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We consider the problem of balancing the load among servers in dense racks for microsecond-scale workloads.

To balance the load in such settings tens of millions of scheduling decisions have to be made per second.

Achieving this throughput while providing microsecond-scale latency and high availability is extremely

challenging. To address this challenge, we design a fully decentralized load-balancing framework. In this

framework, servers collectively balance the load in the system. We model the interactions among servers as

a cooperative stochastic game. To find the game’s parametric Nash equilibrium, we design and implement

a decentralized algorithm based on multi-agent-learning theory. We empirically show that our proposed

algorithm is adaptive and scalable while outperforming state-of-the art alternatives. In homogeneous settings,

Malcolm performs as well as the best alternative among other baselines. In heterogeneous settings, compared

to other baselines, for lower loads, Malcolm improves tail latency by up to a factor of four. And for the same

tail latency, Malcolm achieves up to 60% more throughput compared to the best alternative among other

baselines.
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1 INTRODUCTION
To process user requests, popular datacenter applications such as web search, e-commerce, and

social networks rely on responses from thousands of services. In such applications, end-to-end

response times are dictated by the slowest response [19]. To guarantee fast responses, datacenter

services are governed by strict service-level objectives (SLOs). To meet these SLOs, it is imperative to

provide high throughput at microsecond-scale latency [10]. This is particularly important for tasks

with service times in the range of several to tens of microseconds. Examples include in-memory

key-value stores [1, 6, 20, 50, 96], NoSQL databases [2, 5], transactional databases [7, 87, 92],

microservices [13], web-search ranking and sorting [11], and graph stores [43, 88]. For such tasks,
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datacenters systems are expected to support tail-latency SLOs that are a small multiple of task

service times.

To optimize for killer microseconds, efficient queue management and task scheduling have

become paramount [10]. There has been significant work on microsecond-scale schedulers for

multi-core servers [12, 17, 25, 37, 63, 68, 70]. For example, ZygOS uses work stealing to reduce tail

latency [68], and Shinjuku leverages hardware support for virtualization to implement microsecond-

scale preemptive scheduling [37]. While these solutions achieve microsecond-scale tail latencies

for multi-core servers, they do not scale beyond a few tens of cores.

A typical high-density datacenter rack can comprise thousands of interconnected, heterogeneous

computing units. In a traditional rack, dense blade servers are connected together via one or two

top-of-rack (ToR) switches. In the emerging rack-scale architectures, a disaggregated rack hosts

a dense pool of compute, memory, and storage blades, all interconnected by a high-bandwidth

network fabric. In such architectures, servers are replaced by racks as the unit of deployment in

datacenters. Examples of rack-scale architecture include proposals from industry (Intel [35], Google

[86], Microsoft [71], and HP [40]) and academia [9, 16, 39, 47, 62, 69, 77].

The increasing rack density poses new challenges for designing rack-scale schedulers. To address

these challenges, in a recent work [102] the authors propose RackSched, a two-layer rack-scale

scheduler. RackSched consists of a high-level inter-server scheduler and low-level intra-server

schedulers. Each intra-server scheduler balances the load between cores in a server, and the inter-

server scheduler balances the load between servers. To realize centralized rack-scale scheduling,

RackSched implements the inter-server scheduler in programmable ToR switches. The key benefit

of this approach is that the ToR switch can schedule tasks at the line rate as it already is on the

path of all tasks sent to the rack.

Although RackSched achieves high scheduling throughput, the design has three main limitations.

First, RackSched requires a programmable switch, which limits its deployment in datacenters

without programmable switches. Second, RackSched imposes additional functionality to the packet

switching fabric. Offloading computation to the switch data plane could ultimately lead to degraded

network throughput [58]. Third, and more importantly, due to restricted computational andmemory

resources available in a programmable switch, RackSched uses power-of-2 to approximate cFCFS.

While power-of-d-choices can balance the load in homogeneous systems, it can perform very poorly

in the presence of heterogeneity [78, 100].

In this paper, we propose Malcolm, a dynamic, decentralized rack-scale load manager and task

scheduler for microsecond-scale workloads. Malcolm is a heterogeneity-aware load-balancing

framework that allows servers in the rack to collectively balance the load between themselves.

We model the interactions among servers as a cooperative stochastic game, and use robust, game-

theoretic analysis to study load-balancing strategies. Furthermore, to find the game’s parametric

Nash equilibrium, we design and implement a decentralized multi-agent learning algorithm. In our

proposed solution, servers make scheduling decisions in tens of nanoseconds based on (possibly

out-of-date) estimates of the load on other servers. Our implementation allows decentralized

coordination among servers through infrequent network communications.

The key insights are: (a) load balancing at microsecond scale can be performed in a fully de-

centralized manner with infrequent communications using software-based solution; and (b) hand-

crafted machine learning can be effectively exploited to find distributed load-balancing policies for

microsecond-scale services. In summary, we make the following contributions.

• Distributed load-balancing architecture §3. We provide a distributed load-balancing

architecture that enables independent servers to balance the load between themselves.
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Fig. 1. 99th-percentile latency under Po(D) vs. cFCFS in heterogeneous systems.

• Distributed load-balancing game §4. We model the interactions between independent

servers as a potential Markov game and analyze Nash-equilibrium strategies in the game.

• Distributed policy optimization §5–§6.We design and implement a fully decentralized

learning algorithm to find Nash-equilibrium policies.

• Performance, scalability, and adaptivity §7. We evaluate the performance, scalability,

and adaptivity of Malcolm using rigorous experiments on our testbed. We show that Malcolm

performs as well as the best alternative among other baselines for homogeneous racks. We

further show that for heterogeneous racks, compared to other baselines, Malcolm improves

tail latency under lower loads by up to a factor of four. And for the same tail latency, Malcolm

achieves up to 60% more throughput compared to the best alternative among other baselines.

The code of Malcolm is open-source and available at https://github.com/uwaterloo-mast/malcolm.

2 BACKGROUND ANDMOTIVATION
In recent years, there has been significant work on designing microsecond-scale scheduler for

multi-core servers [12, 17, 25, 37, 63, 68, 70]. Today’s servers often consist of tens to hundreds of

core, and modern high-density racks deploy hundreds to thousands of (heterogeneous) cores. In

practice, a single server-level task scheduler does not scale beyond eight to ten cores [37].

The increasing rack density in modern datacenters poses new challenges for designing rack-

scale schedulers. In a rack with 1000 cores and an average service time of ten microseconds, the

scheduler must handle, on average, 100 million tasks per second to fully utilize the rack. This means

making one scheduling decision every ten nanoseconds. In addition to providing high scheduling

throughput and low scheduling latency, a rack-scale scheduler has to guarantee high scheduling

quality (i.e., supporting microsecond-scale tail latencies for each task). If tasks are simply scheduled

to random servers, there will be temporal load imbalance between servers, which in turn causes

long tail latencies for the entire system [102].

Centralized scheduling. Centralized first-come-first-serve (cFCFS) scheduling policy asymptoti-

cally minimizes tail latency for light-tailed service times [79]. A single core is capable of running a

centralized scheduler for a server with eight to ten cores [37]. However, scheduling tasks for a rack

with hundreds to thousands of cores far exceeds the capabilities of a general-purpose processor. To

address this challenge, RackSched [102] proposes a two-layer hierarchical scheduler consisting of a

high-level inter-server scheduler and low-level intra-server schedulers. For inter-server scheduling,

RackSched implements power-of-d-choices policy in programmable ToR switches.

