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Abstract

A variety of systems with possibly embedded computing power, such as small portable robots, hand-
held computers, and automated vehicles, have power supply constraints. Their batteries generally
last only for a few hours before being replaced or recharged. It is important that all design efforts
are made to conserve power in those systems. Energy consumption in a system can be reduced using
a number of techniques, such as low-power electronics, architecture-level power reduction, compiler
techniques, to name just a few. However, energy conservation at the application software-level
has not yet been explored. In this paper, we show the impact of various software implementation
techniques on energy saving. Based on the observation that different instructions of a processor
cost different amount of energy, we propose three energy saving strategies, namely (i) assigning live
variables to registers, (ii) avoiding repetitive address computations, and (iii) minimizing memory
accesses. We also study how a variety of algorithm design and implementation techniques affect
energy consumption. In particular, we focus on the following aspects: (i) recursive vs. iterative
(with stacks and without stacks), (ii) different representations of the same algorithm, (iii) different
algorithms—with identical asymptotic complexity—for the same problem, and (iv) different input
representations. We demonstrate the energy saving capabilities of these approaches by studying
a variety of applications related to power-conscious systems, such as sorting, pattern matching,
matrix operations, depth-first search, and dynamic programming. From our experimental results,
we conclude that by suitably choosing an algorithm for a problem and applying the energy saving

techniques, energy savings in excess of 60% can be achieved.

Key Words: Low power system, energy saving, software design and implementation



1 Introduction

Miniaturization of computing systems is finding applications in special areas such as hand-held
computation, tiny robots, guidance systems in automated vehicles, to name just a few. Also,
these systems or their users move from place to place. Because of their small size and the mobility
requirement, they are powered by a few batteries of low rating. In order to avoid frequent recharging
and/or replacement of the batteries, there is significant interest in low-power system design. Power
consumption is increasingly becoming an area of growing concern in system design. It affects a
variety of system concerns such as battery life, thermal limits, packaging constraints, and cooling
options [5].

Let a program P run for T seconds to achieve its goal, Voo be the supply voltage of the system,
and I be the average current in ampere drawn from the power source for T" seconds. We can rewrite
T asT = N x 7, where N is the number of clock cycles and 7 is the clock period. Then, the amount
of energy consumed by P to achieve its goal is given by: F = Voo X I x N x 7 Joules. Since for
a given hardware, both Voo and 7 are fixed, E o« I x N. However, at the application level, it is
more meaningful to talk about T than N, and therefore, we express energy as £ « I x T. Given
the fact that power is the rate of energy consumption, in this paper, we refer to power and energy
interchangeably.

Low power design is a complex endeavor requiring a broad range of strategies from floor planning
on silicon substrate to design of application softwares. In Figure 1, we enumerate several strategies
for achieving energy efficiency in a power-conscious system. In Section 2, we review some of these
strategies. Though energy is actually consumed by the hardware, energy consumption can be
reduced—apart from using low-power electronics—by suitably manipulating the software systems.
This is because the hardware activities are controlled through the softwares. As the expression for
energy suggests, the main idea in the design of energy-efficient softwares is to reduce both T" and
I.

From the running time (average case) of an algorithm we get a measure of T. However, to
compute I, one must consider the current drawn during each clock cycle. Actual measurement of
the current for different instructions shows that different instructions lead to different amount of
currents being drawn [27], [28]. For example, in case of the Intel 486DX2 processor, moving data
between two registers takes one clock cycle and draws 291.2 mA of current, whereas moving data
from a register to a memory location can take up to two clock cycles drawing 451.7 mA during
those cycles [28]. This exposes the potential for reducing the average current I by employing a
number of implementation strategies which tend to use the instructions drawing less current and
less number of instructions. This also leads to a reduced T'.

In this paper, we study the impacts of the following three software implementation techniques

on energy consumption:
EC1: coding a software by employing energy saving techniques,

EC2: choice of algorithms, and



EC3: general implementation strategies.

The first strategy EC1 is based on the experimental result that different instructions draw
different amount of current and take different number of clock cycles. We show a few programming
techniques leading to a C compiler generating low-energy instructions and less number of total
instructions for a program. The main ideas are to eliminate some redundant computations, reduce
the number of memory accesses, assign temporary variables to registers, and avoid repetitive address
computations.

Second, we study how a variety of algorithm design techniques affect energy consumption. Here,
the main idea is to reduce the constant factor in the complexity of an algorithm. Finally, we study
how different general implementation strategies affect the energy cost of a program. In particular,

we study the following aspects of an implementation:
e recursive vs. iterative (with stacks and without stacks) techniques,
e different coding techniques, and

e different input data representations such as array, link-list, adjacency matrix, and adjacency
list.

Remark 1 Energy conservations due to EC1, EC2, and EC3 are orthogonal and can indepen-
dently be applied to a software design.

