
ECE 406 – Algorithm Design & Analysis
(Winter 2011)

Instructor: Mahesh V. Tripunitara, tripunit@uwaterloo.ca, x32864, EIT 3112
Prerequisite: ECE 250 (Data Structures) or equivalent (e.g., SE 240)
Textbook: “Algorithm Design,” Kleinberg and Tardos

http://www.aw-bc.com/info/kleinberg/

An algorithm is a method that solves a problem. They are at the foundations of computing.
It is important that every practitioner of computer engineering understands how algorithms are
designed, and how to analyze them for correctness and efficiency. It is important also to be able
to distinguish intractable problems from ones that are tractable so one does not naively seek
efficient solutions when none may exist. For cases that are intractable, it is important to know
how to design approximate solutions that satisfy bounds on correctness and efficiency. Industry
has long recognized the critical importance of algorithms that are correct and efficient.

Topics: Models of computation, kinds of problems (e.g., decision, optimization) and relationships
between them, complexity classes (e.g., L, P, NP, PSPACE), analysis techniques for P, hardness
and completeness from the standpoint of complexity, correctness (soundness and completeness)
of an algorithm, average-case analysis for search algorithms, average-case analysis for hash ta-
bles, trees (including B-trees and its variants) and corresponding analysis, graph algorithms,
optimization problems and dynamic programming, other topics (e.g., string matching, number
theoretic algorithms, computational geometry), NP-completeness, approximation algorithms.

Grading: There will 2 midterms and a final that comprise the final grade. Midterm 1: 20%,
Midterm 2: 30%, Final: 50%. There will be weekly homework problems that are assigned. The
homework assignments will not be graded. However, I will discuss them in class, and provide
solution sketches for them. The midterms and exams will be based heavily on the lectures and
homework assignments. The midterms and final will be open book, open notes, but with no
electronic materials allowed.

Example Problems

1. (a) Write pseudo-code for an efficient algorithm that solves the following decision problem.
Inputs: (i) a sorted array of numbers, A, (ii) a number, n, and, (iii) a number, r. Output: ‘true,’
if there exists a in A such that a ∈ [n− r, n + r], and ‘false,’ otherwise.

(b) State a correctness property, and prove that your algorithm is correct.

(c) What are the best, average and worst-case time-complexities of your algorithm?

2. Show that f (n) is bounded from above by a polynomial if and only if lg (f (n)) = O (lg n).

3. In a hash table with m slots and n elements, in which collisions are resolved by chaining, show
that a search takes Θ(1 + n/m) on average, assuming uniform hashing.

3. You have access to an oracle that works as follows. Given a set of integers A and an integer m,
the oracle answers ‘true’ if A has a subset, the sum of whose entries is m, and ‘false’ otherwise.
Assume that the oracle answers a query in O(1) time. Give an algorithm that takes as input a
set S of integers and an integer k, and outputs a subset of S, the sum of whose entries is k, if
such a subset exists. Otherwise it outputs ‘no such subset.’ Your algorithm should run in O(n)
time, where n = |S|.

4. Prove that an AVL tree with n nodes has height O(lg n).

5. Suppose that the keys {1, 2, . . . , n} are inserted into an empty B-tree with minimum degree 2.
How many nodes does the final B-tree have?

6. Let G = (V,E) be an unweighted, directed graph. Let {u, v} ⊆ V . Give a linear-time algorithm
to compute the number of shortest paths from u to v. Two paths are distinct if one contains a
vertex that is not in the other.

7. Let G = (V,E) be a connected, undirected graph with |V | ≥ 3. A separation edge of G is an
edge whose removal disconnects G. A separation vertex is a vertex whose removal disconnects
G. Prove or disprove: If G has a separation vertex, then it has a separation edge.

8. Suppose you have one machine and n tasks, a1, . . . , an. Each task aj has a processing time
tj , a profit pj and a deadline dj . The machine can process only one task at a time, and task aj

must run uninterruptedly for tj consecutive time units. If you complete task aj by its deadline
dj , you receive profit pj , but if you complete it after its deadline, you receive no profit. Show
that the problem of determining whether a profit of at least p can be achieved given n such jobs
is NP-Complete.

9. Show that the problem from Question 8 is in P if we assume that every tj is an integer between
1 and n.

10. Reduce the shortest path problem for graphs to the longest path problem. Give an approxi-
mation algorithm for the longest path problem.