Power-of-d-choices policy (PoD). Power-of-d-choices policy approximates cFCFS. In PoD, for

each incoming tasks, an scheduler randomly selects 𝑑 servers and probes the length of their task

queues. The scheduler then sends the task to the server with the shortest queue among probed
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Fig. 2. Average server loads under Po4.

servers. While PoD can balance the load in homogeneous systems near-optimally, it can perform

very poorly in the presence of heterogeneity [78, 100].

Heterogeneity in racks.Modern racks deploy increasingly heterogeneous hardware [45]. Het-

erogeneity has many manifestations. A rack could consist of servers with different processor

types to improve efficiency by mixing off-the-shelf hardware [57]. Servers could distribute power

unevenly across different processors to accelerate specific tasks [21, 99]. Processors could integrate

heterogeneous cores to support diverse computational phases [36, 44, 55, 81].

PoD in heterogeneous systems. To demonstrate suboptimality of PoD in heterogeneous systems,

we use simulations on representative workloads. For the simulations, we assume two service-

time distributions: (a) Exp(20) is an exponential distribution with mean 20 µs, representing low-

dispersion workloads, and (b) HyperExp(95:20, 5:400) is a hyperexponential distribution with 95% of

service times following Exp(20) and the other 5% following Exp(400), representing high-dispersion

workloads. There are 16 servers, of which two are fast, and the rest are slow. Each fast server has

16 cores, while each slow server has only two. The intra-server scheduler for all servers is cFCFS.

Figure 1 compares ideal cFCFS against PoD for inter-server scheduling. The figure shows that

power-of-2-choices policy fails to stabilize the 99th-percentile latency at loads as low as 65% for

both workloads. The maximum sustainable load in terms of tail latency decreases as the number of

queried servers decreases. This is mainly because PoD probes fast servers at the same rate as slow

servers. As a result, the load is not balanced between fast and slow servers. This can be seen in

Figure 2, which depicts total number of tasks (waiting and being served) in fast and slow servers

over time at 85% load for Exp(20) workload under power-of-4-choices policy. The total number of

tasks in fast servers is about 15, while on slow servers, it fluctuates between 40 to 60.

Centralized scheduling and network delay. Even if cFCFS could be implemented in a pro-

grammable switch, it is not clear whether cFCFS is optimal in terms of tail latency when network

delays are a non-negligible fraction of service times. To realize cFCFS, tasks have to be queued

at a centralized scheduler. Servers query the scheduler to fetch a new task every time they finish

their current task. This takes a round-trip time (RTT) of at least a few microseconds
1
, during which

servers remain idle. This would be a noticeable overhead for workloads with average service times

in the range of several to a few tens of microseconds. Figure 3 illustrates achievable 99th-percentile

latencies by cFCFS under different RTTs for the two representative workloads. As network latency

increases, the maximum sustainable utilization in terms of tail latency dramatically decreases.

Distributed scheduling. One alternative to centralized scheduling is distributed, client-based

scheduling. In this approach, clients query servers and make scheduling decisions for each of their

tasks. This approach has three major drawbacks. First, for every system reconfiguration, all clients

have to be notified. This has a high system overhead when there are a large number of clients.

Second, to minimize the overheads of probing, each client can only probe a fraction of servers. As

1
Modern network stacks offer host-to-host RTT of about 4 µs [38].
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Fig. 3. 99th-percentile latency under cFCFS with network delay.

a result, clients may have to schedule tasks based on out-of-date load information, which could

lead to low scheduling quality. Finally, client-based load balancing can lead to an undesirable

race condition in which clients compete for service. When clients selfishly schedule their tasks to

minimize their own tail latencies, the system becomes unstable at loads as low as 50% [26, 27].

Another alternative is distributed, server-based scheduling. In this approach, multiple dedicated

dispatchers schedule tasks between servers in the rack. This approach addresses many drawbacks

of the client-based solution. While there has been extensive work on distributed task scheduling

[14, 64, 75], existing solutions do not meet the latency and throughput requirements of microsecond

scale workloads. For instance, Sparrow [64] uses a combination of power-of-d-choices policy and

late binding to schedule tasks. Although this approach works well for millisecond-scale workloads,

as discussed earlier, delayed scheduling harms tail latency of microsecond-scale tasks.

To bridge the gap between traditional task schedulers and modern microsecond-scale tasks, in

this paper, we propose Malcolm, a distributed rack-scale scheduling framework. In Malcolm, each

server runs one or more nodes. Malcolm nodes collaboratively balance the load among themselves.

We model the interactions between Malcolm nodes as a team Markov game [90]. This allows

for studying nodes’ Nash equilibrium strategies. In an equilibrium, nodes cannot do better by

unilaterally changing their strategy. We show that the game is a Markov potential game. This

allows us to express the incentive of all nodes to change their load-balancing strategy using a single

global function, called the potential function. Nash equilibria can be found in polynomial time by

locating the local optima of the potential function

To find the game’s (parametric) Nash equilibrium, we design and implement a decentralized

algorithm based on multi-agent-learning theory. In the rest of this paper, we first present and

analyze the game in §4. We then design (§5) and implement (§6) a decentralized algorithm to find

Nash-equilibrium strategies. We finally present our empirical study on the performance, scalability,

and adaptivity of Malcolm in §7.

3 MALCOLM ARCHITECTURE
We present the Malcolm framework for hierarchical, distributed task scheduling and load balancing

at rack scale. Figure 4a illustrates an overview of the Malcolm architecture. Servers in the rack are

interconnected by a high-bandwidth, low-latency network fabric. Servers can be heterogeneous

with different computing capacities. Clients send their tasks to servers. Different servers can receive

tasks at different rates.

Each server runs one or more Malcolm nodes. Like RackSched [102], Malcolm uses a multi-layer

approach with intra-node and inter-node schedulers. Each Malcolm node consists of a centralized

task scheduler for intra-node scheduling and a load manager for inter-node load balancing. Central-

ized intra-node schedulers schedule tasks between available worker threads within each Malcolm

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 59. Publication date: December 2022.
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Fig. 4. Overview of Malcolm design

node. Unlike RackSched, Malcolm adopts a distributed inter-node scheduling approach. Inter-node

load managers cooperatively balance the load among Malcolm nodes at per-task granularity. The

heartbeat manger is the core of each Malcolm node, which dynamically learns load-balancing

strategies by interacting with other nodes. Nodes regularly send heartbeat messages to each other.

Inter-node communications are done through a user-space network stack which bypasses the

traditional TCP/IP stack. This enables nodes to communicate quickly with minimal delay. Figure

4b shows the main components of each Malcolm node.

3.1 Intra-node Scheduling
Each Malcolm node runs multiple worker threads to process tasks. Malcolm uses a centralized

queue to buffer incoming tasks in each node. This has been shown to outperform per-worker queues

for microsecond-scale workloads [37]. To schedule tasks between workers, there are two main

policies: (a) first-come-first-served (FCFS) and (b) processor sharing (PS). Under FCFS, a worker

finishes a task before starting a new one. Under PS, workers context switch between tasks to fairly

divide processing capacity between all tasks.

Tail latency and service-time distribution. FCFS minimizes tail latency for light-tailed service-

time distributions [79]. And PS minimize tail latency for heavy-tailed workloads [93]. Unfortunately,

there is no static, work-conserving policy that minimizes tail latency for both workloads. There is

an interesting dichotomy: policies that perform well under light-tailed workloads perform poorly

under heavy-tailed workloads, and vice versa [93]. Among existing solutions, ZygOS [68] uses

FCFS, while Shinjuku [37] implements PS. Malcolm is orthogonal to these works. The Malcolm

design allows both solutions to be deployed. However, the default scheduler in Malcolm is FCFS.

