Mobile IP and Mobile Transport Protocols

Preliminaries

- IP routing
 - Works on a hop-by-hop basis using a routing table
 - 32 bits: 129.97.92.42
 - Address = subnet + host (Mobility → No packet for you)
 - Two parts
 - » Routing protocol: constructs routing tables
 - » Packet forwarding: Uses a routing table

Target/Prefix-Length	Next Hop	Interface
7.7.7.99/32 (host specific)	R 1	a
7.7.7.0/24 (network prefix)	R 2	b
0.0.0.0/0 (default)	R 3	С

The need for Mobile IP

- Hosts and routers base their forwarding decision on **network prefix** portion of an IP address.
- When a host moves from its **home link** to a **foreign link**, the host becomes unreachable.
 - Home link: The link on which a node should be located. (This link has been assigned the same network-prefix as the node's IP address.)
 - Foreign link: Any link other than a node's home link.

Entities and Packet delivery

What is Agent Discovery?

- A mobile node
 - Determines whether it is currently connected to its home link or a foreign link.
 - Detects whether it has moved from one link to another.
 - Obtains a COA when connected to a foreign link.

Agent Discovery?

Agent Discovery?

- Important Fields in <u>Agent Advertisement</u> message
 - IP Source Address (HA or FA)
 - » Know if you are home or away.
 - COA fields: one or more IP addresses
 - » Select one
 - Lifetime
 - » How soon the MN will hear from the agent again.

Move Detection

- Move detection using *Lifetime*: If you don't hear from the FA after *Lifetime*
 - 1. Register with the next FA from which you receive an AA message.
 - 2. Broadcast an Agent Solicitation message.
- Using Network-Prefixes
 - For each advertised route, there is a prefix length in IP header.
 - » A different network prefix means the node has moved.

Mobile IP Registration

- This is a process by which an MN
 - Requests routing service from an FA.
 - Informs its HA of its current COA.
 - Renews a registration which is due to expire.
 - Deregisters when it returns to its home link.
 - Act like a fixed host (no use of Mobile IP features.)

Important fields of a *Registration Request*

- Source/Destination addresses
- Mobile node's home address
- Home agent address
- COA
- Time to Live

Registration

• After receiving a COA, MN registers with HA

Tunneling + Encapsulation

- Tunnel: data pipe between HA and COA
- Tunneling is achieved by **encapsulation**.

IP-in-IP

Need for optimization

Optimized mobile IP

IPv6

- Basic features
- Mobility for IPv6
- Mobile IPv6

How does IPv6 differ from IPv4

- 128 bits in IPv6 (implication to be discussed)
- Rigorous definition of optional header fields (in the form of extension headers)

– IPv6 Base header \rightarrow Extension header \rightarrow

IPv6 Base header

- Version (4 bits) = 6
- Priority (4 bits): among packets from same source
- Flow (24 bits): Might find application
- Payload length (16 bits)
- Next header (8 bits): Type of header following this.
- Hop limit(8 bits): Decremented by 1 after each hop
- Source address (128 bits)
- Destination address (128 bits)

IPv6 extension header

- Hop-by-hop Options header: Contains options to be examined by every router along the path.
- Destination Options header: Examined by the destination.
- Upper-layer header: The TCP or app header, or an IPv6 or IPv4 header in case of a tunnel.
- IP Authentication header
- Routing header

Mobile IPv6: its components

- An MN determines its location.
- On a foreign link, an MN acquires a COA—collocated.
- The MN notifies its HA of its COA.
- The MN may notify selected correspondents of its COA.
- Packets are forwarded to an MN using tunneling.
- Correspondents knowing the COA directly send packets to the MN.

IPv6 Agent Discovery Protocol

- Knows whether it is on its home link or foreign link.
- Knows whether it has moved from one link to another.
- Obtains a COA when connected to a foreign link.

MN, routers, and HA cooperate to accomplish the above.

IPv6: Location and movement detection

- Routers and HA broadcast *Router Advertisement* (RA) messages from time to time.
- If *prefix*(RA) matches with MN's home address, the MN is on its home link. *Notify* HA of your return.
- If there is no match, compare *prefix*(RA) with those of previous advertisements to see if it has moved.
- If MN has moved, <u>acquire a new COA</u> (to be explained).

IPv6: Obtaining a COA address

- In IPv6, COAs are <u>collocated</u>. (There is no FA as the address space is huge.)
- Two ways of obtaining a COA:
 - Stateful Address Autoconfiguration
 - » Ask a server (DHCPv6) for an address and use it.
 - Stateless Address Autoconfiguration
 - » COA = network prefix @ interface token

(Interface token is link dependent ID, such as MAC address)

IPv6: An MN informing others of its COA

- Notification to HA
 - The HA uses the COA as the exit-point of a tunnel to get packets to a mobile node.
- Notification to correspondents
 - Correspondents use COA to route packets directly to the mobile node. → IPv6 supports route optimization.

IPv6: Notification scenario

IPv6: Update and Ack are IPv6 extended headers. IPv4: Registration and Ack are UDP/IP messages.

IPv6: Notification scenario

IPv6: Correspondent sends data to MN

- Correspondent knows MN's COA:
 - Destination = COA and

Routing Header = HA \rightarrow **MN consumes the packet**

- Correspondent does not know MN's COA
 - Packet sent as usual to the HA of the MN
 - HA tunnels the packet to the COA.
 - » Tunnel → Correspondent does not know the COA
 - » Send a Binding Update to Correspondent.

