Dynamic Proportional Sharing A Game-Theoretic Approach

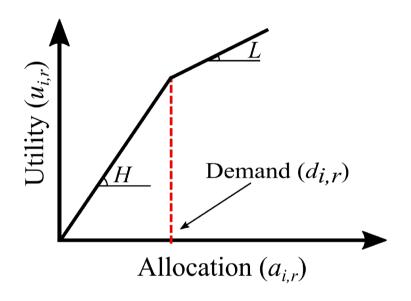
Rupert Freeman*, **Seyed Majid Zahedi***, Vincent Conitzer, and Benjamin C. Lee

[* Co-first Authors]

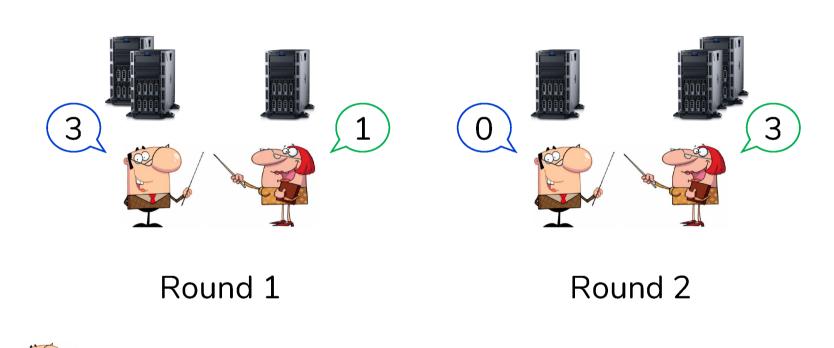
Federated Datacenter

- Users pool resources in non-profit data centers
 - E.g., research groups within university
- Users are entitled to portion of resources
 - Based on contributions to shared pool

Resource Allocation over Time


- Users report their varying demand every round
- Allocator dynamically allocates resources at each round

- Utility model
- Existing mechanisms
- Flexible lending mechanism
- T-period mechanism
- Performance evaluation



Utility Model

- High utility per unit up to demand and low utility afterwise
- E.g., processor allocation to job with limited parallelism
 - H to run critical tasks and L to run replicate tasks

Dynamic Allocation Example

$$u(\mathbf{y}) = 2H + L$$

$$u(\mathbf{y}) = H + 2H$$

- Utility model
- Existing mechanisms
- Flexible lending mechanism
- T-period mechanism
- Performance evaluation

Max-Min Fairness

- Max-min is main component of modern schedulers
 - E.g., Hadoop schedulers, Spark and Mesos dynamic allocator
- There are two max-min mechanisms in dynamic settings
 - Maximize minimum allocations separately at each round
 - Maximize minimum cumulative allocations up to each round

Desirable Properties

Sharing incentives (SI)

Sharing should be (weakly) better than not sharing

Strategy-proofness (SP)

Truthful reporting should be (weakly) better than misreporting

Efficiency

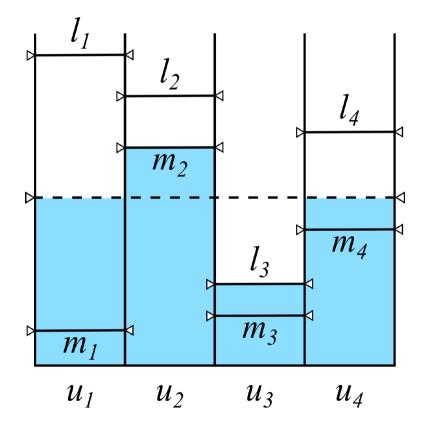
H-valued resources should be allocated before L-valued resources

Properties of Max-Min Policies

- <u>Theorem(s)</u>: Max-min policies violate SI and SP
- Theorem: No mechanism can satisfy both SI and efficiency
- Theorem: No mechanism can satisfy both SP and efficiency