3.2 Inter-node Load Balancing
Modern servers often consist of tens to hundreds of core. And modern high-density racks consist

of hundreds to thousands of cores. However, a single intra-node scheduler does not scale beyond

eight to ten cores [37]. To scale up, Malcolm adopts a hierarchical and distributed approach. Each

server runs one or more Malcolm nodes. Malcolm nodes could be heterogeneous in terms of the

number of worker threads. Nodes collaboratively balance the load among themselves.

Load balancing. Upon receiving a new task, the load manager decides whether to accept the task

or migrate it to another node §4. This decision is made based on nodes’ (possibly out-of-date) loads.

The load manager can migrate incoming tasks to less loaded nodes when the local load is higher

than the load on other nodes. Accepted tasks will be scheduled between worker threads by the

intra-node scheduler. After processing each task by a worker thread, the load manager can decide if

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 59. Publication date: December 2022.
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it needs to steal tasks from other nodes. Work-stealing decisions on task completions complement

the migration decisions on task arrivals.

Policy optimization. The load manager uses an adaptive policy to make migration and work-

stealing decisions. This policy is periodically updated by the heartbeat manger based on the past

decisions and current load differences (§5). To make these updates, heartbeat mangers communicate

by sending heartbeat messages to one another. This allows heartbeat mangers to reach consensus

on the rack-scale policy. The goal of the heartbeat manger is to minimize load imbalance among

nodes with the minimum number of required migrations and work stealing requests.

Load estimation. In a homogeneous system, the load on a node can be captured by the length

of the node’s queue. The queue length, however, is not a useful metric in heterogeneous systems.

Equal number of waiting tasks on node A and B does not mean that the two nodes have equal load

if A is twice as fast as B. To account for heterogeneity, a more reliable metric is the queue length

weighted by the inverse of service rate [76, 100]. This metric closely approximates the expected

wait time of the last task in the queue [76]. To estimate service rate, each Malcolm node maintains

a moving average of the inverse of task service times.

Instantaneous vs. average load. The load imbalance between two nodes is capture by the absolute

difference between their loads. Temporal load imbalance among nodes results in higher tail latency

for microsecond-scale workloads. Therefore, the main objective of the inter-node scheduler is to

balance instantaneous loads over time. This is different from balancing long-term average loads. The

former leads to the latter but not vice versa. Two nodes could have equal long-term average loads,

while their instantaneous loads are different at any given time. While prior work has focused on

balancing long-term average loads [30, 31, 67, 80, 85], Malcolm focuses on balancing instantaneous

loads to minimize tail latency for microsecond-scale workloads.

4 THE DISTRIBUTED LOAD-BALANCING GAME
We present the distributed load-balancing game (DLB) that is used in Malcolm as a framework

to balance the load between nodes at rack scale. Clients send tasks to nodes. Different nodes can

receive and process tasks at different rates. Upon receiving a task, the load manager in each node

decides whether to keep the task or migrate it to another node. Upon completing a task, the load

manager decides if it needs to steal a task from another node. The state of the game evolves over

time as scheduling decisions collectively shape the load on different nodes. The goal of the load

manager is to minimize the load imbalance between nodes in the rack while migrating and stealing

the minimum number of tasks.

4.1 Game Formulation
We model the DLB game as a team Markov game. Markov games generalize both Markov decision

processes (MDPs) and repeated games. An MDP is a Markov game that is played by a single

agent, and a repeated game is a Markov game with a single game state. The game consists of 𝑁

heterogeneous nodes, represented by 𝑁 agents. Time is divided into rounds
2
. For microsecond-scale

workloads, the duration of each round could be tens to hundreds of microseconds. We assume that

service times and inter-arrival times follow a fixed geometric distribution
3
. At each round, node 𝑖

receives a new task with probability 𝑝𝑖 and completes a task with probability 𝑞𝑖
4
. As we show in

§7, Malcolm performs well for different service-time and inter-arrival-time distributions.

2
For the ease of explanation, we present the game as a discrete-time game. Our analysis extends easily to continuous-time

setting.

3
In our experiments, we study performance of Malcolm for workloads with variety of other service-time distributions (see

§7.1). We further study how Malcolm adapts to changes in service-time and inter-arrival-time distributions (see §7.4).

4
In continuous-time setting, geometric distribution is replaced by exponential distribution.
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States and actions. The load on each node represents the state of the node. The load on node 𝑖

at round 𝑟 is denoted by 𝑥𝑖,𝑟 . The state of the game at round 𝑟 is 𝑥𝑟 = (𝑥1,𝑟 , . . . , 𝑥𝑁,𝑟 ). The state of
the game evolves over time as agents take scheduling actions. We denote the set of scheduling

actions taken by agent 𝑖 at round 𝑟 by 𝑎𝑖,𝑟 . For example, if node 𝑖 accepts an incoming task at round

𝑟 and steals another one from node 𝑗 , then 𝑎𝑖,𝑟 = {accept, steal from 𝑗}. We use 𝑎𝑟 = (𝑎1,𝑟 , . . . , 𝑎𝑁,𝑟 )
to aggregate all actions taken by all nodes at round 𝑟 .

Strategies. A strategy, 𝜋 , provides a complete description of how an agent plays the game. Let

ℎ𝑟 = (𝑥0, 𝑎0, 𝑥1, 𝑎1, . . . , 𝑥𝑟 ) denote the history of the game at round 𝑟 . A deterministic strategy

prescribes an action for all possible histories. To allow randomization, a behavioral strategy specifies
a probability distribution over actions for any given history. In the DLB game, a behavioral strategy

returns two probability distributions, one over migration and one over work-stealing actions.

The domain of deterministic and behavioral strategies is exponentially large as there are expo-

nentially many different histories. To narrow the domain, we focus on a specific class of behavioral

strategies called stationary strategies. A stationary strategy depends only on the final state of

each history. This enables nodes to take scheduling actions based on the current system load

and not the history of states and actions. Stationary strategies form a rich class of scheduling

policies, which includes well-known policies such as power-of-𝑑-choices, join-idle-queue, and

join-below-threshold.

Utility. The utility function of each agent at each round is:

𝑢 (𝑥𝑟 , 𝑎𝑟 ) = −
∑︁
𝑖, 𝑗

(𝑥𝑖,𝑟 − 𝑥 𝑗,𝑟 )2 −𝐶 (𝑎). (1)

The utility function captures two costs: the cost of instantaneous load imbalance between all nodes

and the cost migrations and work stealing requests. We use a linear function, 𝐶 , to penalize each

migration and work stealing request with a constant average cost. Let 𝜋𝑖 denote the strategy of

agent 𝑖 , and let 𝜋−𝑖 = (𝜋1, . . . , 𝜋𝑖−1, 𝜋𝑖+1, . . . , 𝜋𝑁 ) represent the strategy of all agents other than

𝑖5. The value function represents the long-term value of a state 𝑥 for each agent 𝑖 under strategy

𝜋 = (𝜋𝑖 , 𝜋−𝑖 ), and it is defined as:

𝑉 𝑖
𝑥 (𝜋) = E

[ ∞∑︁
𝑟=0

𝛿𝑟𝑢 (𝑥𝑟 , 𝑎𝑟 ) | 𝑎𝑟 ∼ 𝜋, 𝑥0 = 𝑥

]
.

This function captures the expected payoff in state 𝑥 plus the expected discounted sum of future

payoffs. Payoffs in the future are discounted because, all being equal, agents prefer performance

sooner rather than later.

