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Computational sprinting is a class of mechanisms that boost performance but dissipate additional power.
We describe a sprinting architecture in which many, independent chip multiprocessors share a power supply
and sprints are constrained by the chips’ thermal limits and the rack’s power limits. Moreover, we present
the computational sprinting game, a multi-agent perspective on managing sprints. Strategic agents decide
whether to sprint based on application phases and system conditions. The game produces an equilibrium that
improves task throughput for data analytics workloads by 4–6× over prior greedy heuristics and performs
within 90% of an upper bound on throughput from a globally optimized policy.
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1. INTRODUCTION

Modern datacenters oversubscribe their power supplies to enhance performance and
efficiency. A conservative datacenter that deploys servers according to their expected
power draw will under-utilize provisioned power, operate power supplies at sub-optimal
loads, and forgo opportunities for higher performance. In contrast, efficient datacen-
ters deploy more servers than it can power fully and rely on varying computational
load across servers to modulate demand for power [Fan et al. 2007]. Such a strategy
requires responsive mechanisms for delivering power to the computation that needs it
most.

Computational sprinting is a class of mechanisms that supplies additional power
for short durations to enhance performance. In chip multiprocessors, for example,
sprints activate additional cores and boost their voltage and frequency. Although orig-
inally proposed for mobile systems [Raghavan et al. 2012, 2013a], sprinting has found
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numerous applications in datacenter systems. It can accelerate computation for com-
plex tasks or accommodate transient activity spikes [Zheng and Wang 2015; Skach
et al. 2015].

The system architecture determines sprint duration and frequency. Sprinting mul-
tiprocessors generate extra heat, absorbed by thermal packages and phase change
materials [Raghavan et al. 2012; Skach et al. 2015], and require time to release this
heat between sprints. At scale, uncoordinated multiprocessors that sprint simultane-
ously could overwhelm a rack or cluster’s power supply. Uninterruptible power sup-
plies reduce the risk of tripping circuit breakers and triggering power emergencies. But
the system requires time to recharge batteries between sprints. Given these physical
constraints in chip multiprocessors and the datacenter rack, sprinters require recovery
time. Thus, sprinting mechanisms couple performance opportunities with management
constraints.

We face fundamental management questions when servers sprint independently but
share a power supply: Which processors should sprint and when should they sprint?
Each processor’s workload derives extra performance from sprinting that depends on
its computational phase. Ideally, sprinters would be the processors that benefit most
from boosted capability at any given time. Moreover, the number of sprinters would be
small enough to avoid power emergencies, which constrain future sprints. Policies that
achieve these goals are prerequisites for sprinting to full advantage.

We present the computational sprinting game to manage a collection of sprinters.
The sprinting architecture, which defines the sprinting mechanism as well as power
and cooling constraints, determines rules of the game. A strategic agent, representing
a multiprocessor and its workload, independently decides whether to sprint at the
beginning of an epoch. The agent anticipates her action’s outcomes, knowing that the
chip must cool before sprinting again. Moreover, he or she analyzes system dynamics,
accounting for competitors’ decisions and risk of power emergencies.

We find the equilibrium in the computational sprinting game, which permits dis-
tributed management. In an equilibrium, no agent can benefit by deviating from his
or her optimal strategy. The datacenter relies on agents’ incentives to decentralize
management as each agent self-enforces his or her part of the sprinting policy. Decen-
tralized equilibria allow datacenters to avoid high communication costs and unwieldy
enforcement mechanisms in centralized management. Moreover, equilibria outperform
prior heuristics. In summary, we present the following contributions:

—Sprinting Architecture (Section 2). We present a system of independent sprinters
that share power—a rack of chip multiprocessors. Sprinting multiprocessors activate
additional cores and increase clock rates. Sprints are constrained by chips’ thermal
limits and rack power limits.

—Sprinting Game (Section 3). We define a repeated game in which strategic agents
sprint based on application phases and system conditions. The game divides time
into epochs and agents play repeatedly. Actions in the present affect performance
and the ability to sprint in the future.

—Dynamics and Strategies (Section 4). We design agents who sprint when the
expected utility from doing so exceeds a threshold. We devise an algorithm that
optimizes each agent’s threshold strategy. The strategies produce an equilibrium in
which no agent benefits by deviating from her optimal threshold.

—Performance (Sections 5 and 6). We evaluate the game for Spark-based datacen-
ter applications, which exhibit diversity in phase behavior and utility from sprinting.
The game increases task throughput by 4–6× when compared to prior heuristics in
which agents sprint greedily.
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Fig. 1. Normalized speedup, power, and temperature for varied Spark benchmarks when sprinting. Nominal
operation supplies three cores at 1.2GHz. Sprint supplies 12 cores at 2.7GHz.

2. THE SPRINTING ARCHITECTURE

We present a sprinting architecture for chip multiprocessors in datacenters. Multipro-
cessors sprint by activating additional cores and increasing their voltage and frequency.
Datacenter applications, with their abundant task parallelism, scale across additional
cores as they become available. We focus on applications built atop the Spark frame-
work, which extends Hadoop for memory caching [Zaharia et al. 2010]. In Figure 1,
Spark benchmarks perform 2–7× better on a sprinting multiprocessor but dissipate
1.8× the power. Power produces heat.

Sprinters require infrastructure to manage heat and power. First, the chip mul-
tiprocessor’s thermal package and heat sink must absorb surplus heat during a
sprint [Raghavan et al. 2012; Shao et al. 2014]. Second, the datacenter rack must
employ batteries to guard against power emergencies caused by a surplus of sprinters
on a shared power supply. Third, the system must implement management policies
that determine which chips sprint.

2.1. Chip Multiprocessor Support

A chip multiprocessor’s maximum power level depends on its thermal package and heat
sink. Given conventional heat sinks, thermal constraints are the primary determinant
of multiprocessor performance, throttling throughput and overriding constraints from
power delivery and off-chip bandwidth [Li et al. 2006]. More expensive heat sinks
employ phase change materials (PCMs), which increase thermal capacitance, to absorb
and dissipate excess heat [Raghavan et al. 2013a; Shao et al. 2014]. The quality of the
thermal package, as measured by its thermal capacitance and conductance, determines
parameters of the sprinting game.

The choice of thermal package dictates the maximum duration of a sprint [Shao
et al. 2014]. Whereas water, air, and foam enable sprint durations on the order of
seconds [Raghavan et al. 2013a], PCMs enable durations on the order of minutes if
not hours [Raghavan et al. 2013b; Volle et al. 2010; Shao et al. 2014]. Our sprint
architecture employs paraffin wax, which is attractive for its high thermal capacitance
and tunable melting point when blended with polyolefins [Raghavan 2013]. We estimate
a chip with paraffin wax can sprint with durations on the order of 150s.