To study the impacts of EC1, EC2, and EC3 on energy conservation, we studied algorithms
for a number of problems, such as sorting, depth-first search, dynamic programming, matrix multi-
plication, Gauss elimination, and pattern matching. Sorting is a very general problem encountered
in almost all applications. Users of the laptop computers generally do a lot of text editing, where
pattern matching is an important function. Also, in mobile robots equipped with computer vision,
pattern matching is essential to identifying objects. Other problems such as depth-first search,
dynamic programming, matrix multiplication, and Gauss elimination are central to controlling the
motion of robots. Though we have not identified all kinds of softwares used in power-conscious sys-
tems, we believe that our selection represents a cross-section of the kinds of problems encountered
in those systems.

We study these impacts by implementing the algorithms with the energy saving programming
techniques and computing their energy costs. The energy cost is computed by considering the
patterns of code generated by a compiler for various control structures of the C language and the
current drawn by each instruction of the Intel 486DX2 processor [28]. Similar analysis can also be
done for other compilers and processors. Our finding is that by suitably implementing a solution

to a problem, one can save in excess of 60% of energy.

Remark 2 The growth in battery technology in terms of energy density and power density' [17]

!The energy content of a battery expressed in watt-hours per liter is referred to as energy density, and the power

delivered by a battery expressed in watts per liter is referred to as power density.



is expected to increase only 20% over the next decade [20]. Thus, energy saving in access of even

20% achieved through careful design of high-level softwares is of immense practical importance.

The paper is organized as follows. In Section 2, we review a number of techniques—both
hardware and software—used in the design of low-power systems. Section 3 contains our main
ideas and the experimental results. First, we identify three energy saving techniques that can be
applied to any program in general. Second, we make a link between the constructs of the C language
and the instructions of a processor from the viewpoint of computing the energy cost of a program.
Third, we apply the energy saving techniques to a number of algorithms. Fourth, we study the
impact of algorithm design techniques on energy cost, and then the impacts of implementation

strategies on energy costs are explored. Finally, we give some concluding remarks in Section 4.
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Figure 1: Various ways of reducing energy consumption in a system (not to scale).

2 Review of Energy Saving Strategies

We review a wide spectrum of strategies, shown in Fig. 1, ranging from the hardware fabrication
process to receiver power control. Energy saving due to different approaches are, in the best case,
multiplicative. For example, a 10% energy savings from low-power electronics together with a 15%
savings from compiler techniques will yield a total energy saving of: (1 - (((1 - 0.1)* 0.85)) * 100
= 23.5%. However, generally the total energy savings is less, say in this example 20%, because the

various energy saving strategies may adversely affect each other.

Low Power Electronics

The power equation in a CMOS digital circuit is expressed as [18]:

P = (CLVI%Dfp) + (ISC’VDD) + (IleakageVDD)a (1)

where Vpp is the supply voltage, f, is the output switching repetition frequency, Cy, is the output
capacitance load, Is¢ is the short circuit current pulse generated when both n- and p-transistors
are briefly turned on during output switching, and Ijcqrage is the leakage current. The first term on
the right-hand side of the power equation is the dominant factor. It is expected that power saving

with two orders of magnitude can be achieved using low-power electronics. About half of the power



reduction will come from architecture changes and management of switching activity. The other
half of power reduction will come from using advanced materials technology to allow reduction of
Vpp to 1 Volt or below from 5 or 3.5 Volts while also reducing Cp, [12], [1].

Architecture-Level Power Reduction

The microprocessor can account for up to 33% of a notebook’s power budget, which is around 15W.
The processors designed for high-end desktops are not suitable for small mobile systems, because
these processors dissipate up to 16W with a 5V power supply. Therefore, processor designers
include a number of features to reduce power consumption. For the PowerPC 6037 [18], some of
the power reduction features are dynamic idle-time shutdown of separate execution units, low-power
cache design, and power considerations for standard cells, data-path elements, and clocking. The
processor also supports three static power management modes doze, nap, and sleep. These modes
reduce power at a global level when the processor is idle for an extended period of time. Since CMOS
circuits consume power during the charging and discharging of capacitances, reducing switching
activity saves power. At the architecture-level, two strategies to reduce switching activities are
Gray code addressing and cold scheduling of instructions [3]. Experimental results show that cold
scheduling reduces switching by 20 to 30%. The Gray code’s advantage over the binary code is that
each memory access changes the address by only one bit. Thus, a significant number of bit switches
can be eliminated using Gray code addressing. Also, by decomposing a finite-state machine into
several submachines, it is possible to selectively turn off portions of a circuit, thereby reducing the

switching activities [19].

Power-Conscious CAD Tools

The design of low-power systems cannot be achieved without good power-conscious CAD tools.
CAD tools are used at all levels of hardware design: behavioral, architectural, logic and physical.
For a detailed exposition of power-conscious CAD tools, the reader is referred to two tutorials by
Singh, et. al [5] and Pedram [16].