4.2 Nash Equilibrium
Agents optimize their scheduling strategies to maximize their expected long-term payoff. Agents

would play their best responses if they knew exactly how other agents will play the game. For-

mally, agent 𝑖’s best response to the strategy of others, 𝜋−𝑖 , is a strategy 𝜋∗𝑖 that satisfies 𝜋∗𝑖 =

argmax𝜋𝑖
𝑉 𝑖
𝑥 (𝜋𝑖 , 𝜋−𝑖 ) for all states 𝑥 . A Nash equilibrium (NE) is a strategy profile in which all agents

simultaneously play best responses against each others strategies. Formally, an NE of a Markov

game is a strategy profile 𝜋∗ that satisfies 𝜋∗𝑖 = argmax𝜋𝑖
𝑉 𝑖
𝑥 (𝜋𝑖 , 𝜋∗−𝑖 ) for all agents and states.

Equilibrium analysis. In general, the problem of finding an NE is computationally expensive.

Theoretically, the complexity of computing a sample NE of a general-sum finite game with two or

more agents is known to be PPAD-complete [18]. In practice, it is common belief that in the worst

case, computing a sample NE takes time that is exponential in the size of the game. Fortunately, an

5
Subscript −𝑖 is used to refer to all agents other than agent 𝑖 .
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NE could be computed in polynomial time for the DLB game. This is because, as we show in the

rest of this section, the DLB game is a Markov potential game (MPG). And for an MPG, an NE can

be obtained in polynomial time by solving a corresponding MDP [48, 56].

Definition 1. A Markov game is said to be an MPG if there is a potential function, Φ, which
satisfies the following condition for all agents 𝑖 , states 𝑥 , policies 𝜋𝑖 , 𝜋 ′𝑖 , and 𝜋−𝑖 .

𝑉 𝑖
𝑥 (𝜋𝑖 , 𝜋−𝑖 ) −𝑉 𝑖

𝑥 (𝜋 ′𝑖 , 𝜋−𝑖 ) = Φ𝑥 (𝜋𝑖 , 𝜋−𝑖 ) − Φ𝑥 (𝜋 ′𝑖 , 𝜋−𝑖 ).

Informally, in an MPG, the incentives of all agents to change their strategies can be expressed

in a single global function, called the potential function. For MPGs, an NE always exists, but it

is not necessarily unique [48]. Team Markov games constitute a particular case of MPGs, with

potential function being the common utility function (Corollary 1 in [56]). As a result, the problem

of finding an NE in the DLB game is reducible to the optimal-control problem of finding a 𝜋 that

maximizes Φ𝑥 (𝜋) for all states 𝑥 [48, 56, 97]. Although this optimal control problem can be solved in

polynomial time, the order of the polynomial might be too large for any algorithms to be practical

[52, 65].

Parametric strategies. To allow practical solutions, we focus on parametric strategies. Given a

parameter vector𝑤 , a parametric strategy 𝜋𝑤 (𝑥) maps states 𝑥 to distributions over actions. With

parametric policies, we could focus on parametric Nash equilibrium (PNE) strategies. Informally, a

PNE is a projection of some NE onto a parametric class. The performance of a PNE approximates

that of the projected NE. If parametric strategies are expressive enough, we can expect to achieve

arbitrarily close performance to that of non-parametric solutions.

To find the in the DLB game, one option is to solve a centralized control problem:

maximize

𝑤
Φ𝑥 (𝜋𝑤). (2)

This, however, is not practical as it requires an accurate analytic model of system dynamics.

Formulating system dynamics under different strategies for a rack with tens of nodes and thousands

of cores is not tractable. Moreover, parameters of the system could change over time. The centralized

optimal control problem should be resolved every time system dynamics change.

To address these challenges, in the next section, we propose a multi-agent-learning algorithm.

The algorithm is model free and does not require any prior knowledge of system dynamics. The

proposed decentralized algorithm solves the centralized control problem in a distributed manner

and can be implemented and deployed in practice.

5 DECENTRALIZED POLICY OPTIMIZATION
In this section, we present a distributed policy optimization algorithm that is the core of Malcolm.

The algorithm is based on multi-agent-learning theory, and it is guaranteed to find PNE strategies

of the DLB game in a distributed manner.

5.1 Multi-agent Learning
Single-agent reinforcement learning. In single-agent reinforcement learning (RL), an agent

learns through interactions with an environment. Model-free RL allows an agent to find the optimal

policy without any prior knowledge of the system dynamics and payoff functions. At every round, 𝑟 ,

the agent observes a state, 𝑥𝑟 , takes an action, 𝑎𝑟 , and receives a payoff,𝑢𝑟 . The state then transitions

to 𝑥𝑟+1. The goal of the agent is to learn a policy that maximizes the expected long-term payoff,

𝐽 = E[∑𝑟 𝛾
𝑟𝑢𝑟 ], where 𝛾 is the discount factor.

Q-Learning. Q-learning [91] is one of the most popular methods in RL. In Q-learning, agents learn

the optimal policy indirectly by learning the optimal action-value function, 𝑄 (𝑥, 𝑎). The optimal Q
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values can be learned recursively using the following Bellman equation:

𝑄 (𝑥𝑟 , 𝑎𝑟 ) = (1 − 𝛼)𝑄 (𝑥𝑟 , 𝑎𝑟 ) + 𝛼 (𝑢𝑟 + 𝛾 max

𝑎
𝑄 (𝑥𝑟+1, 𝑎)),

where 𝛼 is the learning rate. The optimal action at a given state is the action that maximizes the Q

value at that state.

Policy gradient. Policy gradient methods are another popular option in RL. The main idea is to

directly learn the optimal parameters of the policy,𝑤 , to maximize the expected long-term payoff,

𝐽 (𝑤), by taking steps in the direction of the gradient of the objective, ∇𝑤 𝐽 (𝑤), which can be derived

using policy gradient theorem [83]:

∇𝑤 𝐽 (𝑤) = E[𝑄𝜋 (𝑥, 𝑎)∇𝑤 log𝜋𝑤 (𝑎, 𝑥)] .

Policy gradient methods often differ with each other on how they compute 𝑄𝜋
. For example,

REINFORCE [94], uses a simple unbiased Monte Carlo sampling to estimate the action-value

function. An alternative approach is to use function approximation to directly learn a parametric

approximation of the action-value function, 𝑄𝜋
𝜃
. This approximation is called the critic, and it leads

to a variety of actor-critic methods [82].

From single-agent RL to multi-agent RL. The simplest way to apply RL to multi-agent settings

is to let each agent learn independently using Q-learning methods or policy gradient algorithms

[22, 84]. However, since agents adjust their policies independently, the environment could become

non-stationary from each agent’s point of view [22, 54]. Hence, single-agent RL is not guaranteed

to find an optimal policy in a general multi-agent setting.

Centralized training, decentralized execution. To address the challenges of multi-agent learn-

ing, a popular approach is centralized training with decentralized execution (CTDE) [22, 23, 54]. In

this approach, agents are trained in a centralized manner, but they execute their learned policies

in a decentralized manner based on their local observations. A primary motivation behind this

approach is that, during centralized learning, actions taken by all agents are known. This makes

the environment stationary even as the policies change.

One way to implement CTDE is to train a centralized critic offline using a simulator. This method

is not practically appealing, because a simulator might not be available, or the system might have

time-varying dynamics. Another option is to implement a centralized controller that communicates

with all agents to train a centralized critic. This method is also not desirable for two main reasons.

First, it is not robust as the centralized controller becomes a single point of failure. Second, it is not

scalable as it requires all agents to communicate with a single controller, making the controller a

hotspot and causing long network delays. Moreover, the computational overhead of optimizing

policy for all agents in a single controller puts policy optimization on the critical path.