After a sprint, the thermal package must release its heat before the chip can sprint
again. The average cooling duration, denoted as �tcool, is the time required before the
PCM returns to ambient temperature. The rate at which the PCM dissipates heat
depends on its melting point and the thermal resistance between the material and the
ambient [Raghavan 2013]. Both factors can be engineered and, with paraffin wax, we
estimate a cooling duration on the order of 300s, twice the sprint’s duration.
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Fig. 2. Typical trip curve of a circuit breaker [Fu et al. 2011].

Different types of workloads may demand different sprint durations. Sprints for
online queries requires tens of milliseconds or less [Hsu et al. 2015]. Sprints for parallel
workloads requires seconds or more [Raghavan et al. 2013a], and those for warehouse-
scale thermal management require support for hours [Skach et al. 2015]. In this
article, we study data analytics applications that would prefer to sprint indefinitely.
In this setting, the primary determinant of a sprint’s duration is the thermal package.

2.2. Datacenter Support

At scale, servers within the same rack share a power supply. Chip multiprocessors draw
current from a shared power distribution unit (PDU) that is connected to a branch
circuit and protected by a circuit breaker (CB). Datacenter architects deploy servers to
oversubscribe branch circuits for efficiency. Oversubscription utilizes a larger fraction
of the facility’s provisioned power for computation. But it relies on power capping and
varied computational load across servers to avoid tripping circuit breakers or violating
contracts with utility providers [Fan et al. 2007; Fu et al. 2011]. Although sprints boost
computation for complex queries and during peak loads [Hsu et al. 2015; Zheng and
Wang 2015], the risk of a power emergency increases with the number of sprinters in
a power capped datacenter.

Circuit Breakers and Trip Curves. Figure 2 presents the circuit breaker’s trip
curve, which specifies how sprint duration and power combine to determine whether
the breaker trips. The trip time corresponds to the sprint’s duration. Longer sprints
increase the probability of tripping the breaker. The current draw corresponds to the
number of simultaneous sprints as each sprinter contributes to the load above rated
current. Higher currents increase the probability of tripping the breaker. Thus, the
tolerance for sprints depends on their duration and power. The breaker dictates the
number of sprinters supported by the datacenter rack.

Figure 3 associates the number of sprinters to the tripping probability for a given
trip time. Let nS denote the number of sprinters, and let Ptrip denote the probability of
tripping the breaker. The breaker occupies one of the following regions:
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Fig. 3. Probability of tripping the rack’s circuit breaker.

—Non-Tripped. Ptrip is zero when nS < Nmin
—Non-Deterministic. Ptrip is a non-decreasing function of nS when Nmin ≤ nS < Nmax
—Tripped. Ptrip is one when nS ≥ Nmax

Note that Nmin and Nmax depend on the breaker’s trip curve and the application’s
demand for power when sprinting.

Suppose a sprinter dissipates twice as much power as a non-sprinter, as in Spark
applications on chip multiprocessors. We find that the breaker does not trip when less
than 25% of the chips sprint and definitely trips when more than 75% of the chips
sprint. In other words, Nmin = 0.25N and Nmax = 0.75N. We consider UL489 circuit
breakers from Rockwell Automation, which can be overloaded to 125–175% of rated
current for a 150s sprint [Zheng and Wang 2015; Wang et al. 2012; Allen-Bradley 2016].

Uninterruptible Power Supplies. When the breaker trips and resets, power dis-
tribution switches from the branch circuit to the uninterruptible power supply (UPS)
[Govindan et al. 2011, 2012]. The rack augments power delivery with batteries to com-
plete sprints in progress. Lead acid batteries support discharge times of 5–120min,
long enough to support the duration of a sprint. After completing sprints and resetting
the breaker, servers resume computation on the branch circuit.

However, servers are forbidden from sprinting again until UPS batteries have been
recharged. Sprints before recovery would compromise server availability and increase
vulnerability to power emergencies. Moreover, frequent discharges without recharges
would shorten battery life. The average recovery duration, denoted by �trecover, depends
on the UPS discharge depth and recharging time. A battery can be recharged to 85%
capacity in 8–10× the discharge time [Ametek 2016], which corresponds to 8–10× the
sprint duration.

Servers are permitted to sprint again after recharge and recovery. However, if every
chip multiprocessor in the rack were to sprint simultaneously and immediately after
recovery, they would trigger another power emergency. The rack must stagger the
distribution of sprinting permissions to avoid dI/dt problems.

2.3. Power Management

Figure 4 illustrates the management framework for a rack of sprinting chip multi-
processors. The framework supports policies that pursue the performance of sprints
while avoiding system instability. Unmanaged and excessive sprints may trip break-
ers, trigger emergencies, and degrade performance at scale. The framework achieves
its objectives with strategic agents and coarse-grained coordination.

Users and Agents. Each user deploys three runtime components: executor, agent,
and predictor. Executors provide clean abstractions, encapsulating applications that
could employ different software frameworks [Hindman et al. 2011]. The executor sup-
ports task-parallel computation by dividing an application into tasks, constructing a
task dependence graph, and scheduling tasks dynamically based on available resources.
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Fig. 4. Users deploy task executors and agents that decide when to sprint. Agents send performance profiles
to a coordinator and receives optimized sprinting strategies.

Task scheduling is particularly important as it increases parallelism when sprinting
powers-on cores and tolerates faults when cooling and recovery powers-off cores.

Agents are strategic and selfish entities that act on users’ behalf. They decide whether
to sprint by continuously analyzing fine-grained application phases. Because sprints
are followed by cooling and recovery, an agent sprints judiciously and targets applica-
tion phases that benefit most from extra capability. Agents use predictors that estimate
utility from sprinting based on software profiles and hardware counters. Each agent
represents a user and her application on a chip multiprocessor.

Coordination. The coordinator collects profiles from all agents and assigns tailored
sprinting strategies to each agent. The coordinator interfaces with strategic agents
who may attempt to manipulate system outcomes by misreporting profiles or deviating
from assigned strategies. Fortunately, our game-theoretic mechanism guards against
such behavior.

First, agents will truthfully report their performance profiles. In large systems, game
theory provides incentive compatibility, which means that agents cannot improve their
utility by misreporting their preferences. The coordinator assigned a tailored strategy
to each agent based on system conditions. An agent who misreports his or her profile
has little influence on conditions in a large system. Not only does he or she fail to
affect others, an agent who misreports suffers degraded performance as the coordinator
assigns him or her a poorly suited strategy based on inaccurate profiles.

Second, agents will implement their assigned strategies because the coordinator op-
timizes those strategies to produce an equilibrium. In equilibrium, every agent imple-
ments his or her strategy and no agent benefits when deviating from it. An equilibrium
has compelling implications for management overheads. If each agent knows that ev-
ery other agent is playing his or her assigned strategy, then he or she will do the same
without further communication with the coordinator. Global communication between
agents and the coordinator is infrequent and occurs only when system profiles change.
Local communication between each user’s runtime components (i.e., executor, agent,
predictor) is frequent but employs inexpensive, inter-process mechanisms. In effect, an
equilibrium permits the distributed enforcement of sprinting policies.