Compiler Techniques

Compiler design techniques contribute to energy saving in several ways. Lee and Tiwari [11] ad-
dress the problem of allocating memory to variables in embedded DSP (Digital Signal Processing)
softwares. The goal is to maximize simultaneous data transfers from different memory banks to
registers. In several DSP applications, two registers are loaded with the required data and an
arithmetic operation is performed. Loading two registers with a single double transfer instruction
draws a little more current than a move instruction. Both the instructions take one clock cycle
each. However, energy is saved by using the double transfer, because the double transfer instruction
loads the two registers in one clock cycle, whereas we need two clock cycles to sequentially load the
registers. Experimental results for a few applications on a Fujitsu DSP processor show that up to

47% of energy can be saved by this approach.



Instructions with memory operands have much higher energy costs than instructions with reg-
ister operands [27]. This suggests that energy can be saved by suitably assigning the live variables
of a program to registers. But, a processor has only a small number of registers. When the num-
ber of simultaneously live variables is larger than the number of available registers, some of the
variables must spill to memory. Register assignment for loop variables is important because loops
are typically executed many times. Kolson, et. al. [4] present an algorithm for optimal register
assignment to loop variables for embedded systems. This algorithm can be included in the code

generation part of a compiler.

Power Efficient Data Structures

Wuytack, Francky and De Man [21] propose a method of implementing set data types with minimum
power consumption. A set data type is an abstract data type widely used in communication systems
[10] and database systems. In a programming language, one can implement the set data type using
a variety of concrete data structures such as linked list (LL), binary tree (BT), array (AR), and
pointer array (PA). Thus, to implement the set operations, such as locate, insert, and remove a
record from a set, one has to manipulate the memory elements in a concrete data structure. It is
the memory accesses in the process of set operations that actually consume power. Thus, the power
consumption in set operations is a function of the number of memory elements used in implementing
a set data type, the number of read and write operations done in the implementation, and some
logic details such as capacitance of memory elements, voltage level, and frequency of operation.
The concrete data structures are compared on the basis of a filling factor, which is the fraction
of the locations that would be filled if implementation is in arrays. It has been shown that for
different levels of filling factor, different concrete data structures lead to low values of the power
cost function. For example, for filling factor greater than 60%, arrays are better than the LL, BT,

and PA structures in implementing power efficient set data type.

Doze Mode of Operation

The doze mode is an innovative approach to conserving energy [18]. It is very attractive in a
communication environment where a mobile system may occasionally send or receive messages. In
the doze mode, the clock speed is reduced and no user process is executed. Rather, a mobile host
simply waits for any incoming message. Upon receiving a message, the host resumes its normal
mode of operation. The energy saving due to this mode depends on the local computations on
a mobile and the pattern of communication between a mobile and a support station. Simulation

studies show that energy saving due to this mode spreads over a wide range of 2-98% [15].

Agent Based Computation for Energy Saving

Agent based computation is a relatively new idea in distributed computing [9], [14], [22], [25],
[26]. General agent-based distributed computing systems have been designed using the concept of

Linda’s tuple space [7], [8], [24]. Sato et. al. [22] have built a distributed autonomous system called



Noah (Network oriented application harmony) in their Mitsubishi laboratory. Though the purpose
of Noah is not to save energy, it demonstrates how agent based systems can be built using a tuple
space as the medium for process communication. Naik and Wei [15] discuss how energy-efficient
distributed algorithms in a mobile computing environment can be designed using a tuple space

managed on the fixed network of a mobile system.

Receiver Power Control

The receiver subsystem of a mobile station need not be active all the time. Most digital cellular
and cordless systems provide power cycling at the mobile units. Mobile stations can periodically
relax (power cycle) their receivers as a means of conserving energy. Since the receiver of a mobile
unit is not continuously ready to receive messages from the local support station (base station),
some kind of coordination between a base station and a mobile unit is necessary. Salkintzis, et. al.
[2] propose a page-and-answer protocol. Intuitively, the protocol works as follows. When a base
station has a message for a mobile unit, the base station sends a small paging packet to the mobile
unit. If the mobile unit receives the paging packet, that is if the mobile’s receiver is up, the mobile
sends an answer packet to the base station. Obviously, if the paging message is sent at a time when
the receiver is powered off, no answer packet is generated by the mobile and the base station will
once again page the mobile after some time. Upon receiving an answer packet, the base station

sends the desired message to the mobile unit.

3 Energy Saving Potential of Implementation Techniques

To study the energy saving potential of algorithm design strategies and implementation techniques,
we consider the C language. Though energy consumption of a software can precisely be computed
by summing up the energy requirements of all the machine instructions executed, we are interested
in computing the energy requirements of a software described in a high-level language. We selected
C because we can easily make a correspondence between a statement in C and a block of instructions
by studying some example assembly codes produced by a C compiler. The energy consumption in

such a block of instruction, in turn, is used in computing the energy consumption in a C program.