Decentralized training, decentralized execution. To meet the requirements of an adaptive

microsecond-scale scheduler, Malcolm adapts a decentralized approach inspired by recent advances

in decentralized machine learning techniques [46, 98]. In particular, the load-balancing policies

are trained separately in a distributed manner. First, learning an action-value function could be

expensive in terms of computational, communication, and storage costs. To avoid these costs, policy

optimizers directly learn a parametric value function, 𝑉 𝜋
𝜃
. Second, to train these parametric value

functions, policy optimizers use the common utility function as the potential function.

To allow each policy optimizer to locally calculate the utility function, they regularly broadcast

heartbeat messages. As we show in §7.4, these broadcasts could happen very infrequently as

load-balancing strategies are tolerant to stale load information. In each heartbeat message, nodes

include their load and the number of tasks they migrated or stole. Network delays or lost packets

could cause individually learned value functions to drift away from one another. To address this
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challenge, policy optimizers occasionally perform a consensus update: 𝜃𝑖 = (1/𝑁 )
∑

𝑗∈𝑁 𝜃 𝑗 . After

each consensus update, nodes reach an agreement on the global parametric value function.

The pseudocode of our proposed distributed policy-optimization algorithm is shown in Algorithm

(1). Note that the steps for updating actor and critic parameters are based on temporal-difference

learning [82]. Note further that policy gradient is guaranteed to converge to an NE for MPGs

[48]. In the next section, we discuss the implementation of our algorithm to make it feasible for

microsecond-scale deployment.

Algorithm 1: Distributed Policy Optimization

Input: 𝛼 critic learning rate, 𝛽 policies learning rate.

Randomly initialize 𝜃𝑖 ,𝑤𝑖 ; ∀𝑖 ∈ 𝑁 .

repeat ⊲ Forever loop
for all 𝑖 ∈ 𝑁 do ⊲ Decentralized execution

take action according to 𝜋𝑤𝑖
(𝑥𝑟 )

observe actions, 𝑎𝑟 , and new state, 𝑥𝑟+1
for all 𝑖 ∈ 𝑁 do ⊲ Decentralized training

compute global utility, 𝑢𝑟 ⊲ Equation (1)
𝛿𝑟 ← 𝑢𝑟 + 𝛾𝑉𝜃𝑖 (𝑥𝑟+1) −𝑉𝜃𝑖 (𝑥𝑟 )
𝜃𝑖 ← 𝜃𝑖 + 𝛼 · 𝛿𝑟 · ∇𝜃𝑖𝑉𝜃𝑖 ⊲ Critic
𝑤𝑖 ← 𝑤𝑖 + 𝛽 · 𝛿𝑟 · ∇𝑤𝑖

log𝜋𝑤𝑖
(𝑎𝑟 , 𝑥𝑟 ) ⊲ Actor

for all 𝑖 ∈ 𝑁 do ⊲ Decentralized consensus
if 𝑟 ≡ 0 (mod P) then

𝜃𝑖 ← (1/𝑁 )
∑

𝑗∈𝑁 𝜃 𝑗

6 IMPLEMENTATION
In this section, we describe the details of Malcolm implementation. We first discuss each component

of the Malcolm node (see Figure 4b). We then focus on the implementation details of updating

policy parameters and maintaining migration and work-stealing probabilities.

6.1 Malcolm Node
User-space networking. To provide low-latency node-to-node communication, Malcolm uses

eRPC [38], a general-purpose yet high-performance remote-procedure-call library. eRPC provides

exceptional networking performance on lossy networks, implements congestion control, and

handles packet losses. eRPC takes advantage of user-space networking stacks, such as DPDK [24]

and RDMA [4].

Intra-node task scheduler. Malcolm’s design allows recent dataplane operating systems and

server-level schedulers such as ZygOS [68] and Shinjuku [37] to be deployed for scheduling tasks

between worker threads. Malcolm is orthogonal to these works. However, for completeness, we

implement a default task scheduler based on FCFS policy. Our implementation uses a centralized

lock-free task queue to queue incoming tasks. Worker threads run in parallel on each core. They

dequeue tasks from the centralized queue, execute them, and prepare responses. Responses are

then sent back to clients by the node’s load manager thread.
Load manager. Each Malcolm node has a dedicated load manager thread for inter-node load

management and node-to-client communications. The load manager threads is responsible for

handling incoming tasks (from clients and other nodes) and sending responses back to clients
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Communication with local Malcolm nodes (nodes running on the same physical server) happens

through shared memory with parallel, lock-free inbox queues. To communicate with remote nodes

and clients, the load manager thread runs eRPC event loop.

On the arrival of each task, the load manager consults the migration policy to decide whether

to accept the task or migrate it to another node. For a rack with 𝑛 nodes, the migration policy is

represented by an array of 𝑛 elements with values that sum up to 1. For a given node 𝑖 the value on

the 𝑖th element of the array denotes the probability that node 𝑖 accepts the task, while the value of

each of the remaining 𝑛 − 1 elements corresponds to the probability that node 𝑖 sends the task to

each of the other nodes.

Sincemigration policy is probabilistic, consulting the policy involves generating a randomnumber

uniformly from 0 to 1. Given a random number, load manager uses the cumulative distribution

function (CDF) of the migration probabilities to identify the destination of the task (i.e., if it should

be accepted or if it should be migrated to another server). Based on measurements on our testbed

(see §7.1), this takes only tens of nanoseconds. If the task is accepted, the load manager pushes

the task on the centralized lock-free task queue. Otherwise, the load manager migrates the task to

the destination node. If the task queue is full, the accepted task fails and a response is sent to the

client for a possible retry. Once each task is completed, and a response is ready to be sent, the load

manager consults the work-stealing policy to decide whether to send a work-stealing request to

other servers. Consulting the work-stealing policy is similar to consulting the migration policy.

Heartbeat manger.Malcolm dedicates a heartbeat manager thread to update policy parameters

and maintain migration and work-stealing probabilities. The heartbeat manager also broadcasts

heartbeat messages to other nodes at fixed heartbeat intervals. Each heartbeat message contains

load information of the sender node in addition to the number of migrations and work-stealing

requests initiated by the node. At the end each heartbeat interval, the heartbeat manager updates the

migration and work-stealing probabilities based on policy parameters and latest load information.

During each heartbeat interval, the migration and work-stealing probabilities remain the same. The

length of the heartbeat period is a configurable parameter of Malcolm. As a default value, Malcolm

sets this parameter to 100 microsecond.

Each heartbeat interval provides a new data point (i.e., the old state, taken actions, and the

new state). Each Malcolm node collects data points to form a training dataset for updating policy

parameters (i.e., actor and critic parameters). Malcolm uses a common technique inmachine learning

to split the training dataset into mini-batches to improve the quality of function approximations

[29, 95]. Once a mini-batch of 𝐷 data points is ready, the heartbeat manager updates policy

parameters based on Algorithm (1). Between two updates, the policy parameters remain unchanged.

The size of the mini-batch is a configurable parameter of Malcolm. As a default value, this parameter

is set to 20.

The heartbeat manager is also responsible for running the consensus step according to Algorithm

(1). This is done regularly after every 𝑃 policy updates, which again, is a configurable parameter of

Malcolm. As a default value, this parameter is set to 100.

6.2 Policy Optimization
Updating policy parameters. To enable parameter updates at the granularity of a few hundreds

of microseconds, the execution time of Algorithm (1) has to be at most several microseconds.