In contrast, the centralized enforcement of coordinated policies poses several chal-
lenges. First, it requires frequent and global communication as each agent decides
whether to sprint by querying the coordinator at the start of each epoch. The length
of an epoch is short and corresponds to sprint duration. Moreover, without equilibria,
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agents with kernel privileges could ignore prescribed policies, sprint at will, and cause
power emergencies that harm all agents. Avoiding such outcomes in a multi-tenant
datacenter would require a distributed runtime. The runtime, not the agent, would
have kernel privileges for power management, introducing an abstraction layer and
overheads.

3. THE SPRINTING GAME

We present a computational sprinting game that governs demands for power and
manages system dynamics. We design a dynamic game that divides time into epochs
and asks agents to play repeatedly. Agents represent chip multiprocessors that share
a power supply. Each agent chooses to sprint independently, pursuing benefits in the
current epoch and estimating repercussions in future epochs. Multiple agents can
sprint simultaneously, but they risk tripping the circuit breaker and triggering power
emergencies that harm global performance.

3.1. Game Formulation

The game considers N agents who run task-parallel applications on N chip multipro-
cessors. Each agent computes in either normal or sprinting mode. The normal mode
uses a fraction of the cores at low frequency, whereas sprints use all cores at high
frequency. Sprints rely on the executor to increase task parallelism and exploit extra
cores. In this article, for example, we consider 3 cores at 1.2GHz in normal mode and
12 cores at 2.7GHz in a sprint.

The repeated game divides time into epochs. The duration of an epoch corresponds
to the duration of a safe sprint, which neither overheats the chip nor trips the circuit
breaker. An agent’s utility from a sprint varies across epochs according to his or her
application’s phases. Agents apply a discount factor δ < 1 to future utilities as, all else
being equal, they prefer performance sooner rather than later.

3.2. Agent States

At any given time, an agent occupies one of three states—active (A), chip cooling (C),
and rack recovery (R)—according to his or her actions and those of others in the rack.
An agent’s state describes whether he or she can sprint and describes how cooling and
recovery impose constraints on his or her actions.

Active (A) – Agent can safely sprint. By default, an agent in an active state
operates his or her chip in normal mode, with a few processor cores running at low
frequency. The agent has an option to sprint, which deploys additional cores and raises
the frequency. He or she decides whether to sprint by comparing a sprint’s benefits in
the current epoch against benefits from deferring the sprint to a future epoch. If the
agent sprints, then his or her state in the next epoch is cooling.

Chip Cooling (C) – Agent cannot sprint. After a sprint, an agent remains in the
cooling state until excess heat has been dissipated. Cooling requires a number of epochs
�tcool, which depends on the chip’s thermal conductance and resistance, the heat sink
and cooling technology, and the ambient temperature. An agent in the cooling state
stays in this state with probability pc and returns to the active state with probability
1 − pc. Probability pc is defined so 1/(1 − pc) = �tcool.

Rack Recovery (R) – Agent cannot sprint. When multiple chips sprint simulta-
neously, their total current draw may trip the rack’s circuit breaker, trigger a power
emergency, and require supplemental current from batteries. After an emergency, all
agents remain in the recovery state until batteries recharge. Recovery requires a num-
ber of epochs �trecover, which depends on the rack’s power supply and its battery capac-
ity. Agents in the recovery state stay in this state with probability pr and return to the
active state with probability 1 − pr. Probability pr is defined so 1/(1 − pr) = �trecover.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 12, Publication date: January 2017.



12:8 S. M. Zahedi et al.

In summary, the states describe and enforce system constraints. A chip that sprints
must cool before sprinting again. A rack that supports sprints with batteries must
recharge those batteries before doing so again. Agents in cooling or recovery states are
constrained, but those in active states will sprint strategically.

3.3. Agent Actions and Strategies

Agents have two possible actions—sprint or do not sprint. Strategic agents decide be-
tween these actions to maximize their utilities. Each agent’s sprinting strategy depends
on various factors, including

—agent’s state and her utility from sprinting,
—agent’s history of sprinting,
—other agents’ states,
—other agents’ utilities, strategies, and histories.

Sprinting strategies determine the game’s performance. Agents who greedily sprint
at every opportunity produce several sub-optimal outcomes. First, chips and racks
would spend many epochs in cooling and recovery states, respectively, degrading system
throughput. Moreover, agents who sprint at the first opportunity constrain themselves
in future epochs, during which sprints may be even more beneficial.

In contrast, sophisticated strategies improve agent utility and system performance.
Strategic agents sprint during the epochs that benefit most from additional cores and
higher frequencies. Moreover, they consider other agents’ strategies because the prob-
ability of triggering a power emergency and entering the recovery state increases with
the number of sprinters. We analyze the game’s governing dynamics to optimize each
agent’s strategy and maximize his or her performance.

4. GAME DYNAMICS AND AGENT STRATEGIES

A comprehensive approach to optimizing strategies considers each agent—his or her
state, utility, and history—to determine whether sprinting maximizes his or her perfor-
mance given his or her competitor’s strategies and system state. In practice, however,
this optimization does not scale to hundreds or thousands of agents.

For tractability, we analyze the population of agents by defining key probability
distributions on population behavior. This approach has several dimensions. First, we
reason about population dynamics in expectation and consider an “average” agent.
Second, we optimize each agent’s strategy in response to the population rather than
individual competitors. Third, we find an equilibrium in which no agent can perform
better by deviating from his or her her optimal strategy.

4.1. Mean-Field Equilibrium

The mean-field equilibrium (MFE), a concept drawn from economic game theory, is
an approximation method used when analyzing individual agents in a large system is
intractable [Adlakha and Johari 2013; Adlakha et al. 2013, 2010; Iyer et al. 2011], and
[Gummadi et al. 2012]. With the MFE, we can characterize expected behavior for a
population of agents and then optimize each agent’s strategy against that expectation.
We can reason about the population and neglect individual agents because any one
agent has little impact on overall behavior in a large system.

The mean-field analysis for the sprinting game focuses on the sprint distribution,
which characterizes the number of agents who sprint when the rack is not in the
recovery state. In equilibrium, the sprint distribution is stationary and does not change
across epochs. In any given epoch, some agents complete a sprint and enter the cooling
state while others leave the cooling state and begin a sprint. Yet the number of agents
who sprint is unchanged in expectation.
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The stationary distribution for the number of sprinters translates into stationary
distributions for the rack’s current draw and the probability of tripping the circuit
breaker—see Figure 3. Given the rack’s tripping probability, which concisely describes
population dynamics, an agent can formulate his or her best response and optimize his
or her sprinting strategy to maximize performance.