3.1 Energy Efficient Implementation Techniques

Measurement of energy costs of the instruction set of a few processors [27], [13] reveal that different
instructions in the same class of instructions incur different energy costs. In Table 1, we show the
energy cost of just a few instructions. By a class of instructions we mean a group of instructions
with similar functionalities. For example, a conditional jump and an unconditional jump fall in
the same class, whereas a jump and an add fall in different classes. Thus, we need to investigate
the possibility of generating less number of instructions and low-cost instructions from a high level
software. Toward this goal, we propose the following three strategies to reduce the energy cost of

a program.



P1: Assign live variables to registers.
P2: Avoid repetitive computation of addresses.

P3: Minimize memory accesses.

To observe the impacts of the above strategies on energy saving, we apply those to the Bub-
blesort algorithm. We present the straightforward implementation of the algorithm in Table 2(a),
and we apply the energy saving strategies to the algorithm in Table 2(b). The input to both the
implementations is represented by an array called 1ist. In the straightforward version, values of
the live variables n, i, j and temp are stored in the memory, whereas in the second version they
are stored in registers. Also, in the second version, we define a few extra variables to save some

values to avoid repetitive computations.

Table 1: Energy cost of a subset of instructions of the Intel 486DX2 processor.

Instruction Current(mA) Cycles || Instruction Current(mA) Cycles
MOV reg,imm 299.2 1 JCC imm - taken 372.2 3
MOV reg,reg 291.2 1 JCC imm - not taken 356.8 1
MOV reg,displ[base] 434.7 1 JMP imm 370.1 3
MOV reg, [base] [index] 409.0 2 NOP 275.7 1
MOV disp[basel,reg 560.1 1 ADD reg,imm 315.6 1
MOV disp[base],imm 404.8 2 ADD reg,reg 309.0 1
SAL reg,CL 302.7 3 ADD reg,dis[basel 400.2 2
CMP reg,imm 296.0 1 ADD disp[base],imm 382.4 4
CMP reg,reg 288.0 1 IMUL reg 287.7 13
IMUL [base] 305.0 13
IDIV [base] 278.9 20
IDIV [base] [index] 281.8 21

In step 4 of Table 2(a), the if statement checks if the two array entries 1ist [j-1] and 1ist [j]
array are to be swapped, and in steps 5 through 7, the swap is actually carried out. It may be
noted that in case of a swap, the two array elements are read twice.

In Table 2(b), we implement the condition checking and swapping steps in an efficient manner.
In steps 4 and 5, we first save the addresses of the two array elements in two register variables p1
and p2, so that these addresses need not be recomputed while swapping the two array elements.
However, it may be the case that no swapping is done in a certain iteration, in which case the two
assignments become unnecessary. In the following section, experimental results show that, on the
average, the two assignments contribute to energy saving. In step 6, we move the two array elements
list[j-1] and list[j] into two registers denoted by k1 and k2, respectively, and perform the
condition checking. If the swap condition is satisfied, we carry out the swap by simply moving
the contents of k1 and k2 into the appropriate locations, p2 and p1, respectively, without reading
list[j-1] and list[j] once again.

In Fig. 2, we illustrate the difference between the two versions of swap implemented in Table

2. A processor cannot directly move data from one memory location to another—the data must be



read into a register and then written to the destination memory location. An assignment statement
involving two memory locations needs a load and store instruction. Thus, in the straightforward
implementation of the swap operation, shown in Fig. 2(a), three load and three store instructions
are used. In the energy-efficient implementation of swap, illustrated in Fig. 2(b), we explicitly
load the contents of the desired memory locations into two registers, and swap them through the
registers needing only two load and two store instructions. This is verified by comparing their
assembly codes given in Table 3.

Due to the high-level programming techniques P1, P2, and P3, less executable code is gen-
erated by a compiler from the source code. As an example, we apply these techniques to the
bubblesort algorithm. The straightforward C representation of the bubblesort algorithm and the
revised algorithm with the three techniques incorporated are shown in Table 2(a) and Table 2(b),
respectively. For these two implementations of the bubblesort algorithm, the executable codes
generated by a compiler are shown in Table 3. The left column of Table 3 corresponds to the
straightforward implementation of Table 2(a), and the right column corresponds to Table 2(b).
Comparing the two columns of code, it is clear that the high-level programming techniques P1,
P2, and P3 lead to less executable code.

Remark 3 Though in general less code does not mean less energy cost, experimental results in
Section 3.3 show that less code obtained using the strategies discussed in this section leads to much

less energy cost.
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Figure 2: Swap Operation: (a) Straightforward, (b) Energy Efficient.