Unfortunately, implementing the algorithm using off-the-shelf machine-learning frameworks falls

short of meeting this requirement. Libraries such as PyTorch [66] and Tensorflow [8] sacrifice

performance for programmability. Among other techniques, these libraries often use automatic

differentiation to compute gradient updates. This makes it easy for programmers to implement their
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Malcolm PyTroch

Number of nodes 16 32 64 16 32 64

Probability update 0.1 0.2 0.5 34 34 34

Parameter update 0.9 2 8 40 40 42

Table 1. Average execution time in microseconds.

models without worrying about gradient calculations. However, it comes at a great performance

cost.

To achieve high performance, in Malcolm, for the critic’s value function, we use linear function

approximation as 𝑉𝜃 (𝑥) = ⟨𝜙𝑐 (𝑥), 𝜃⟩, where 𝜙𝑐 is the critic’s vector-valued basis function and 𝜃 is

the critic’s parameter vector. We implement variety of basis functions. For our experiments, we use

a customized basis function that includes 𝑥𝑖 , 𝑥
2

𝑖 , 𝑥
3

𝑖 , 𝑥
4

𝑖 , and 𝑥𝑖𝑥 𝑗 terms for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. For this
customized basis function, the size of 𝜃 is 𝑂 (𝑛2).
For the actors’ policy, we use softmax policy with linear function approximation as 𝜋𝑤 (𝑥) =

𝜎 (⟨𝜙𝑎 (𝑥),𝑤⟩), where 𝜙𝑎 is the actors’ vector-valued basis function, 𝑤 is the actors’ parameter

matrix
6
, and 𝜎 is the softmax function. In our implementation, 𝜙𝑎 includes 𝑥𝑖 and log(rank of 𝑥𝑖 )

terms for 𝑖 ∈ {1, . . . , 𝑛}, where rank of 𝑥𝑖 is the index of 𝑥𝑖 in the sorted array of 𝑥 ’s. This allows

the actors to learn policies that are based on the ranking of other nodes with respect to their loads.

In a rack with 𝑛 nodes,𝑤 matrix has 𝑂 (𝑛2) elements.

We derive closed-form formulas for gradient updates for the critic’s and actors’ parameters. We

implement Algorithm (1) using these closed-form formulas in about 600 lines of C++ code. To

speed up vector-to-vector multiplications, our implementation uses x86 AVX2 instructions, which

are available in most datacenter servers. For comparison, we also implement Algorithm (1) using

PyTorch C++ front-end [3]. Table 1 compares the execution time of updating policy parameters

and calculating probabilities in Malcolm against the PyTorch implementation.

Caching gradients. Instead of calculating gradients for the entire mini-batch at once, we calculate

and cache incremental gradients as new data points becomes available. Once the last data points for

the mini-batch is available, we aggregate all cached incremental gradients to update the parameters

using AdamW optimization algorithm [53]. This way, the cost of parameter updates is amortized

over several smaller incremental gradient calculations.

7 EVALUATION
We use a diverse set of synthetic benchmarks to evaluate the performance of Malcolm on homo-

geneous and heterogeneous rack configurations. Furthermore, we evaluate the scalability and

adaptability of Malcolm.

7.1 Experimental Methodology
Experimental environment. For our experiments, we use a heterogeneous cluster of seven

servers. The cluster consists of two servers of type I, three servers of type II, one server of type

III, and one server of type IV. Each type I server has 1TB DDR4 main memory and an AMD EPYC

7H12 processor with 64 physical cores running at 2.6 GHz. Each type II server has 16GB DDR4

main memory and an AMD Ryzen Threadripper PRO 3945WX processor with 12 physical cores

running at 2.2 GHz. The type III server has 64GB DDR4 memory and an 8-core AMD EPYC 3201

6
We maintain two matrices for work-stealing and migration policies.
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Type Instances Processor Memory

I 2 AMD EPYC 7H12, 64 cores, 2.6GHz 1TB DDR4

II 3 AMD Ryzen 3945WX, 12 cores, 2.2 GHz 16GB DDR4

III 1 AMD EPYC 3201, 8 cores, 1.5 GHz 64GB DDR4

IV 1 AMD Ryzen 1950X, 16 cores, 3.6 GHz 32GB DDR3

Table 2. Testbed server types.

processor operating at 1.5 GHz. Finally, the type IV server has 32GB DDR3 memory and a 16-core

AMD Ryzen Threadripper 1950X Processor running at 3.6 GHz. Table 2 summarizes server types.

Type I and type IV servers are equipped with a dual-port 100Gb/s NVIDIAMCX556A ConnectX-5

VPI NIC. Type II and type III servers have a single-port 100Gb/s NVIDIA MCX555A ConnectX-5

VPI NIC. All NIC ports are configured to run in the InfiniBand mode. Servers are connected through

an NVIDIA SB7800 switch.

Load generation. To ensure accurate tail-latency measurements at heavy load, clients are imple-

mented as open-loop load generators [37, 49, 74, 102]. In all of the experiments, inter-arrival times

are exponentially distributed. Each client starts connections with all load managers. Client threads

send each generated task to a randomly selected load manager. Clients measure the end-to-end

latency of tasks upon receiving their responses. For failed tasks, the latency is set to the max

unsigned integer value.

Cluster configurations. We consider the following two cluster configurations.

• Homogeneous. In the homogeneous configuration, we deploy five nodes each with 10

worker threads on each type I server. The rest of servers run client threads.

• Heterogeneous. In the heterogeneous configuration, we deploy four 14-worker nodes on

one of the type I servers and four 3-worker nodes on the other one. We further deploy two

3-worker nodes on each type II server. The rest of cores are used to run client threads.

All servers run Ubuntu LTS 20.04 distribution with kernel version 5.15. For each node, each thread

(load manager, heartbeat manager, and workers) is pinned to a separate physical core.

Synthetic benchmarks. For synthetic benchmarks, we use the following four workloads.

• Exp(75) is an exponential distribution with mean equal to 75 µs. This benchmark represents

single-type workloads (e.g., single-query data storage services).

• Bimodal(80:50, 20:250) is a multimodal distribution where 80% of tasks take 50 µs, and the

remaining 20% take 500 µs. This benchmark represents multi-type workloads (e.g., get and
range queries to key-value storage systems).

• HyperExp-1(50:50, 50:500) is a hyperexponential distribution where 50% of service times are

sampled from Exp(50), and the remaining 50% are sampled from Exp(500). Hyperexponential

distributions are popular choices in performance evaluation studies to model highly variable

workloads [15, 72, 89]. Compared to Bimodal, this benchmark is more realistic as it replaces

constant service times with exponentially distributed service times with different means.

• HyperExp-2(75:50, 20:500, 5:5000) is a hyperexponential distribution where 75% of ser-

vice times follow Exp(50), 20% follow Exp(500), and 5% follow Exp(5000). This benchmark

represents workloads with more diverse types (e.g., get, range, and join queries to a database).

Alternative baselines. To evaluate Malcolm, we compare it against alternative load balancing

policies. In particular, we implement the following four policies.
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Fig. 5. 99th-percentile latency of synthetic workloads for homogeneous configuration.

• Random (RAND) Load managers accept all tasks that are sent to them as long as the

task queue is not full. Since clients select load managers uniformly at random, this policy

represents uniform distribution of tasks among nodes without any further load management

among nodes.

• Power-of-2 (Po2). For each new task, load managers randomly select two nodes and send the

task to the one with shorter queue length. Power-of-d-choices policy is a popular scheduling

mechanism, and variants of it have been widely used in practice [60, 64, 102]. Due to its use

of randomness, Po2 performs relatively well even when load managers have out-of-date load

information about other nodes [59]. Power-of-d-choices policy performs near optimally in

homogeneous settings, but it could perform very poorly in the presence of heterogeneity.