Mobile transport layer

Outline

- Traditional TCP
- Implication on mobility
- Different solutions

TCP

- Network layer **addresses** a host.
- TCP ports allow addressing of applications.
- TCP: end-to-end
 - Lossless
 - In-order
- Traditional TCP (factors affecting performance)
 - Congestion control
 - Slow start

Congestion control

- Packet loss
 - Congestion, no buffer, router drops packets
- Receiver notices a gap
 - Does not ask for selective retransmission
 - All in-sequence packets up to the missing one are ACKed.

Congestion control

- Sender
 - Notices the missing ACK for the lost packet
 - Assumes packet loss due to congestion
 - Slows down the transmission rate
 - All senders facing the same congestion slow down
 reason for survival of the Internet

Slow start

- TCP's response to congestion detection
- Congestion window (CW): exp growth
 - Start: CW = 1, send a packet
 - Receive ACK \rightarrow CW = 2, send 2 packets
 - Receive 2 ACK \rightarrow CW = 4,
 - Exp growth stops at **congestion threshold (CT)**
 - Next is linear growth (1 by 1)

Slow start

- Linear growth continues until
 - Timeout occurs: missing ACK
 - Continuous ACK for same packet \rightarrow

Perceived congestion \rightarrow CT = CW/2, CW = 1

Fast recovery/fast retransmit

- Two reasons leading to a reduced CT
 - Timeout
 - Receiving continuous ACKs for same packet
- Timeout
 - Real congestion
- Continuous ACKs for same packet
 - No real congestion (retransmit)

Implications on mobility

- Wireless system
 - Higher error rate
 - Packet loss is much more common
 - Layer-2 retransmission may not be good solution
 could trigger TCP retransmissions
 - Mobility itself can cause packet loss
 - During handover
 - Rerouting problem, and not wireless access
 - Congestion: **not the main reason** for packet loss
 - → Degraded TCP performance

Implications on mobility

- No drastic change in TCP is possible
 - Installed based of TCP is too large
 - Slow start keep the Internet going
 - → Changes must be compatible
 - Must not jeopardize cautious behavior

TCPs for mobile systems

- Indirect TCP
- Snooping TCP
- Mobile TCP
- Mechanisms for better performance
 - Fast retransmit/fast recovery
 - Selective retransmission

Indirect TCP

- Motivation
 - Poor TCP performance over wireless links
 - No change to TCP within fixed network

I-TCP

- Advantages
 - No change to standard TCP
 - No propagation of loss on wireless link to fixed net
 - Wireless TCP can be locally improved
- Disadvantages
 - Loss of end-to-end semantics.

FA: **Buffers** all packets with destination MN (unidirectional) **Snoops** packet flow in both directions Does **not** generate ACKs

• Packets with **destination mobile** host

- Buffered by FA
- Until an ACK is received from MN
- FA performs local retrans in case of loss on wireless link
- Timeout or multiple ACKs received
 - MN retransmits from local buffer
 - Smaller timeout, better performance
- Discards duplicates from correspondent host

- Packets with dest **correspondent** host
 - FA snoops into the packet stream to **detect gaps**
 - Missing packet detected
 - Sends a negative ACK (NACK) to MN
 - (Reordering is done by correspondent host)

- Advantages
 - Preservation of end-to-end semantic
 - No handover of state when MN moves to a new FA
 - No forwarding of buffered data
 - Does not matter if the new FA uses the enhancement
- Disadvantages
 - Does not **isolate** the behavior of wireless link as good as I-TCP.
 - NACK: additional mechanism on mobile node
 - Useless if TCP protocol header is encrypted.

Mobile TCP

- Wireless link
 - (Packet dropping: higher bit error, handover)
 - Lengthy and/or frequent **disconnections**
- Retransmission policy
 - Sender retransmits data controlled by a timer
 - Timeout interval doubles with each unsuccessful retransmission (max: **1 minute**)
 - 12 retransmissions

Mobile TCP

- If connectivity is back before 12th retrans
 - No data is sent for a minute
 - Slow start mode
- I-TCP and disconnection
 - FA buffers a lot of data
 - FA forwards buffered data to new FA ...
- Snooping TCP too is ineffective

Mobile TCP

- Goals
 - I-TCP + S-TCP + adapt to lengthy/freq discon.
 - (Prevent sender window from shrinking)

Assumes low bit error on wireless channel. No caching/retransmission of data by SH Lost on wireless link: retransmission by original sender **←** end-to-end

SH monitors all packets sent to MH and ACKs from MH. If SH does not see an ACK, it **chokes** the sender (window size = 0)

Window size = $0 \rightarrow$ sender goes into **persistent mode** (no state change)

SH detects connectivity: Reopen sender's window

Fast retransmit/fast recovery

- Moving to a new FA causes **timeout/loss**
- → TCP goes into slow start
- Force TCP into fast retransmit/fast recovery
 - Registration at a new FA \rightarrow send duplicated ACKs
- Disadvantage
 - Coordination between TCP and IP at MH
 - May result in more duplicates

Selective retransmission

- TCP ACKs are **cumulative**
- Loss of **one** packet
 - retransmit **all** starting from the lost packet
- RFC 2018 (1996)
 - Request for **selective** retransmission