0. int list[10]; | 0. int 1ist[10];
1. int i, j, n, temp; | 1. register int i, j, n, ki1, k2, *pl, *p2;
2. for (i = n-1; i > 0; i--) | 2. for (i =n-1; i > 0; i--)
3. for (j =1; j <=1i; j+){ | 3. for (j = 1; j <= 1i; j++){
4. if (list[j-11 > 1list[j1){ | 4. pl = list+j-1;
5. temp = list[j]; | 5. p2 = list+j;
6. list[j] = list[j-11; | 6. if ((k1 = *p1) > (k2 = *p2)){
7. list[j-11 = temp; | 7. *p2 = kl; *pl = k2;
} | }
} | }
(a) (b)

Table 2: Bubble Sort: (a) Straightforward implementation, (b) Application of P1, P2, and P3.



y y
————— Straightforward Implementation ----- mov %00, %01
LL12: st Y%ol, [/fp-424]

1d [%£p-601, %00 b .LL20

add %00,-1,%01 .L21: :

st Joil, [lfp-424]

.LL20: Energy Efficient Implementation-----
1d [Ufp-4241,%00 add %12,-1,%10
cmp %00,0 .LL2:
bg .LL23 cmp %10,0
nop bg .LL5
b .LL21 nop
nop b .LL3

.LL23: nop
mov 1,%00 .LL5:
st %00, [fp-428] mov 1,%11

.LL24: .LL6
1d [lfp-4281,%00 cmp %11,%10
1d [%fp-4241,%01 ble .LL9
cmp %00, %01 nop
ble .LL27 b .LL7
nop nop
b .LL25 .LLO:
nop add %fp,-416,%17

.LL27: mov %11,%00
1d [Yfp-4281,%00 s11 %00,2,%01
mov %00, %01 add 417,%o01,%17
s1ll %o1,2,%00 add %17,-4,%17
add Yfp,-16,%o1 add /fp,-416,%i0
add %o1,%00, %00 mov %11,%00
1d [Ufp-4281,J%o1 s11 %00,2,%01
mov %o1,%02 add %i0,%01,%i0
s1ll %o02,2,%o01 1d [4171,%14
add Y%fp,-16,%02 mov %14, %00
add Y%o1,%02,%01 1d [%io0l,%15
1d [%00-4041,%00 mov %15,%01
1d [%o1-4001,%01 cmp %00, %01
cmp %00,%01 ble .LL10
ble .LL28 nop
nop st %14, [%i0]
1d [%fp-4281,%00 st %15, [%417]
mov %00,%o01 .LL10:
s1ll %o1,2,%00 .LL8:
add %fp,-16,%01 add %411,1,%11
add %00,%01,%00 b .LL6
1d [%00-4001,%01 nop
st %o1, [hfp-432] \LL7:
1d [%fp-428],%00 .LL4:
mov %00,%o01 add %10,-1,%10
s1ll %o1,2,%00 b .LL2
add Y%fp,-16,%o1 \LL3:
add %00,%o01,%00
1d [%£p-428],%o1
mov %o1,%02
s11 %02,2,%01 .
add Yfp.-16, %02 Table 3: Assembly codes from the two versions
add %02,%o1,%01
1d [ho1-4041,%02 of Bubble sort.
st %02, [%00-400]
1d [%£p-428],%00
mov %00,%01
s11 Y%o1,2,%00
add Yfp,-16,%o1
add %o1,%00,%00
1d [%fp-432]1,%o1
st %o1, [%00-404]

.LL28:

.LL26:
1d [%£p-428],%o1
add %o1,1,%00
mov %00,%o1
st Y%o1, [/fp-428]

b .LL24
nop

.LL25:

.LL22:

1d [Yfp-4241,%o01
add Y%ol,-1,%00



3.2 Computation of Energy Cost

We explain how to compute the energy cost of a program in C. The basic idea is to make a link
between a sequential block of C statements and the corresponding block of instructions produced by
a C compiler. Intuitively, by summing up the energy costs of the instructions in a sequential block,
we obtain the energy cost of the sequential block of C statements. The instructions generated from
the bubblesort algorithm of Table 2(b) are presented in a block format in Table 4(a). There are
nine blocks of instructions BLOCKO through BLOCK8. Precise computation of energy costs becomes
more involved for a control statement, because the instructions corresponding to such a statement
are not found as a contiguous block. For example, corresponding to the for statement in line 2 of
Table 2(b), there are three blocks of instructions BLOCKO, BLOCK1, and BLOCK7. Also, these three
blocks of instructions do not execute for an equal number of times—BLOCKO executes only once,
whereas BLOCK1 executes for n — 1 times.

From the instructions generated by a C compiler, we can identify a block of instructions cor-
responding to a sequence of C statements, and several blocks for one C statement. For example,
BLOCK4 corresponds to the C statements in lines 4, 5, and 6 of Table 2(b). Generation of multiple
blocks of instructions for one C statement has already been explained in the context of the for
statement above. From the knowledge of the energy cost of an instruction, we can compute the
energy cost of a block of instructions. Thus, the total energy cost of an algorithm can be computed
by suitably placing counting statements using the energy costs of blocks of instructions in the al-
gorithm. We compute the energy cost of the bubblesort algorithm of Table 2(b) in Table 4(b).
In Table 4(b), the blocks BLOCKO through BLOCKS8 represent the energy costs of the corresponding
blocks of instructions in Table 4(a).