• Join-shortest-queue (JSQ). Load managers forward each new task to the node with the

shortest queue length. R2P2 [42] andHovercRaft [41] use a variant of JSQ, called join-bounded-

shortest-queue (JBSQ). In JBSQ, queues have bounded capacity, and if there is no empty slot

in any queue, the task waits in the node’s queue. One of the main drawbacks of JSQ and JBSQ

is that several load managers could select the same node for their tasks, a concept commonly

called herd behavior.
• Join-below-threshold (JBT). Load mangers forward each new task to a node whose queue

length is below a fixed threshold. If no such node exists, the task is forwarded to a randomly

selected node. Although centralized JBT is proved to be throughput optimal in heavy-traffic

regimes, the optimal threshold is a function of the load on nodes and approaches infinity as

load increases [78]. Moreover, similarly to JSQ, decentralized JBT suffers from herd behavior.

Load-propagation period. For Po2, JBT, and JSQ, each node always use its own up-to-date

queue length. To propagate load information, nodes periodically broadcast their load to each other.

Shorter periods lead to more up-to-date load information, and longer periods lead to out-of-date

load information. Between two load broadcasts, in Po2, JBT, and JSQ, nodes update their local load

information as they migrate tasks to each other. For instance, if node A migrates a task to node B

with queue length of L, then node A updates its local estimation of node B’s queue length to L + 1.

For our experiments, we set the length of the load-propagation period to 100 µs which is the same

as Malcolm’s heartbeat interval. Later in this section, we study the sensitivity of different policies

to the length of the load-propagation period.

7.2 Performance
We compare the performance of Malcolm against alternative load-balancing mechanisms in terms

of 99th-percentile latency. For this, we use our synthetic workloads and consider the homogeneous

and heterogeneous configurations.
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Fig. 6. 99th-percentile latency of synthetic workloads for heterogeneous configuration.

Homogeneous configuration.We first consider the homogeneous configuration. Figure 5 com-

pares Malcolm against other baselines in terms of the tail latency under different loads. For all

benchmarks, Malcolm performs as good as the best among the other baselines. The results show

that Malcolm can achieve low latency under up to maximum load of 93% for all benchmarks. For

example, for Exp, Malcolm maintains low tail latency for up to 1245 KTPS
7
. Note that the maximum

theoretical load for Exp is 1333.3 KTPS (= 100 × 13.3 KTPS).

Malcolm supports high task rates at lower tail latencies because it minimizes temporal load

imbalance among nodes. Po2 and JSQ perform well as they balance load near optimally in homoge-

neous settings. RAND fails to maintain a low tail latency at higher task rates as it solely minimizes

long-term load imbalance among nodes. JBT performs poorly as it uses a static threshold for load

balancing, which is not guaranteed to work well for different workloads at different loads.

Heterogeneous configuration. Next, we consider the heterogeneous configuration. Figure 6
shows tail latency of workloads under different baselines as a function of load. For the heterogeneous

configuration, Malcolm outperforms all the alternative baselines across all workloads. Compared to

other baselines, for lower loads, Malcolm improves tail latency by up to a factor of four. And for the

same tail latency, Malcolm achieves up to 60% more throughput compared to the best alternative

among other baselines. Malcolm can again reach a maximum load of up to 93% at low tail latency

for all workloads.

RAND perform very poorly for all the benchmarks. POWD also performs poorly, a behavior that

is expected in a heterogeneous rack as discussed in §2. JSQ and JBT suffer from herd behavior for

workloads with low average service time (Exp and Bimodal) as tasks arrive and depart at a higher

rate than load information is propagated. Performance degradation is less for workloads with

higher average service time because load information becomes more up-to-date for a fixed load-

propagation period. This affects Malcolm at a much lesser extent as nodes in Malcolm coordinate

their load-balancing strategies.

Figure 7 shows that average latencies for the homogeneous and the heterogeneous configurations

at 90% and 40% utilization, respectively. The average latencies follow the same pattern as tail

latencies. At high task rates, Malcolm maintains low average latency and 99th-percentile latency

for all workloads in both of the homogeneous and the heterogeneous configurations.

7.2.1 Comparison Against RackSched. We compare against RackSched [102] using simulations
8
. We

simulate the HyperExp-1 workload on the same homogeneous and heterogeneous configurations

outlined in §7.1. For each experiment, similarly to the real-deployment experiments, we generate

tasks in an open-loop manner. We report tail-latency results for the first 100K tasks that are created.

7
KTPS is an abbreviation for 1000 tasks per second.

8
We do not have access to a programmable switch.
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Fig. 7. Median latency under different baselines.
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Fig. 8. 99th-percentile latency of HyperExp-1 under c-Po2-PS (representing RackSched [102]) and c-FCFS.

This ensures that tail-latency results include latency of tasks with the same service-time distribution

as intended in the workload.

To represent RackSched, we implement a centralized power-of-2 scheduler with processor sharing

policy for intra-node scheduling (c-Po2-PS). The network delay is assumed to be zero and nodes use

load piggybacking. The preemption interval is set to 400 µs, 500 µs, and 750 µs. We also simulate

ideal cFCFS as a reference for the theoretically optimal policy. The results for c-Po2-PS and cFCFS

do not capture any network or system overheads.

Figure 8 shows the 99th-percentile latency of HyperExp-1 workloads under c-Po2-PS and c-FCFS

for the homogeneous and heterogeneous configurations. The first key observation is that the tail

latency under c-Po2-PS quickly goes up as the load increases for the heterogeneous configuration.

This is mainly because power-of-2-choices policy performs poorly in the presence of heterogeneity.

The second key observation is that PS hurts the tail latency of longer-running tasks, which constitute

50% of tasks in the HyperExp-1 workload. Decreasing the length of the preemption interval increases

the tail latency as longer-running tasks are preempted more often.

For preemption interval of 500 µs, c-Po2-PS keeps tail latency low until 297 KTPS and 156

KTPS for the homogeneous configuration and the heterogeneous configuration, respectively. This

is achieved under ideal settings without any network or system overheads. In comparison, as

shown in Figure 5c and Figure 6c, in a real-world deployment, Malcolm achieves 14% and 85%

higher throughput (up to 338 KTPS and 290 KTPS) compared to c-Po2-PS for the homogeneous

configuration and the heterogeneous configuration, respectively. Malcolm keeps tail latency low

for both configurations even at the heavy-traffic load by dynamically equalizing the load on all

nodes.

7.3 Scalability Analysis
We conduct two experiments to measure the scalability of Malcolm and its implementation. First,

we fix the number of worker threads per node to six and increase the number of nodes. Second, we
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Fig. 9. Scalability of Malcolm.
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Fig. 10. 99th-percentile latency of Exp workload for different load-propagation periods.

fix the number of nodes to 8 and increase the number of worker threads. For both experiments,

clients generate the synthetic Exp workload. We measure the 99th-percentile latency of tasks.

Figure 9a shows the results for the first experiment. As can be seen, the throughput of Malcolm

increases almost linearly as more nodes are added. For the Exp workload, with six worker threads,

the theoretical maximum throughput for 8, 12, 16, and 20 nodes is 640, 960, 1280, and 1600 KTPS,

respectively. For all configurations, the load can reach up to 93% at a tail latency that is only a few

multiples of the average service time. Figure 9b illustrates the result of the second experiment. As

can be seen again, the throughput of our user-space intra-node scheduler increases linearly up to

14 worker threads.

