
Malcolm: Multi-agent Learning for Cooperative Load
Management at Rack Scale

Ali Hossein Abbasi Abyaneh
University of Waterloo

Waterloo, Canada
a36hosse@uwaterloo.ca

Maizi Liao
University of Waterloo

Waterloo, Canada
m7liao@uwaterloo.ca

Seyed Majid Zahedi
University of Waterloo

Waterloo, Canada
smzahedi@uwaterloo.ca

ABSTRACT
We consider the problem of balancing the load among servers in
dense racks for microsecond-scale workloads. To balance the load
in such settings, tens of millions of scheduling decisions have to
be made per second. Achieving this throughput while providing
microsecond-scale latency is extremely challenging. To address this
challenge, we design a fully decentralized load-balancing frame-
work, which allows servers to collectively balance the load in the
system. We model the interactions among servers as a cooperative
stochastic game. To find the game’s parametric Nash equilibrium,
we design and implement a decentralized algorithm based on multi-
agent-learning theory. We empirically show that our proposed
algorithm is adaptive and scalable while outperforming state-of-
the art alternatives. The full paper of this abstract can be found at
https://doi.org/10.1145/3570611.

ACM Reference Format:
Ali Hossein Abbasi Abyaneh, Maizi Liao, and Seyed Majid Zahedi. 2023.
Malcolm: Multi-agent Learning for Cooperative Load Management at Rack
Scale. In Abstract Proceedings of the 2023 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS
’23 Abstracts), June 19–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3578338.3593550

1 INTRODUCTION
To process user requests, popular datacenter applications such as
web search, e-commerce, and social networks rely on responses
from thousands of services. In such applications, end-to-end re-
sponse times are dictated by the slowest response [3]. To guarantee
fast responses, datacenter services are governed by strict service-
level objectives (SLOs). To meet these SLOs, it is imperative to
provide high throughput at microsecond-scale latency [1].

In recent years, there has been significant work on designing
microsecond-scale schedulers for multi-core servers (e.g., [2, 7]).
While these solutions achieve microsecond-scale tail latencies for
multi-core servers, they do not scale beyond a few tens of cores.
A typical high-density datacenter rack can comprise thousands of
interconnected, heterogeneous computing units. The increasing
rack density poses new challenges for designing rack-scale sched-
ulers. To address these challenges, the state of the art proposes a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’23 Abstracts, June 19–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0074-3/23/06.
https://doi.org/10.1145/3578338.3593550

two-layer hierarchical scheduler consisting of a high-level inter-
server scheduler and low-level intra-server schedulers [9]. Each
intra-server scheduler balances the load between cores in a server,
and the inter-server scheduler balances the load between servers.

To realize centralized rack-scale scheduling, the inter-server
scheduler is implemented in programmable ToR switches. The key
benefit of this approach is that the ToR switch can schedule tasks
at the line rate as it already is on the path of all tasks sent to the
rack. However, this approach has three main limitations. First, it
requires a programmable switch, which limits its deployment in
datacenters without programmable switches. Second, it imposes
additional functionality to the packet switching fabric, ultimately
leading to degraded network throughput [6]. Third, due to restricted
resources available on a programmable switch, power-of-2-choices
policy is used to approximate cFCFS, which can perform very poorly
in the presence of heterogeneity [8].

To address the limitations of the state of the art, we present
Malcolm, a heterogeneity-aware load-balancing framework that
allows servers in the rack to collectively balance the load between
themselves. We model the interactions among servers as a cooper-
ative stochastic game, and use robust, game-theoretic analysis to
study load-balancing strategies. Furthermore, to find the game’s
parametric Nash equilibrium, we design and implement a decen-
tralized multi-agent learning algorithm. In our proposed solution,
servers make scheduling decisions in tens of nanoseconds based on
(possibly out-of-date) estimates of the load on other servers. Our
implementation allows decentralized coordination among servers
through infrequent network communications.