We find an equilibrium by characterizing a population’s statistical distributions,
optimizing agents’ responses, and simulating game play to update the population. We
specify an initial value for the probability of tripping the breaker and iterate as follows.

—Optimize Sprint Strategy (Section 4.2). Given the probability of tripping the
breaker Ptrip, each agent optimizes his or her sprinting strategy to maximize his or
her performance. He or she sprints if performance gains from doing so exceed some
threshold. Optimizing his or her strategy means setting his or her threshold uT .

—Characterize Sprint Distribution (Section 4.3). Given that each agent sprints
according to his or her threshold uT , the game characterizes population behavior. It
estimates the expected number of sprinters nS, calculates their demand for power,
and updates the probability of tripping the breaker P ′

trip.
—Check for Equilibrium. The game is in equilibrium if P ′

trip = Ptrip. Otherwise,
iterate with the new probability of tripping the breaker.

4.2. Optimizing the Sprint Strategy

An agent considers three factors when optimizing his or her sprinting strategy: the
probability of tripping the circuit breaker Ptrip, his or her utility from sprinting u, and
his or her state. An agent occupies the active (A), cooling (C), or recovery (R) state.
To maximize expected value and decide whether to sprint, each agent optimizes the
following Bellman equation:

V (u, A) = max{VS(u, A), V¬S(u, A)}. (1)

The Bellman equation quantifies value when an agent acts optimally in every epoch.
VS and V¬S are the expected values from sprinting and not sprinting, respectively. If
VS(u, A) > V¬S(u, A), then sprinting is optimal. The game solves the Bellman equation
and identifies actions that maximize value with dynamic programming.

Value in Active State. Sprinting defines a repeated game in which an agent acts
in the current epoch and encounters consequences of that action in future epochs.
Accordingly, the Bellman equation is recursive and expresses an action’s value in terms
of benefits in the current epoch plus the discounted value from future epochs.

Suppose an agent in the active state decides to sprint. Her value from sprinting is her
immediate utility u plus her discounted utility from future epochs. When she sprints,
her future utility is calculated for the chip cooling state V (C) or calculated for the rack
recovery state V (R) when her sprint trips the circuit breaker,

VS(u, A) = u + δ
[
V (C)(1 − Ptrip) + V (R)Ptrip

]
. (2)

On the other hand, an agent who does not sprint will remain in the active state unless
other sprinting agents trip the circuit breaker and trigger a power emergency that
requires recovery,

V¬S(u, A) = δ
[
V (A)(1 − Ptrip) + V (R)Ptrip

]
. (3)

We use V (A) to denote an agent’s expected value from being in the active state, which
depends on an agent’s utility from sprinting. The game profiles an application and its
time-varying computational phases to obtain a probability density function f (u), which
characterizes how often an agent derives utility u from sprinting. With this density,
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the game estimates expected value,

V (A) =
∫

V (u, A) f (u)du. (4)

Value in Cooling and Recovery States. An active agent transitions into cooling
and recovery states when he or she and/or others sprint. Because agents cannot sprint
while cooling or recovering, their expected values from these states do not depend on
their utility from sprinting,

V (C) = δ
[
V (C)pc + V (A)(1 − pc)

] (
1 − Ptrip

)
+ δV (R)Ptrip, (5)

V (R) = δ
[
V (R)pr + V (A)(1 − pr)

]
. (6)

Parameters pc and pr are technology-specific probabilities of an agent in cooling and
recovery states staying in those states. An agent in cooling will remain in this state
with probability pc and become active with probability 1− pc, assuming the rack avoids
a power emergency. If the circuit breaker trips, then an agent enters recovery. An agent
remains in recovery with probability pr and becomes active with probability 1− pr. The
game tunes these parameters to reflect the time required for chip cooling after a sprint
and for rack recovery after a power emergency—see Section 2.

Threshold Strategy. An agent should sprint if his or her utility from doing so
is greater than not. But when is this the case? Equation (8), which follows from
Equations (2) and (3), states that an agent should sprint if his or her utility u is
greater than his or her optimal threshold for sprinting uT ,

VS(u, A) > V¬S(u, A), (7)

u > δ
(
V (A) − V (C)

)
(1 − Ptrip)︸ ︷︷ ︸

uT

. (8)

Thus, an agent uses threshold uT to test a sprint’s utility. If sprinting improves perfor-
mance by more than the threshold, then an agent should sprint. Applying this strategy
in every epoch maximizes expected value across time in the repeated game.

4.3. Characterizing the Sprint Distribution

Given threshold uT for his or her strategy, an agent uses his or her density function on
utility to estimate the probability that he or she sprints, ps, in a given epoch,

ps =
∫ umax

uT

f (u)du. (9)

The probabilities of sprinting (ps) and cooling (pc) define a Markov chain that de-
scribes each agent’s behavior, see Figure 5, which assumes that the agent is not in
recovery. As agents play their strategies, the Markov chain converges to a stationary
distribution in which each agent is active with probability pA. If N agents play the
game, then the expected number of sprinters is

nS = ps×pA×N. (10)

As the number of sprinters increases, so does the rack’s current draw and the prob-
ability of tripping the breaker. Given the expected number of sprinters, the game up-
dates the probability of tripping the breaker according to its trip curve (e.g., Figure 3).
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Fig. 5. State transitions when agent sprints, chip cools. Assumes an agent is not in recovery.

ALGORITHM 1: Optimizing the Sprint Strategy
input: Probability density function for sprinting utilities ( f (u))
output: Optimal sprinting threshold (uT )
j ← 1
P0

trip ← 1
while P j

trip not converged do
uj

T ← DP solution for Equations (1)–(8) with P j
trip

pj
S ← Equation (9) with f (u), uj

T

nj
S ← Equation (10) with MC solution and P j

S

P j+1
trip ← Equation (11)

j ← j + 1
end

Mathematically, the curve is described as follows:

Ptrip =
⎧⎨
⎩

0 if nS < Nmin
nS−Nmin

Nmax−Nmin
if Nmin ≤ nS ≤ Nmax

1 if nS > Nmax

, (11)

Ptrip determines nS, which determines P ′
trip. If Ptrip = P ′

trip, then agents are playing
optimized strategies that produce an equilibrium.

4.4. Finding the Equilibrium

When the game begins, agents make initial assumptions about population behavior
and the probability of tripping the breaker. Agents optimize their strategies in re-
sponse to population behavior. Strategies produce sprints that affect the probability of
tripping the breaker. Over time, population behavior and agent strategies converge to
a stationary distribution, which is consistent across epochs. The game is in equilibrium
if the following conditions hold.

—Given tripping probability Ptrip, the sprinting strategy dictated by threshold uT is
optimal and solves the Bellman equation in Equations (1)–(3).

