mechanism. The T -Period mechanism splits
the rounds into periods of length 2T . For the first T rounds of
each period, we allow the agents to ‘borrow’ unwanted resources
from others. In the last T rounds of each period, the agents ‘pay
back’ the resources so that their cumulative allocation across the
entire period is equal to their endowment, 2Tei . We show that the
T -Period mechanism satisfies SP and SI for T ≤ 2. 1

4 EVALUATION
We evaluate different mechanisms using real and synthetic bench-
marks. For real benchmarks, we use a Google cluster trace [1, 10].
For synthetic benchmarks, we create random agent populations
and random number of rounds.1

Figure 2 presents social welfare from varied allocation mecha-
nisms for both Google and random traces normalized to the social
welfare of static allocations. DMM and SMM are fully efficient
mechanisms and therefore produce the same, highest social welfare.

1For more details on mechanisms, proofs, and experimental setup, see the full version
of the paper [6].



DMM SMM FL 1−P 2−P R/2−P

N
o

rm
a

liz
e

d
 S

o
c
ia

l 
W

e
lfa

re

1
.0

1
.1

1
.2

1
.3

1
.4

Google Traces

Random Demands

Figure 2: Normalized SocialWelfare. Social welfare achieved
by different dynamic allocation mechanisms normalized to
that of static allocations for Google cluster traces and 100
instances of random demands.

0 100 200 300 400 500

1
5

2
0

2
0

0

Agents

S
h

a
ri

n
g

 I
n

d
e
x

Figure 3: Sorted Sharing Index for Google Cluster Traces.

Note, however, that SMM and DMM both fail to guarantee strategy-
proofness. Optimizing for reported demands may not provide high
welfare according to the true demands, as reported demands and
true demands may be quite different. But this is not captured in the
figure, which implicitly assumes truthful reporting.

The 1-Period mechanism produces the lowest social welfare.
Increasing the period length to 2 slightly improves the welfare of
the T -Period mechanism. Note that both mechanisms outperform
static allocations. The R/2-Period mechanism achieves 87% of SMM
welfare for Google traces, but fails to provide strategy-proofness.

The social welfare of FL is competitive with state-of-the-art
dynamic allocation mechanisms. FL achieves 97% of SMM’s welfare
for Google traces and 98% for random demands. In practice, strong
game-theoretic desiderata do not come with high welfare costs.

To investigate violations of sharing incentives in practice, we
define the sharing index. The sharing index of agent i is the ratio
between the number of high-valued resources agent i receives under
FL and under static allocations. Full sharing incentives guarantees
each agent a sharing index of at least 1, while FL guarantees each
agent a sharing index of at least 0.5. In practice, however, our
simulations show that the sharing index is much higher.

Figure 3 shows the sharing index for all agents in the Google clus-
ter traces, sorted in increasing order and shown on a log scale. The
minimum sharing index across all agents is 0.98x, and on average
agents receive 15x more utility under FL than under static allo-
cations. In practice, the overwhelming majority of agents benefit
substantially from participating in the FL mechanism.

5 CONCLUSION
We consider the problem of designing mechanisms for dynamic pro-
portional sharing in a high-low utility model that both incentivize
users to participate and share their resources (sharing incentives), as
well as truthfully report their resource requirements to the system
(strategy-proofness). We show that while each of these properties
is incompatible with full efficiency, it is possible to satisfy both of
them and still obtain some efficiency gains from sharing.

We propose the flexible lending mechanism which is strategy-
proof and provides each user a theoretical guarantee of at least
half her sharing incentives guarantee. While we do not guarantee
full sharing incentives, we show via simulations on both real and
synthetic data that in practical situations, no users are significantly
worse off by participating in the sharing scheme (and the majority
are vastly better off). We show that under certain assumptions,
the flexible lending mechanism provides full efficiency in the large
round limit, which is supported by our simulation results. We also
propose the T -Period mechanism and show that it satisfies SP and
SI for T ≤ 2.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
grants CCF-1149252 (CAREER), CCF-1337215 (XPS-CLCCA), SHF-
1527610, AF-1408784, CCF-133721 and IIS-1527434. This work is
also supported by STARnet, a Semiconductor Research Corporation
program, sponsored by MARCO and DARPA. Freeman is supported
by a Facebook graduate fellowship. Any opinions, findings, con-
clusions, or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of these
sponsors.

REFERENCES
[1] More Google cluster data. Google research blog. (Nov. 2011). Posted at http:

//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.
[2] Capacity Scheduler. https://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/CapacityScheduler.html. (Accessed Jan 2018).
[3] Fair Scheduler. https://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/FairScheduler.html. (Accessed Jan 2018).
[4] SHARCNET. https://www.sharcnet.ca. (Accessed Jan 2018).
[5] Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional

computing. Computer 40, 12 (2007).
[6] Rupert Freeman, Seyed Majid Zahedi, Vincent Conitzer, and Benjamin C. Lee.

2018. Dynamic Proportional Sharing: A Game-Theoretic Approach. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 2, 1 (March 2018).

[7] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In NSDI, Vol. 11. 24–24.

[8] J. Kay and P. Lauder. 1988. A Fair Share Scheduler. Communications of the ACM
31, 1 (1988), 44–55.

[9] Lawrence Berkeley National Laboratory. National Energy Research Scientific
Computing Center. https://www.nersc.gov. (2017).

[10] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc., Mountain View, CA,
USA. Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/
cluster-data.

[11] Alan Shieh, Srikanth Kandula, Albert G Greenberg, Changhoon Kim, and Bikas
Saha. 2011. Sharing the Data Center Network.. In NSDI, Vol. 11. 23–23.

[12] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale Cluster Management at Google with
Borg. In EuroSys. ACM, 18:1–18:17.

[13] Carl A. Waldspurger and William E. Weihl. 1994. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In OSDI. 1–11.

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://www.sharcnet.ca
https://github.com/google/cluster-data
https://github.com/google/cluster-data

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Proposed Mechanisms
	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