2 MALCOLM ARCHITECTURE
Malcolm consists of heterogeneous servers interconnected by a
high-bandwidth, low-latency network fabric in a rack. Clients send
their tasks to servers at different rates. Each server runs one or
more Malcolm nodes. Malcolm uses a multi-layer approach with
intra-node and inter-node schedulers. Each Malcolm node consists
of a centralized task scheduler for intra-node scheduling and a load
manager for inter-node load balancing.

Centralized intra-node schedulers implement an FCFS scheduler
to schedule tasks among available worker threads within each
Malcolm node. Malcolm adopts a distributed inter-node scheduling
approach. Inter-node load managers cooperatively balance the load
among Malcolm nodes at per-task granularity. Each Malcolm node
also consists of a heartbeat manager, which dynamically learns
load-balancing strategies by interacting with other nodes. Nodes
regularly send heartbeat messages to each other.

Upon receiving a new task, the load manager decides whether
to accept the task or migrate it to another node. This decision is

https://doi.org/10.1145/3570611
https://doi.org/10.1145/3570611
https://doi.org/10.1145/3578338.3593550
https://doi.org/10.1145/3578338.3593550


SIGMETRICS ’23 Abstracts, June 19–23, 2023, Orlando, FL, USA Abyaneh et. al

made based on nodes’ (possibly out-of-date) loads. After process-
ing each task by a worker thread, the load manager decides if it
needs to steal tasks from other nodes. Work-stealing decisions on
task completions complement the migration decisions on task ar-
rivals. Malcolm uses game theory to model rack dynamics and load
balancing decisions.

3 DISTRIBUTED LOAD-BALANCING GAME
We present the distributed load-balancing game (DLB) used in
Malcolm as a framework to balance the load between nodes at rack
scale. The game consists of 𝑁 heterogeneous nodes, represented by
𝑁 agents. Different agents can receive and process tasks at different
rates. Upon receiving a task, each agent decides whether to keep
the task or migrate it to another agent. Upon completing a task,
each agent decides if it needs to steal a task from another agent.
The state of the game evolves over time as scheduling decisions
collectively shape the load on different nodes. The goal of each
agent is to minimize the total load imbalance in the rack while
migrating and stealing the minimum number of tasks.

We model the DLB game as a team Markov game. To allow
for practical solutions, we focus on parametric strategies. Agents
optimize their parametric policies to maximize their expected long-
term payoff. A Nash equilibrium (NE) is a strategy profile in which
all agents simultaneously play best responses against each others’
strategies. In general, the problem of finding an NE is computation-
ally expensive. Fortunately, an NE could be computed in polynomial
time for the DLB game. This is because the DLB game is a Markov
potential game (MPG). And for an MPG, an NE can be obtained in
polynomial time by solving a Markov decision process [5].

To find a parametric NE of the DLB game, we propose a multi-
agent-learning algorithm inspired by recent advances in decen-
tralized machine learning techniques [4]. The algorithm is model
free and does not require any prior knowledge of system dynam-
ics. Moreover, the algorithm is guaranteed to find parametric NE
strategies of the DLB game in a distributed manner and can be
implemented and deployed in practice.

4 IMPLEMENTATION
To provide low-latency node-to-node communication, Malcolm
uses a user-space networking stack. For intra-node task sched-
uling, Malcolm implements the FCFS policy by using a central-
ized lock-free task queue that is shared by all worker threads.
Malcolm’s design allows recent dataplane operating systems and
server-level schedulers such as ZygOS [7] to be deployed for sched-
uling tasks between worker threads. For inter-node load balancing
and node-to-client communications, Malcolm node has a dedicated
load-manager thread. The load-manager thread is responsible for
handling incoming tasks and sending responses back to clients.