—Given sprinting strategy uT , the probability of tripping the circuit breaker is Ptrip
and is calculated by Equations (9)–(11).

In equilibrium, every agent plays his or her optimal strategy and no agent benefits
when deviating from his or her strategy. In practice, the coordinator in the management
framework finds and maintains an equilibrium with a mix of offline and online analysis.

Offline Analysis. Agents sample epochs and measure utility from sprinting to pro-
duce a density function f (u), which characterizes how often an agent sees utility u from
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sprinting. The coordinator collects agents’ density functions, analyzes population dy-
namics, and tailors sprinting strategies for each agent. Finally, the coordinator assigns
optimized strategies to support online sprinting decisions.

Algorithm 1 describes the coordinator’s offline analysis. It initializes the probability
of tripping the breaker. Then it iteratively analyzes population dynamics to find an
equilibrium. Each iteration proceeds in three steps. First, the coordinator optimizes
sprinting threshold uT by solving the dynamic program defined in Equations (1)–
(8). Second, it estimates the number of sprinters according to Equation (10). Finally,
it updates the probability of tripping the breaker according to Equation (11). The
algorithm terminates when thresholds, number of sprinters, and tripping probability
are stationary.

The offline algorithm has no performance overhead. The analysis runs periodically to
update sprinting strategies and the tripping probability as application mix and system
conditions evolve. It does not affect an application’s critical path as agents use updated
strategies when they become available but need not wait for them.

The algorithm requires little computation. It solves the dynamic program with value-
iteration, which has a convergence rate that depends on the discount factor δ. The
number of iterations grows polynomially in (1 − δ)−1. We implement and run the algo-
rithm on an Intel Core i5 processor with 4GB of memory. The algorithm completes in
less than 10s, on average.

Online Strategy. An agent decides whether to sprint at the start of each epoch by
estimating a sprint’s utility and comparing it against his or her threshold. Estimation
could be implemented in several ways. An agent could use the first few seconds of an
epoch to profile his or her normal and sprinting performance. Alternatively, an agent
could use heuristics to estimate utility from additional cores and higher clock rates.
For example, task queue occupancy and cache misses are associated with a sprint’s
impact on task parallelism and instruction throughput, respectively. Comparisons with
a threshold are trivial. If an agent decides to sprint, it turns on otherwise disabled cores
using CPU-hotplug and increases clock rates using ACPI [Mwaikambo et al. 2004].

5. EXPERIMENTAL METHODOLOGY

Servers and Sprints. The agent and its application are pinned to a chip multipro-
cessor, an Intel Xeon E5-2697 v2 that can run at 2.70GHz. Two multiprocessors share
128GB of main memory within a server. An agent runs in normal or sprinting mode.
In normal mode, the agent uses 3 1.2GHz cores. In sprinting mode, the agent uses
12 2.7GHz cores. We turn cores on and off with Linux sysfs. In principle, sprinting
represents any mechanism that performs better but consumes more power.

Workloads. We evaluate Apache Spark workloads [Zaharia et al. 2010]. The Spark
runtime engine dynamically schedules tasks to use available cores and maximize par-
allelism, adapting as sprints cause the number of available cores to vary across epochs.
Each agent runs a Spark application on representative datasets as shown in Table I.

Profiling Methods. We collect system profiles that measure power and temperature,
using the Intel Performance Counter Monitor 2.8 to read MSR registers once every
second. We collect workload profiles by modifying Spark (v1.3.1) to log the IDs of jobs,
stages, and tasks on their completion.

We measure application performance in terms of the number of tasks completed
per second (TPS). Each application defines a number of jobs, and each job is divided
into tasks that compute in parallel. Jobs are completed in sequence while tasks can be
completed out of order. The total number of tasks in a job is constant and independent of
the available hardware resources. Thus, TPS measures performance for a fixed amount
of work.
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Table I. Spark Workloads

Benchmark Category Dataset Data Size
NaiveBayesian Classification kdda2010 [Stamper et al. 2010] 2.5G
DecisionTree Classification kdda2010 2.5G
GradientBoostedTrees Classification kddb2010 [Stamper et al. 2010] 4.8G
SVM Classification kdda2010 2.5G
LinearRegression Classification kddb2010 4.8G
k means Clustering uscensus1990 [Lichman 2013] 327M
ALS Collaborative Filtering movielens2015 [Harper and Konstan 2015] 325M
Correlation Statistics kdda2010 2.5G
PageRank Graph Processing wdc2012 [Meusel et al. 2012] 5.3G
ConnectedComponents Graph Processing wdc2012 5.3G
TriangleCounting Graph Processing wdc2012 5.3G

Table II. Experimental Parameters

Description Symbol Value
Min # sprinters Nmin 250
Max # sprinters Nmax 750
Prob. of staying in cooling pc 0.50
Prob. of staying in recovery pr 0.88
Discount factor δ 0.99

We trace TPS during an application’s end-to-end execution in normal and sprinting
modes. Since execution times differ in the two modes, comparing traces requires some
effort. For every second in normal mode, we measure the number of tasks completed
and estimate the number of tasks that would have been completed in the sprinting
mode. For our evaluation, we estimate a sprint’s speedup by comparing the measured
non-sprinting trace and the interpolated sprinting trace. In a practical system, online
profiling and heuristics would be required.

Simulation Methods. We simulate 1,000 users and evaluate their performance in
the sprinting game. The R-based simulator uses traces of Spark computation collected
in both normal and sprinting modes. The simulator models system dynamics as agents
sprint, cool, and recover.

One set of simulations evaluates homogeneous agents who arrive randomly and
launch the same type of Spark application; randomized arrivals cause application
phases to overlap in diverse ways. A second set of simulations evaluates heterogeneous
agents who launch different types of applications, further increasing the diversity of
overlapping phases. Diverse phase behavior exercises the sprinting game as agents
and their processors optimize strategies in response to varied competitors’.

Table II summarizes technology and system parameters. Parameters Nmin and Nmax
are set by the circuit breaker’s tripping curve. Parameters pc and pr are set by the
chip’s cooling mechanism and the rack’s UPS batteries. These probabilities decrease as
cooling efficiency and recharge speed increase—see Section 2.

6. EVALUATION

We evaluate the sprinting game and its equilibrium threshold against several alter-
natives. Although there is little prior work on managing sprints, we compare against
four policies that represent broader perspectives on power management. First, greedy
heuristics focus on the present and neglect the future [Zheng and Wang 2015]. Second,
control-theoretic heuristics are reactive rather than proactive [bro 2001; ska 2002].
Third, round-robin methods focus on fairness and neglect individual sprinters’ utili-
ties. Fourth, centralized heuristics focus on the system and neglect individuals. Unlike
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these approaches, the sprinting game anticipates the future and emphasizes strategic
agents who participate in a shared system.