Thus, we compute the average energy cost of an algorithm in three steps as outlined below.

e Given an algorithm in C, identify a correspondence between the C statements and the blocks

of instructions produced by a compiler.

e Using the block structures identified above, insert energy counting statements into the algo-

rithm.

e Run the algorithm in a loop for many times using a variety of inputs, and compute the average

energy cost.

In this approach, identification of instruction blocks and insertion of statements to accumulate
the energy cost of an algorithm is done by hand. This approach is useful to study the energy costs
of small programs. However, in our opinion, this needs to be done by an energy cost-conscious
compiler which is outside the scope of this paper.

In the computation of energy cost of a program, the basic cost of an instruction is represented
by the product of the number of clock cycles taken by the instruction and the average current
drawn during that period. Thus, the energy cost of an instruction is represented in ampere-cycles
unit. By dividing the ampere-cycle cost of a program for a given input by the clock frequency in

cycles/second of the processor, we obtain the energy cost of the program in ampere-seconds.
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add %12,-1,%10 } BLOCKO

cmp %10,0
bg L5
nop

b .LL3

BLOCKL

BLOCKS

nop

L6
cmp %I1,%10
BLOCK3
ble L9

nop

LLS:
mov 1,%11 } BLOCK2

b LL7 ]
nop
LL9:
add %fp,-416,%I7
mov %l1,%00
sll 9%00,2,%00
add %17 %01 9617
add %I7,-4,%I7
add %fp,-416,%i0
mov %l1,%00
sll %00,2,%01
BLOCK4
add %i0,%01,%i0
14 [9%17),%l4
mov %l4,%00
Id [%i0],%I5
mov %I5,901 it list{10];
cmp 9%00,%01 register int i, j, n, k1, k2, *pL, *p2;
ble LL10 double energy =0;
nop energy += BLOCKO;
St %I4,[%i0] BLOCKS for (i=n-1;i>0; i) {
st %15, [%I7] energy += (BLOCK1 + BLOCK2);
LL10: for(j=1;j<=i;j++){
energy += (BLOCKS + BLOCK4);
L p1 = list+-1;
add %I1,1,9%I1 p2 = list+j;
BLOCKS
b .LL6 } if (k1 = *p1) > (k2 = *p2)) {
energy += BLOCKS;
nop 2=
2= ki;
Az it
LL4: }
add %10,-1,%0 } BLOCK? energy += BLOCKS;
b .LL2 }
energy += BLOCK;
LL3: }
energy += BLOCKS;
@ (b)

Table 4: (a) Blocks of Instructions generated from Bubblesort, (b) Computing Energy Cost.

3.3 Impact of Energy Saving Techniques

In this section, we apply the energy saving techniques P1, P2, and P3 to a number of algorithms
and study their impacts on energy saving. As examples, we apply these techniques to the bubble-
sort algorithm of Table 2(a), Table 2(b), Table 5(a), and Table 5(b). A program’s energy cost is
computed using the strategy explained in Section 3.2. We experiment algorithms for three different
classes of problems, namely sorting, dynamic programming, and matrix operations. In particu-
lar, we choose bubblesort, matrix chain product, matrix multiplication, and Gauss elimination

algorithms.

int list[10];

register int i, j, n, k1, k2;

int list[10];

register int i, j, n, temp;

i > 0; i--){
for (j = j <=1; j+H){
if ((k1 = list[j-11) > (k2 = list[j1)){
list[j] = ki;
list[j-1] = k2;

for (i = n- for (i = n-1; 1 > 0; i--){
for (j = 1; j <= 1i; j++){
if (list[j-11 > list[j1){
temp = list[j];

list[j] = list[j-1]; 1list[j-1] = temp;

1;
1;
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Table 5: Bubble Sort: (a) Using techs. P1 and P3, and (b) Using P1.

For the bubblesort algorithm, we show its energy cost in Fig. 3. Fig. 3 shows that technique
P1 alone saves 46% of energy. Both P1 and P3 together save 54% of energy, and all three
techniques applied together save up to 59% of energy. In case of the matrix chain product, matrix
multiplication, and Gauss elimination algorithms, Figures 4, 5, and 6 show energy savings up
to 27%, 46%, and 48%, respectively. The suitability of a particular technique depends on the

algorithms. For example, we cannot apply P2 to the matrix multiplication algorithm.
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Figure 3: Impact of energy saving techniques demonstrated using Bubblesort.

Matrix Chain Product (Sedgewick, Page 600)
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Figure 4: Impact of energy saving techniques demonstrated using Matrix Chain Product.

