
An Empirical Assessment of Approaches to Distributed
Enforcement in Role-Based Access Control (RBAC)

Marko Komlenovic
mkomlenovic@uwaterloo.ca

Mahesh Tripunitara
tripunit@uwaterloo.ca

Toufik Zitouni
tzitouni@engmail.uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT

We consider the distributed access enforcement problem for
Role-Based Access Control (RBAC) systems. Such enforce-
ment has become important with RBAC’s increasing adop-
tion, and the proliferation of data that needs to be pro-
tected. We assess six approaches, each of which has either
been proposed in the literature, or is a natural candidate for
access enforcement. The approaches are: directed graph,
access matrix, authorization recycling, CPOL, Bloom filter
and cascade Bloom filter. We consider encodings of RBAC
sessions in each, and propose and justify a benchmark for
the assessment. We present our results from an empirical as-
sessment of time, space and administrative efficiency based
on the benchmark. We conclude with inferences we can
make regarding the best approach to access enforcement for
particular RBAC deployments based on our assessment.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—
Access Controls; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed Applications; D.4.8
[Operating Systems]: Performance—Measurements

General Terms

Security, Performance

Keywords

Role-Based Access Control, Access Enforcement, Efficiency,
Empirical Assessment

1. INTRODUCTION
Modern enterprises generate and archive large amounts of

data. Such data needs to be protected by access control sys-
tems. Access control deals with the provision of regulated
accesses to resources by principals and is one of the most
important aspects of security. The proliferation of data re-
quires access control systems to scale to tens of thousands
of resources and permissions [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’11, February 21–23, 2011, San Antonio, Texas, USA.
Copyright 2011 ACM 978-1-4503-0465-8/11/02 ...$10.00.

Figure 1: An Example RBAC policy. Users are
shown in diamonds, roles in ovals and permissions
in rectangles. Edges represent user-role, role-role
and role-permission assignments. In the example,
the user Alice is assigned to the role Project Man-
ager and is therefore authorized to the permission
Team Organization. She is also authorized to the
role Developer, and therefore to Code Modification.

An important aspect of this scalability issue is the effi-
ciency of access enforcement. Access enforcement is the pro-
cess by which an entity called a reference monitor makes an
‘allow’ or ‘deny’ decision when a principal requests access
to a resource. We consider access-enforcement in the con-
text of Role-Based Access Control (RBAC) [2, 3], which is
increasingly becoming the de-facto standard for access con-
trol in enterprise settings. In RBAC, rather than assigning
a user directly to a permission, we assign a user to roles, and
the roles to permissions. Also, the roles are associated with
one another in a partial ordering called a role-hierarchy. An
example of an RBAC policy is shown in Figure 1. There
has been considerable research on RBAC. However, to our
knowledge, there is very little work on efficient, scalable
access-enforcement.

An approach to the problem is to distribute access en-
forcement across several reference monitors. With such an
approach, a single, monolithic reference monitor is no longer
a performance bottleneck. Such distributed enforcement,
however, can be at odds with what is touted as one of the
main benefits of RBAC – the ease of administration. Wei
et al. [4] have proposed an architecture for distributed en-

121

Figure 2: An architecture, reproduced from prior
work [4, 5], for distributed access-enforcement in
RBAC, and an associated process-flow. Our focus
is on the Access enforcement (data) structure that
is received by the SDP in Step 2, and that it uses to
make access decisions.

forcement that attempts to reconcile these two issues (see
Figure 2, which is a reproduction of corresponding figures
from prior work [4, 5]).

In the architecture, the Policy Decision Point (PDP) is a
centralized entity at which the RBAC policy is maintained.
This centralization eases administration. Enforcement is
performed at Policy Enforcement Points (PEPs). PEPs are
aided by Secondary Decision Points (SDPs). An SDP can
be seen as a cache of a portion of the RBAC policy from the
PDP. In Figure 2 we show a typical chronological flow of
events. In Step 1, a user activates a session at a PEP/SDP.
In RBAC, users exercise permissions in sessions. A session is
associated with a set of roles to which the user is authorized
in the RBAC policy. In the example in Figure 1, users Alice
and Bob may activate sessions sa and sb respectively. Al-
ice may associate session sa with the role Software Engineer,
which authorizes sa to the permissions Project Planning and
Code Modification. Bob may associate sb with the roles
Software Engineer and IT Consultant, which authorizes sb

to the permissions Project Planning, Code Modification and
Project Review.