Greedy (G) permits agents to sprint as long as the chip is not cooling and the rack
is not recovering. This mechanism may frequently trip the breaker and require rack
recovery. After recovery, agent wake-ups and sprints are staggered across two epochs.
Greedy produces a poor equilibrium—knowing that everyone is sprinting, an agent’s
best response is to sprint as well.

Exponential Backoff (E-B) throttles the frequency at which agents sprint. An
agent sprints greedily until the breaker trips. After the first trip, agents wait 0–1
epoch before sprinting again. After the second trip, agents wait 0–3 epochs. After the
tth trip, agents wait for some number of epochs drawn randomly from [0, 2t − 1]. The
waiting interval contracts by half if the breaker has not been tripped in the past 100
epochs.

Round-Robin (R-R) randomly and uniformly chooses a fixed number of active
agents to sprint. Since agents are selected to sprint at random, they may sprint when
their benefit from sprinting is low or they may fail to sprint when their benefit is high.
On average, all agents are allocated equal sprinting time.

Cooperative Threshold (C-T) assigns each agent the globally optimal threshold
for sprinting. The coordinator exhaustively searches for the threshold that maximizes
system performance. The coordinator enforces these thresholds although they do not
reflect agents’ best responses to system dynamics. These thresholds do not produce an
equilibrium but do provide an upper bound on performance.

Equilibrium Threshold (E-T) assigns each agent her optimal threshold from the
sprinting game. The coordinator collects performance profiles and implements Algo-
rithm 1 to produce thresholds that reflect agents’ best responses to system dynamics.
These thresholds produce an equilibrium and agents cannot benefit by deviating from
their assigned strategy.

6.1. Sprinting Behavior

Figure 6 compares sprinting policies and resulting system dynamics as 1,000 instances
of Decision Tree, a representative application, computes for a sequence of epochs.
Sprinting policies determine how often agents sprint and whether sprints trigger emer-
gencies. Ideally, policies would permit agents to sprint up until they trip the circuit
breaker. In this example, 250 of the 1,000 agents for Decision Tree can sprint before
triggering a power emergency.

Greedy heuristics are aggressive and inefficient. A sprint in the present precludes
a sprint in the near future, harming subsequent tasks that could have benefited more
from the sprint. Moreover, frequent sprints risk power emergencies and require rack-
level recovery. G produces an unstable system, oscillating between full-system sprints
that trigger emergencies and idle recovery that harms performance. G staggers the
distribution of sprinting permissions after recovery to avoids dI/dt problems, which
reduces but does not eliminate instability.

Control-theoretic approaches are more conservative, throttling sprints in response
to power emergencies. E-B adaptively responds to feedback, producing a more stable
system with fewer sprints and emergencies. Indeed, E-B may be too conservative,
throttling sprints beyond what is necessary to avoid tripping the circuit breaker.
The number of sprinters is consistently lower than Nmin, which is safe but leaves
sprinting opportunities unexploited. Thus, in neither G nor E-B do agents sprint to full
advantage.

Round-robin methods are designed to be fair, in the sense that all agents are allocated
equal sprinting time (on average). At each epoch, R-R(X) randomly and uniformly
chooses X active agents to sprint. We now discuss system dynamics for R-R(250) and
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Fig. 6. Sprinting behavior for a representative application, Decision Tree. The black line denotes number
of sprinters. The gray line denotes the point at which sprinters risk a power emergency, Nmin.

R-R(450). Since Nmin = 250, power emergencies cannot occur under R-R(250) and the
system does not spend any time in the recovery state. However, power emergencies
are possible for R-R(450). In the first epoch after recovery from a power emergency, all
1,000 agents are active and 450 are selected sprint. If an emergency is not triggered,
then R-R chooses another 450 agents to sprint from among the 550 active agents.
In the third epoch, there are fewer than 450 active users because many who sprinted
in the first epoch are still cooling. Note that R-R is oblivious to agents’ utilities, in
contrast to C-T and E-T.

E-T produces an equilibrium in which agents play their optimal strategies and con-
verge to a stationary distribution. In equilibrium, the number of sprinters is just
slightly above Nmin = 250, the number that causes a breaker to transition from the
non-tripped region to the tolerance band. After emergency and recovery, the system
quickly returns to equilibrium. Note that E-T’s system dynamics are similar to those
from the high-performance, cooperative C-T policy.

Figure 7 shows the percentage of time an agent spends in active, cooling, and recovery
states. The analysis highlights G and E-B’s limitations. With G, an agent spends more
than 50% of its time in recovery, waiting for batteries to recharge after an emergency.
With E-B, an agent spends nearly 40% of its time in active mode but not sprinting.
Power emergencies do not occur in R-R(250), so each agent spends no time in recovery
and 25% of its time sprinting. Power emergencies occur frequently in R-R(450) and
each agent spends more than 50% of its time in recovery.

Agents spend comparable shares of their time sprinting in each policy (except R-
R(250). However, this observation understates the sprinting game’s advantage. G and
E-B sprint at every opportunity and ignore transitions into cooling states, which pre-
clude sprints in future epochs. R-R, on the other hand, neglects agents’ utilities and
randomly picks sprinters. In contrast, E-T and C-T’s sprints are more timely as strate-
gic agents sprint only when estimated benefits exceed an optimized threshold. Thus, a
sprint in E-T or C-T contributes more to performance than one in G, E-B, or R-R.
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Fig. 7. Percentage of time spent in agent states for a representative application, Decision Tree.

Fig. 8. Performance, measured in task throughput and normalized against greedy, for single application
type.

6.2. Sprinting Performance

Figure 8 shows task throughput under varied policies. The sprinting game outperforms
greedy heuristics and is competitive with globally optimized heuristics. Rather than
sprinting greedily, E-T uses equilibrium thresholds to select more profitable epochs for
sprinting. E-T outperforms G, E-B, and R-R by up to 6.8×, 4.8×, and 2.5×, respectively.
Agents who use their own strategies to play the game competitively produce outcomes
that rival expensive cooperation. E-T’s task throughput is 90% that of C-T’s for most ap-
plications. R-R(250) outperforms R-R(450) by avoiding power emergencies, and thereby
allowing more agents to sprint over time. It also outperforms E-T for Linear Regression
and Correlation.
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Fig. 9. Performance, measured in task throughput and normalized against greedy, for multiple application
types.

Linear Regression and Correlation are outliers, achieving only 36% and 65% of co-
operative performance. For these applications, E-T performs as badly as G and E-B
because the applications’ performance profiles exhibit little variance and all epochs
benefit similarly from sprinting. When an agent cannot distinguish between epochs,
she sets a low threshold and sprints for every epoch. In effect, for such applications,
E-T produces a greedy equilibrium.