3.4 Impact of Algorithm Design Techniques on Energy Cost

In general, any strategy that can reduce the running time of an algorithm is also useful in saving

energy. Algorithms, for the same problem, with identical asymptotic complexity differ in their
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Matrix Multiplication (Sedgewick, Page 532)
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Figure 5: Impact of energy saving techniques demonstrated using Matrix Multiplication.

Gauss Elimination (Sedgewick, Page 539)
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Figure 6: Impact of energy saving techniques demonstrated using Gauss Elimination.
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energy costs depending on the constant factor behind the big-O. Thus, to design an energy efficient
algorithm, we need to reduce not only its asymptotic complexity, but also the constant factor. So
far the idea of reducing the asymptotic complexity has received a great amount of attention and this
area is quite mature. However, reducing the constant factor side has been largely ignored, which
is vital to saving energy. Reducing the constant factor is important in the sense that bringing a
constant factor from say 4 down to 2 leads to a 50% energy saving.

Intuitively, loop control contributes to the asymptotic complexity, whereas the number of state-
ments in a loop affects the constant factor. Therefore, reducing the number of statements in each
loop is likely to reduce the constant factor. Let us consider the sorting problem. Assuming that
the input is an array, reducing the number of array accesses, that is the read and write operations,
can potentially reduce the constant factor. In Fig. 7, we show the energy costs of three sorting
algorithms, namely quicksort?, mergesort, and heapsort, with identical asymptotic complexity, say
O(nlgn). Tt is apparent that the constant factor of quicksort is the lowest among the three. Pre-
cisely, it is about half of that of the heapsort. Also, the constant factor of the mergesort is about
0.85 times that of the heapsort. According to our observation, this is due to quicksort’s relatively
less access, that is read and write operations, of the input array. To confirm our observation, we
count the number of array accesses in the three algorithms and show the result in Fig. 8. This
follows from the fact that the merge and heapsort algorithms have more read/write operations per
iteration than those in the quicksort.

As another example, we study the impact of algorithm design techniques on energy saving using
the pattern matching problem. We consider four algorithms, namely the brute-force approach,
Rabin Karp (RK) algorithm, Boyre Moore (BM) algorithm, and the Knuth, Morris and Pratt
(KMP) algorithm, whose energy costs are shown in Fig. 9. It is clear that the RK algorithm is the
most expensive one and the BM algorithm is least expensive. This is because of two reasons: (i) the
RK algorithm uses the modulo operation, which costs more than 20 times than a simple operation
such as an addition, in the loop; and (ii) the BM algorithm uses an elegant way of skipping while
comparing the pattern against the input string. Due to the efficient skipping, the algorithm accesses
the input fewer number of times.

We also show the impact of the energy saving techniques on the pattern matching algorithms in
Fig. 10. Since the RK algorithm is anyway a lot more expensive than the others, we do not show
it in Fig. 10. The figure shows that energy saving in the range of 18 — 29% can be achieved. In
case of the BM algorithm, the energy saving techniques do not save significant amount of energy.

In spite of this, the BM algorithm is the best choice because overall it is the least expensive one.

3.5 Impact of Implementation Strategies on Energy Cost

Usually, after an algorithm is designed, not much attention is paid to the style of implementations.
In terms of energy saving, the constant factor behind the big-O of an algorithm is important, and

different implementation techniques may lead to different constant factors. We investigate several

In our experiment, we use randomly generated input data leading to an average behavior of the algorithm.
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Figure 10: Energy cost of different algorithms for the same problem (pattern matching).

factors influencing the constant factors in what follows.

3.5.1 Recursion vs. Iteration

For some problems, algorithms are designed using both recursive and iterative styles. An advantage
of recursive representation is that it is compact. However, due to the necessity of a stack managed
by the system, it is often the case that a recursive algorithm takes longer time than its iterative
counterpart. In the following, we compare the energy costs of recursive algorithms with those of
iterative algorithms—with and without stacks.

The energy costs of two versions of quicksort—a recursive one and an iterative one using a
stack at the user level—are compared in Fig. 11. The iterative one is beaten by the recursive one
because of using a stack at the user level. One the one hand, managing a stack at the user level
requires implementing the push and pop functions. On the other hand, the idea of stack involved
in a recursive algorithm is efficiently managed by the compiler using static information about a
procedure, such that the stack is basically implemented as a simple procedure call at the instruction
level.

The energy costs of two versions of mergesort—a recursive one and an iterative one without
using a stack—are compared in Fig. 12. Because the iterative one does not need a stack, it is less
expensive.