- Utility model
- Existing mechanisms
- Flexible lending mechanism
- T-period mechanism
- Performance evaluation

Flexible Lending Mechanism (Overview)



- Give users as many tokens as their entitlements
- Make users pay one token for each resource they receive
- Allocate entire supply (e.g. total entitlements) at each round
- Allocate proportionally to entitlements among users with tokens

Proportional Sharing With Constraints

- PSWC(A, w, I, m)
 - A = amount to allocate
 - \circ w = weights
 - **m** = minimum allocations
 - I = limit allocations
- Solvable in O(n log(n))

[Divvy alg. Gulati et al. 2012]

Flexible Lending Mechanism (Details)

- Calculate allocatable demand for each user
 - min(reported demand, number of tokens)
- Allocate using PSWC based on total allocatable demand
 - Total allocatable demand ≥ supply
 - Total allocatable demand < supply
- Make users pay one token per unit of allocated resources

Flexible Lending Mechanism (Details ...)

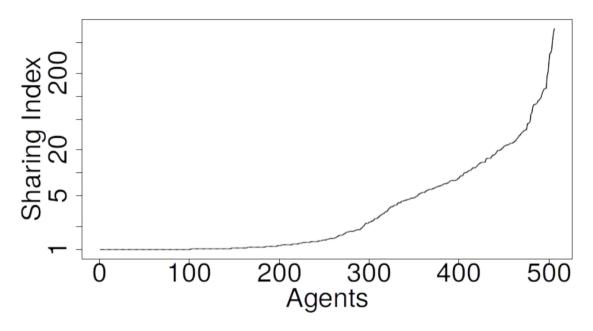
- If total allocatable demand ≥ supply, call PSWC with
 - \circ m = 0
 - I = allocatable demands
- If total allocatable demand < supply, call PSWC with
 - \circ **m** = allocatable demands
 - I = number of tokens

Properties of Flexible Lending Mechanism

• Theorem:

FLM satisfies (tight) 0.5 approx. to sharing incentives

• Theorem:


FLM satisfies **strategy-proofness**

• Theorem:

FLM approaches efficiency as rounds grow for symm. users

Evaluation on Google Traces

[Reiss et al. 2011]

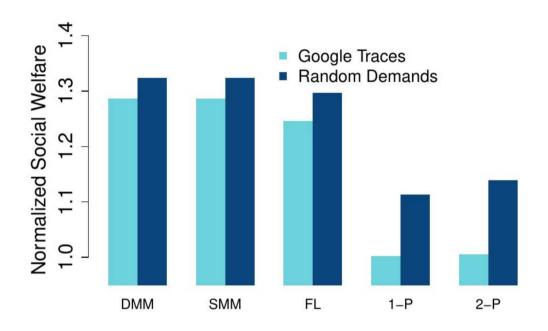
- Define sharing index
 - utility from sharing / utility from not sharing
- Achieve high performance
 - Minimum of 0.98 and average of 15

- Utility model
- Existing mechanisms
- Flexible lending mechanism
- T-period mechanism
- Performance evaluation

T-Period Mechanism

T-Period mechanism

Rounds are divided to borrowing and payback periods


• Theorem(s):

T-Period mechanism satisfy SP and SI for T = 1 and 2

Unfortunately, T >= 3 breaks strategy-proofness

- Utility model
- Existing mechanisms
- Flexible lending mechanism
- T-period mechanism
- Performance evaluation

Performance Evaluation

Flexible lending mechanism achieves 97% of full efficiency

	DMM	SMM	FLM	1-P	2-P
SP	•	•	~	✓	~
SI	•	•	Approx.	✓	~

Recap

- Flexible lending mechanism satisfies
 - Minimum 0.5 sharing incentives
 - Strategy-proofness
 - Efficiency for symmetric users as number of rounds grows
- (1 & 2)-Period mechanisms satisfy
 - Strategy-proofness
 - Sharing incentives

Thank You!