7.4 Adaptability
Sensitivity to load-propagation period. So far, in all experiments, we set the heartbeat interval

to 100 µs. In this section, we study the performance of Malcolm under different interval lengths.

We compare the results against Po2, JBT, and JSQ. We consider the homogeneous configuration

and the Exp workload at 80% load. Figure 10 shows the measured 99th-percentile latency achieved

by Malcolm, Po2, JBT, and JSQ for different heartbeat intervals. As can be seen, under Malcolm,

the tail latency remains low for heartbeat intervals as long as 1 ms. The main reason for this is

that the policy optimizers in Malcolm, in the process of learning cooperative load-balancing policy,

implicitly learn the system dynamics for any fixed heartbeat interval. As a result, the learned policy

automatically encodes load dynamics for different scheduling decisions at the given load-balancing

frequency. This, however, is not the case for Po2, JBT and JSQ, as they make sub-optimal scheduling

decisions with out-of-date load information as the length of the load-propagation period increases.

Sensitivity to fluctuations in load and service rateWe study the adaptability of Malcolm when

nodes’ arrival rate or service rate changes. We consider three types of nodes – fast nodes with eight

workers, medium nodes with six workers, and slow nodes with four workers. We deploy 12 nodes,

four of each type. Service times follow Exp(75). We conduct two experiments. First, we fix the load

at 90%. We start by equally dividing the traffic between all nodes. At time t, we change the shape of

the traffic by sending 90% of all tasks to fast nodes. Figure 11a shows the load in terms of expected
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Fig. 11. Sensitivity to changes in arrival and service rates.

wait time on different node types before and after the change. It can be seen that the load on fast

nodes increases. As fast nodes experience a higher load, they start migrating their tasks to the other

nodes. This leads to an increase in the load on the slow and medium nodes. However, the system

quickly adapts and learns to minimize load imbalance. Therefore, the load rapidly converges to its

value prior to the change at time t.

Second, we fix the load at 80% and slow down the fast nodes by 50%. Figure 11b shows the load

on different node types before and after the change. The load on fast nodes initially increases.

Similarly to the first experiment, fast nodes migrate their tasks, which leads to an increase in the

load on the slow and medium nodes. Malcolm quickly adapts and learns to minimize load imbalance

between nodes. Unlike the first experiment, the overall load on all servers increases as the service

rate on fast servers has increased after time t.

In both experiments, Malcolm learns to adapt to the changes in the system parameters. Addi-

tionally, Malcolm’s immediate response to drastic changes does not make the system unstable.

Note that average loads reflect the changes with some delay. This has three main reasons. First,

we use the exponential moving average to track node loads. It is commonly known that moving

averages reflect changes with some delay. The second reason is the delay associated with the nature

of queuing systems. It takes some time for the task queues to reflect the changes in arrival and

service rates. Finally, in Malcolm, the policy is updated in mini-batches at fixed intervals of 2 ms.

As a result, Malcolm responds to change in system parameters with some delay.

8 DISCUSSION
Communication overhead. Each Malcolm node broadcasts heartbeat messages every 𝑝 µs. In

each heartbeat message, nodes include their load and the number of tasks they have migrated

and stolen. Furthermore, every 𝐶 × 𝑝 µs, nodes broadcasting their value-function parameters. The

default 𝑝 and 𝐶 in Malcolm are 100, and 2000. Assuming an𝑚-byte representation of loads and

weights, for a rack with 𝑛 nodes, the one-way communication overhead is 𝑜 (𝑚𝑛/𝑝 +𝑚𝑛3/2𝐶𝑝)
in terms of bytes/s. Considering a rack with 32 nodes, 4-byte floating-point representation, and

256 byte packet sizes, the default Malcolm configuration leads to less than 1.5 MB/s bandwidth

consumption for each node.

Maintainability and hyper-parameter tuning.Malcolm nodes use a distributed, multi-agent

reinforcement learning algorithm to find load-balancing strategies. The learning algorithm has a

number of hyper-parameters. Different hyper-parameters impact performance differently. Accord-

ing to our experiments, the performance of Malcolm seems to be most impacted by the learning

rates of the actors and the critic. We tune these parameters by searching over a limited range

of values to maximize Malcolm’s performance. In real-world deployment, as system parameters

change, re-tuning of the hyper-parameters might become necessary.

Beyond single rack.Malcolm can be scaled beyond a single rack. In doing so, Malcolm can be

deployed in a hierarchical manner. Each rack plays the role of a node in the load-distribution
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game. And one node per rack plays the role of the load-balancer. Within each rack, nodes play the

distributed load-balancing game together. Across racks, load-balancer nodes play the load-balancing

game together. Design, analysis, and implantation of this hierarchical datacenter-scale scheduler

are promising directions for future work.

Deployment. Other than rack-scale architectures, Malcolm can be deployed on dense racks in

the traditional server-centric architectures. Moreover, Malcolm supports a variety of stateless

and stateful workloads, such as micro-services, server-less tasks, in-memory key-value store, and

high-throughput ML inferences. As shown in §7, Malcolm is able to achieve high throughput at

low latency even when there are different types of tasks. Therefore, we expect Malcolm to perform

well when each rack runs multiple different services.

Reconfiguration. If a node fails or a new node is added, other Malcolm nodes should learn a new

load balancing policy. We have shown in §7 that Malcolm nodes learn to stabilize the system in

less than a few hundreds of milliseconds. This fast convergence to the cooperative load-balancing

strategy allows Malcolm nodes to quickly adapt to configuration changes. Implementation of policy

reconfiguration is a future work.

9 RELATEDWORKS
Centralized load balancing. Theoretical aspects of centralized load balancing have been exten-

sively studied in the literature [32–34, 51, 60, 101]. Racksched [102] is a recent centralized rack-scale

scheduler designed for microsecond-scale workloads. RackSched implements power-of-d-choices.

Although simple, power-of-d-choices can perform very poorly in the presence of heterogeneity

[28, 100]. Malcolm is a decentralized rack-scale scheduler for microsecond-scale workloads that

performs well in homogeneous and heterogeneous systems.

Scheduling RPC requests. R2P2 [42] and Hovercraft [41] are two other recent works on load

balancing. These works use join-bounded-shortest-queue (JBSQ). JBSQ is a variant of JSQ in which

servers have bounded queues. JSQ and JBSQ use a poor load metric (i.e., length of task queue)

and suffer from herd behavior. They are also sensitive to load-propagation frequency. Malcolm

can be used to schedule RPC requests among servers in a rack. Malcolm implements an adaptive

load-balancing algorithm that coordinates scheduling decisions between multiple load balancers.

Malcolm performs well even for low load-propagation frequencies.

Decentralized load balancing. Distributed load balancing has also been widely studied [61, 64,

73, 102]. There have also been several attempts to incorporate game theory in distributed load

balancing frameworks [30, 31, 67, 80]. While these works perform well for long-running tasks, they

are not designed for microsecond-scale workloads. Malcolm is designed to balance the load in a

distributed manner for tasks with microsecond-scale service times.

10 CONCLUSION
In this paper, we presented Malcolm, a distributed rack-scale scheduler designed for microsecond-

scale services. We modeled interactions between nodes as a stochastic cooperative game. We

proposed a decentralized learning algorithm to find load-balancing policies in this game. We

empirically showed that our proposed algorithm is adaptive and scalable while outperforming state-

of-the art alternatives. In homogeneous settings, Malcolm performs as well as the best alternative

among other baselines. For lower loads, in heterogeneous settings, Malcolm improves tail latency by

up to a factor of four compared to other baselines. And for the same tail latency, Malcolm achieves

up to 60% more throughput compared to the best alternative among other baselines.
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