On the arrival of each task, the load manager consults the mi-
gration policy to decide whether to accept the task or migrate it
to another node. Since migration policy is probabilistic, consulting
the policy involves generating a random number uniformly from 0
to 1. Based on measurements on our testbed, this takes only tens
of nanoseconds. Once each task is completed, the load manager

consults the work-stealing policy to decide whether to send a work-
stealing request to other servers. Consulting the work-stealing
policy is similar to consulting the migration policy.

Malcolm dedicates a heartbeat-manager thread to update policy
parameters and maintain migration and work-stealing probabilities.
The heartbeat manager also broadcasts heartbeat messages to other
nodes at fixed heartbeat intervals. Each heartbeat interval provides
a new data point (i.e., the old state, taken actions, and the new state).
Each Malcolm node collects data points to form a training dataset
for updating policy parameters (i.e., actor and critic parameters). To
handle microsecond-scale workloads, the execution time of a pol-
icy update has to be at most several microseconds. Unfortunately,
implementing the algorithm using off-the-shelf machine-learning
frameworks, such as PyTorch, falls short of meeting this require-
ment. To achieve high performance, in Malcolm, we use linear
function approximation and derive closed-form formulas for all
parameter updates. We implement these closed-form formulas in
about 600 lines of C++ code. To speed up vector-to-vector multi-
plications, our implementation uses x86 AVX2 instructions, which
are available in most datacenter servers. Our implementation of-
fers up to 300× speedup in execution time compared to a PyTorch
implementation. The code of Malcolm is open-source and available
at https://github.com/uwaterloo-mast/malcolm.

5 EVALUATION
We use a diverse set of synthetic benchmarks to evaluate the per-
formance, scalability, and adaptivity of Malcolm on homogeneous
and heterogeneous rack configurations. We compared Malcolm’s
performance to other state-of-the-art baselines. In homogeneous
settings, Malcolm performs as well as the best alternative among
other baselines. In heterogeneous settings, compared to other base-
lines, for lower loads, Malcolm improves tail latency by up to a
factor of four. And for the same tail latency, Malcolm achieves up
to 60% more throughput compared to the best alternative among
other baselines.

REFERENCES
[1] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. 2017.

Attack of the Killer Microseconds. Communications of the ACM (CACM) 60, 4 (mar
2017), 48–54.

[2] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. 2016. The IX operating system: Com-
bining low latency, high throughput, and efficiency in a protected dataplane. ACM
Transactions on Computer Systems (TOCS) 34, 4 (2016), 1–39.

[3] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Communications of
the ACM (CACM) 56, 2 (2013), 74–80.

[4] Donghwan Lee, Niao He, Parameswaran Kamalaruban, and Volkan Cevher. 2020.
Optimization for reinforcement learning: From a single agent to cooperative agents.
IEEE Signal Processing Magazine 37, 3 (2020), 123–135.

[5] Sergio Valcarcel Macua, Javier Zazo, and Santiago Zazo. 2018. Learning Para-
metric Closed-Loop Policies for Markov Potential Games. In Proceedings of the
International Conference on Learning Representations (ICLR).

[6] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker. 2019.
Thoughts on Load Distribution and the Role of Programmable Switches. ACM
SIGCOMM Computer Communication Review 49, 1 (2019), 18–23.

[7] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
low tail latency for microsecond-scale networked tasks. In Proceedings of the 26th
Symposium on Operating Systems Principles, (SOSP). 325–341.

[8] Alexander L Stolyar. 2015. Pull-based load distribution in large-scale heteroge-
neous service systems. Queueing Systems 80, 4 (2015), 341–361.

[9] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion Stoica,
and Xin Jin. 2020. RackSched: A microsecond-scale scheduler for rack-scale
computers. In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 1225–1240.

https://github.com/uwaterloo-mast/malcolm
https://github.com/uwaterloo-mast/malcolm

	Abstract
	1 Introduction
	2 Malcolm Architecture
	3 Distributed Load-balancing Game
	4 Implementation
	5 Evaluation
	References