This suggests that an iterative algorithm without using a stack tends to be better than its
recursive counterpart. Comparing Figures 11 and 12, we see that the recursive version of the
quicksort costs less energy than the iterative version of the mergesort. Thus, one might ask if one
can design an iterative version of the quicksort without using a stack. The answer is that one
cannot avoid using a stack, because the loop control parameters (the boundaries of each sub-list)

must be remembered, rather than be computed as in the case of the mergesort.
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3.5.2 Various Coding Techniques

We show how coding the same algorithm even in slightly different ways can lead to widely varying
energy costs. Those slightly varying codes can easily be overlooked, but their energy costs may
significantly be different. We use the KMP pattern matching and quicksort algorithms to explore
this aspect. In Table 6, we show two different codings of the KMP algorithm whose energy costs
are shown in Fig. 13. It is apparent that the code in Horowitz, Sahni and Anderson (HSA) [6]
consumes 31% less energy than the code in Sedgewick [23]. The reason behind this is that in the

former case each iteration executes about one or two statements less than the latter case out of

about five or six statements depending on the loop condition.

int pmatch(char #*string, char *pat) {

/* KMP algorithm */
int i =0, j = 0;
int lens = strlen(string);
int lenp = strlen(pat);
while (i < lens &% j < lenp) {
if (stringl[i] == pat[jl) {
it+; j++;
}
else if (j == 0) i++;
else j = failure[j-1]+1;
}

return ((j == lenp) 7 (i-lenp)

(a)

Table 6: KMP Algorithm: (a) Horowitz, Sahni and Anderson, P. 89, (b) Sedgewick, P. 282.
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int kmpsearch (char *p, char #*a){

int M = strlen(p), N = strlen(a);

I
I
I
I
I
I while ((j >=0) && (alil '= p[j1)) j
| if (j == M) return i-M;else return i;
| }
I
I
I
I
-5 |
I
I (b)

0; j <M& i < N; i++, j++)

next[j];

Figure 13: Energy cost of different coding techniques applied to the KMP algorithm.
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Fig. 14 shows the energy costs of two different codings of quicksort. The code in Sedgewick
[23] consumes about 14% less energy than that in HSA [6]. This is because of two reasons. First,
the for loop in the Sedgewick code allows one less conditional check to be done than the HSA
code using the while construct. Second, the while statements in the Sedgewick code generate a
segment of more efficient instructions than the HSA’s do-while statements. More precisely, the
former generates one less load instruction. It is our belief that by carefully designing the control

flow in a program, less number of statements are executed.
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Figure 14: Energy cost of different coding techniques applied to the same algorithm (quicksort).

3.5.3 Different Input Representations

In this section, we show that even input formats can also significantly affect the energy cost of a
program. We choose the depth-first search and mergesort algorithms for this study. In case of the
depth-first search problem, an input graph can be represented by its adjacency matrix or adjacency
list. Because of the different input formats, the algorithms have to be designed in different ways,
and it turns out that the one with adjacency list input performs better in cases of sparse graphs.
Figure 15 demonstrates this aspect in terms of energy cost. The suitability of an algorithm depends
on the sparsity factor, where sparsity factor is intuitively defined as the ratio of the number of edges
in an N-node graph to N(N —1)/2.

It is apparent from Fig. 16 that in the mergesort, algorithms with array inputs outperform
those with linked list input. In our experiment we used only integer data. However, for large
record data type, we believe that the algorithms with linked list input will perform better. This is
because swapping the records, which is a lot more expensive than manipulating the pointers of the

list data, will be avoided.
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4 Concluding Remarks

In this paper we addressed how by employing various techniques at the software implementation
level, we can save energy in power-conscious systems. In particular, we presented three energy
saving techniques, namely assigning live variables to registers, avoiding repetitive address compu-
tations, and minimizing memory accesses. Using the energy cost of individual instructions, we
proposed a way to compute the energy cost of a high level program in C. We applied these tech-
niques to algorithms for sorting, matrix chain product, matrix multiplication, Gauss elimination,
and pattern matching. These techniques lead to energy savings from 18% to 60%.

We also studied the impact of algorithm design and implementation techniques with various
formats of inputs on energy saving. From the viewpoint of energy saving, we need to reduce the
constant factor in the complexity of an algorithm. Using a few sorting and pattern matching
algorithms with identical asymptotic behavior, we showed how different constant factors lead to
different energy costs. In case of sorting, one can save up to 50% of energy by choosing the quicksort
over the heapsort, and in case of pattern matching, one can save up to 95% of energy by using the
Boyre-Moore algorithm instead of the Rabin-Karp algorithm. Among the many possible ways of
implementing an algorithm, we selected three general aspects, namely recursion versus iteration,
different ways of coding an algorithm, and input formats. Experimental results show that an
iterative implementation without using a stack performs better than a recursive one which in turn
performs better than an iterative implementation using a stack. Using this knowledge, one can save
energy in excess of 35%. By carefully designing the control flow in a program, it is possible to save
energy. In the two versions of the quicksort and pattern matching algorithms, energy savings up to
14% and 31%, respectively, can be achieved. We also showed how different input representations,
such as array, link-list, adjacency matrix, and adjacency list, affect the energy costs.

Minimizing the energy cost due to a high-level program is a new research idea. In this paper,
we studied how different approaches to software design can be exploited in reducing the energy

costs.
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