Thus far, we have considered agents for applications of the same type that compute
together. When agents represent different types of applications, E-T assigns different
sprinting thresholds for each type. Figure 9 shows performance as the number of
application types increases. We evaluate performance for a system with k types by
randomly selecting k applications, finding each agent’s strategy under an E-T policy,
and repeating 10 times to report an average. As before, E-T performs much better than
G, E-B, and R-R. We do not evaluate C-T because searching for optimal thresholds for
multiple types of agents is computationally hard.

6.3. Sprinting Strategies

Figure 10 uses kernel density plots for two representative applications, Linear Re-
gression and PageRank, to show how often and how much their tasks benefit from
sprinting. Linear Regression presents a narrower distribution and performance gains
from sprinting vary in a band between 3× and 5×. In contrast, PageRank’s performance
gains can often exceed 10×.

The coordinator uses performance profiles to optimize threshold strategies. Linear
Regression’s strategy is aggressive and uses a low threshold that often induces sprints.
This strategy arises from its relatively low variance in performance gains. If sprinting’s
benefits are indistinguishable across tasks and epochs, an agent sprints indiscrimi-
nately and at every opportunity. PageRank’s strategy is more nuanced and uses a high
threshold, which cuts her bimodal distribution and implements judicious sprinting.
She sprints for tasks and epochs that benefit most (i.e., those that see performance
gains greater than 10×).
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Fig. 10. Probability density for sprinting speedups.

Fig. 11. Probability of sprinting.

Figure 11 illustrates diversity in agents’ strategies by reporting their propensities to
sprint. Linear Regression and Correlation’s narrow density functions and low thresh-
olds cause these applications to sprint at every opportunity. The majority of applica-
tions, however, resemble PageRank with higher thresholds and judicious sprints.

6.4. Equilibrium versus Cooperation

Sprinting thresholds from equilibria are robust to strategic behavior and perform well.
However, cooperative thresholds that optimize system throughput can perform even
better. Our evaluation has shown that the sprinting game delivers 90% of the per-
formance from cooperation. But we find that the game performs well only when the
penalties from non-cooperative behavior are low. To understand this insight, let us in-
formally define efficiency as the ratio of game performance from equilibrium thresholds
(E-T) to optimal performance from cooperative thresholds (C-T).1

1We are informal because the domain of strategies is huge and we consider only the best cooperative
threshold. A non-threshold strategy might provide even better performance.
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Fig. 12. Efficiency of equilibrium thresholds.

The sprinting game produces efficient equilibria because the penalty for non-
cooperative behavior is triggering a power emergency. In the sprinting architecture,
recovery is relatively inexpensive as batteries recharge and normal system operation
resumes in 10 epochs or fewer. However, higher penalties for non-cooperative behavior
would degrade the game’s performance from equilibrium strategies. Figure 12 shows
how efficiency falls as recovery from power emergencies become increasingly expensive.
Recall that pr is the probability an agent in recovery stays in that state.

Prisoner’s Dilemma. The sprinting game fails when an emergency requires indef-
inite recovery and pr is 1. In this extreme scenario, we would like the game to produce
an equilibrium in which agents sprint yet avoid tripping the breaker. Unfortunately,
the game has no equilibrium that avoids tripping the breaker and triggering indefinite
recovery. If a strategic agent were to observe system dynamics that avoid tripping the
breaker, which means Ptrip is zero, then he or she would realize that other agents have
set high thresholds to avoid sprints. His or her best response would be to lower his
or her threshold and sprint more often. Others would behave similarly and drive Ptrip
higher.

In equilibrium, Ptrip would rise above zero and agents would eventually trip the
breaker, putting the system into indefinite recovery. Thus, selfish agents would produce
inefficient equilibria—the Prisoner’s Dilemma in which each agent’s best response
performs worse than a cooperative one.

Enforcing Non-Equilibrium Strategies. The Folk theorem guides agents to a
more efficient equilibrium by punishing agents whose responses harm the system. The
coordinator would assign agents the best cooperative thresholds to maximize system
performance from sprinting. When an agent deviates, he or she is punished such that
performance lost exceeds performance gained. When applied to our previous example,
punishments would allow the system to escape inefficient equilibria as agents are
compelled to increase their thresholds and ensure Ptrip remains zero.

Note that threat of punishment is sufficient to shape the equilibrium. Agents would
adapt strategies based on the threat to avoid punishment. The coordinator could mon-
itor sprints, detect deviations from assigned strategies, and forbid agents who deviate
from ever sprinting again. Alternatively, agents could impose collective punishment by
continuously sprinting, triggering emergencies, and degrading everyone’s performance.
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Fig. 13. A comparison of the average gains of each sprinting policy per extra dollar spent.

The threat of collective action deters agents who would deviate from the cooperative
strategy.

6.5. Efficiency and Cost of Ownership

Let Cnominal denote components of the yearly total cost of ownership (TCO) that do
not vary with the sprinting technique employed. In other words, if all multiprocessors
operate nominally, TCO would be Cnominal. We model TCO as follows:

TCO = Cnominal + CsprintPwr + Cbatteries + Cchip,

where CsprintPwr, Cbatteries, and Cchip denote the power cost of sprinting, maintenance
cost of batteries, and maintenance cost of chip multiprocessors, respectively.

Power Cost of Sprinting. Sprints increase power draw, which increase power costs.
We model the average increase in power cost as follows:

CsprintPwr = NCW-s Fsprint
(
Psprint − Pnominal

)
T .

N is the total number of chip multiprocessors and CW-s is the average cost (in dollars)
of one Watt-second of energy. Psprint and Pnominal are average sprinting and nominal
power (in Watts), respectively, of a chip multiprocessor. We use a conservative value
of $0.13/kW-h for CW-s [Skach et al. 2015]. We use average values of 83 and 121W for
Psprint and Pnominal, respectively, based on our system measurements across workloads.

Fsprint denotes the fraction of time a chip multiprocessor spends sprinting, on average,
which is defined as follows:

Fsprint = avg # of sprints over epochs
total # of sprinters

.

Finally, T is one year, the duration over which we calculate TCO.
Maintenance Cost of UPS Batteries. Different sprinting policies trigger different

numbers of power emergencies, and therefore degrade UPS batteries at different rates.
The cost due to replacing UPS batteries is as follows:

Cbatteries = Nb

(
Cb

Rb

Mb

)
T .

Nb is the total number of batteries, Cb is the replacement cost of one battery, Mb is
the maximum number of power emergencies a battery can experience before needing
replacement, and Rb is the average rate at which power emergencies occur.

We assume that the backup power for the UPS unit is composed of Nb batteries, wired
in parallel, to deliver the power required to complete sprints when a power emergency
occurs. The modeled battery [Battery 2016] retails for about $40. In the theoretical
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worst-case scenario—an emergency triggered by 750 sprinters at the start of their
sprints and 250 non-sprinting multiprocessors—the batteries must supply 111.5kW
for the entire sprint duration of 150s. Batteries are estimated to supply 730W for 7min.
Therefore the system needs at least 153 such batteries (Nb = 153 > 111.5kW/730W).
Note that 7min supply rates are conservative for a system that requires sprint power
for 150s.

Therefore, we estimate battery costs to be Cb = 153 × $40 = $6,120. We do not
account for losses due to voltage transformation (12VDC to 120VAC). If these losses
are significant, extra batteries must be provisioned. We estimate Mb to be greater
than 3,000 cycles [Battery 2016]. We expect to discharge batteries to less than 30% of
capacity during each power emergency. Finally, we model Rb as follows:

Rb = avg # of emergencies over epochs
length of an epoch

.

Maintenance Cost of Chip Multiprocessors. Different sprinting policies permit
multiprocessors to sprint with different frequencies and therefore incur PCM heating-
cooling cycles with different frequencies. The cost due to PCM replacements can be
modeled as

Cchip = N
(

Cw

Rw

Mw

)
T ,

Cw is the cost to replace the paraffin wax for one multiprocessor, Mw is the maximum
number of heating-cooling cycles (or sprints) a PCM can undergo before needing re-
placement, and Rw is the average rate at which heating-cooling cycles (or sprints) occur.
We quantify Cw as follows:

Cw = dollars
gram of paraffin

× grams of paraffin
PCM unit

.

We use a conservative value $2,000/ton of paraffin [Skach et al. 2015], and we consider
a 200J/g paraffin PCM described in Raghavan [2013]. Since Psprint − Pnominal = 38W
and the sprinting duration is 150s, the system requires a PCM mass of

(38J/s × 150s) / (200J/g) = 28.5g,

which we round to 30g. For Mw, we use 1,000 as a conservative value [Skach et al.
2015]. Finally, we model Rw as follows:

Rw = avg # of sprints per second
total # of sprinters

.

Efficiency analysis. We model the efficiency of a sprinting policy as

E = P
TCO − Cnominal

,

where the nominator represents the performance gain of a sprinting policy, and the
denominator represents the policy’s extra costs due to sprinting. This ratio serves as a
means of quantifying the cost effectiveness of a sprinting policy—the average gains of
a sprinting policy per extra dollar spent.

Figure 13 demonstrates the cost effectiveness of different sprinting policies normal-
ized to that of greedy. G and R-R(450) are relatively inefficient as both frequently
trigger power emergencies and sprint without considering the utility of sprinting. By
triggering fewer power emergencies, R-R(250) and E-B demonstrate the efficiency pos-
sible by constantly sprinting users. However, by neglecting the utilities of the sprinters,
they do not maximize efficiency gains.
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Fig. 14. Sensitivity of sprinting threshold to architectural parameters—probability of staying in cooling and
recovery pc, pr and the tripping curve Nmin, Nmax.

Although the E-T and C-T strategies cause some power emergencies, by consider-
ing sprinting agents’ utilities when choosing sprinters, they increase the gains from
sprinting and thus produce the highest efficiencies. Since C-T assigns each agent the
globally optimal threshold for sprinting, its agents sprint most effectively. As a result
C-T results in the highest performance per dollar gains.

6.6. Sensitivity Analysis

Figure 14 shows the sprinting threshold’s sensitivity to the game’s parameters. In
practice, server engineering affects cooling and recovery durations (pc, pr) as well as
the breaker’s trip curve (Nmin, Nmax).

As cooling duration increases, thresholds increase and agents sprint less. Agents
are more cautious because sprinting in the current epoch requires many more epochs
for cooling. The opportunity cost of sprinting mistakenly rises. As recovery duration
increases, the cost of tripping the breaker increases. However, because each agent
sprints to pursue her own performance while hoping others do not trip the breaker,
thresholds are insensitive to recovery cost. When pr is 1, we have shown how agents
encounter the Prisoner’s Dilemma, see Section 6.4.

When Nmin and Nmax are small, the probability of tripping the breaker is high.
Ironically, agents sprint more aggressively and extract performance now because
emergencies that forbid future sprints are likely. When Nmin and Nmax are big, each
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agent sprints more judiciously as a sprint now affects the ability to sprint in the
future.

7. RELATED WORK

The sprinting problem falls into the general category of datacenter power manage-
ment, but we are the first to identify the problem and propose a game-theoretic ap-
proach. The sprinting problem is made interesting by modern approaches to datacenter
provisioning.

To minimize total cost of ownership and maximize return on investment, datacenters
oversubscribe their servers [Barroso et al. 2013; Chen et al. 2008], bandwidth [Ballani
et al. 2011], branch circuits [Fu et al. 2011], and cooling and power supplies [Fan et al.
2007; Govindan et al. 2012]. In datacenters, dynamic power capping [Bhattacharya
et al. 2013] adjusts the power allocation to individual servers, enabling a rich policy
space for power and energy management. In servers, managers could pursue perfor-
mance while minimizing operating costs, which are incurred from energy and cooling
[Beloglazov et al. 2012; Lin et al. 2013; Berral et al. 2010; Goiri et al. 2015]. Researchers
have sought to allocate server power to performance critical services via dynamic volt-
age and frequency scaling (DVFS) [Hsu et al. 2015; Lo et al. 2014].

Economics and game theory have proven effective in datacenter power and resource
management [Chase et al. 2001]. Markets [Guevara et al. 2013, 2014] and price theory
[Somu Muthukaruppan et al. 2014] have been applied to manage heterogeneous server
cores. Demand response models have been proposed to handle power emergencies [Liu
et al. 2013]. In addition to performance, fairness in game theory has been studied to
incentivize users when sharing hardware in a cloud environment [Ghodsi et al. 2011;
Zahedi and Lee 2014, 2015].

In this article, we treat the sprinting management problem as a repeated game
and seek an equilibrium that leads sprinting servers to expected behavior. Similar
approaches have been applied to power control in wireless communication systems
[Le Treust and Lasaulce 2010]. But we are the first to consider game theory for dat-
acenter management, especially in the context of computational sprinting and power
capping.

8. CONCLUSIONS

We present a sprinting architecture in which many, independent chip multiprocessors
share a power supply. When an individual chip sprints, its excess heat constrains future
sprints. When a collection of chips sprint, its additional power demands raise the risk
of power emergencies. For such an architecture, we present a management framework
that determines when each chip should sprint.

We formalize sprint management as a repeated game. Agents represent chip multi-
processors and their workloads, executing sprints strategically on their behalf. Strate-
gic behaviors produce an equilibrium in the game. We show that, in equilibrium, the
computational sprinting game outperforms prior, greedy mechanisms by 4–6× and
delivers 90% of the performance achieved from a more expensive, globally enforced
mechanism.
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