The request to activate a session propagates to the PDP,
which makes the decision on whether it is allowed. If it
is, in Step 2, the PDP communicates a data structure to
the SDP that the latter uses in Steps 3, 4 and 5 to make
decisions on access requests that pertain to that session,
that are communicated to it by the PEP.

The question we seek to answer is: what are the data
structure and associated algorithms we should use in an
SDP? There is evidence that “general purpose” approaches,
such as storing an access control policy in a database and
using the querying capabilities of the database, do not lend
themselves to efficient access enforcement [6]. Consequently,
it is necessary to carefully consider the approach that is used.
In answering the question, we evaluate an approach along
the following three axes.

Time efficiency – our primary goal is to make the SDP
time efficient. An access check should be fast.

Space efficiency – we consider also the space that a par-
ticular data structure may take at the SDP. Space and
time efficiency can be at odds; this is the classical time-
space trade-off.

Administrative efficiency – with this, we ask whether a
particular data structure at the SDP lends itself to
easy administration in the propagation of administra-
tive changes that are made at the PDP, to the SDP.
We quantify this as the time it takes to update the
SDP when an administrative change is made to the
RBAC policy at the PDP.

Our approach to answering the question is to empirically
assess six candidates. A challenge in conducting an empiri-
cal assessment is the lack of a meaningful benchmark. The
establishment of meaningful benchmarks is seen as an im-
portant milestone in several settings in computing. We pro-
pose and adopt a benchmark in this paper (see Section 4).
Our objective is for what we propose to serve as a macro-
benchmark [7] – one that has RBAC policies and session
profiles that are realistic.

In summary, our contribution is an assessment of six ap-
proaches to distributed access enforcement in the context of
RBAC using a meaningful benchmark that we propose. In
Section 3.1, we justify our choice of the six approaches.

The remainder of the paper is organized as follows. In
the next section, we discuss related work. In Section 3, we
describe the six approaches that we assess. In Section 4, we
describe our benchmark and rationalize it. In Section 5, we
present our assessment and results from it. We conclude in
Section 6 with a “good,”“fair” and “poor” rating of each of
the six approaches along the three axes we mention above.

2. RELATED WORK
There is large amount of research in distributed access

control, and in distributed RBAC in particular. However,
there is relatively little work on efficient access enforcement
in these contexts. To our knowledge, CPOL [6] is the state of
the art in access enforcement in distributed settings. CPOL
employs caching and a structure called an AccessToken that
is application-specific to speed-up access enforcement. The
work on CPOL points out also that simply using database
querying does not suffice for fast access enforcement. Our
work is close also to those of Wei et al. [4], Tripunitara and
Carbunar [5] and Liu et al. [8], that address the access en-
forcement problem in RBAC. Wei et al. [4] propose the ar-
chitecture that we adopt in this paper (see Figure 2). In
that context, they propose authorization recycling which is
one of the approaches that we assess. Tripunitara and Car-
bunar [5] adopt the architecture of Wei et al. [4] and propose
an approach called the cascade Bloom filter for access check-
ing. Their focus is fast and space efficient access checking
for RBAC in low-capability devices. Liu et al. [8] propose a
technique that they call transformations for access checking
in RBAC. We see a transformation as encoding RBAC in an
access matrix; it is one of the approaches that we assess.

122

3. THE APPROACHES
We compare six approaches in this work. They are: di-

rected graph (Section 3.2), access matrix (Section 3.3), CPOL
(Section 3.4), authorization recycling (Section 3.5) and the
Bloom filter and the cascade Bloom filter (Section 3.6). For
each approach, we discuss how we encode RBAC sessions in
the particular data structure. We begin in Section 3.1 with
a justification of the six choices.

3.1 Basis for the Choice of Approaches
Our primary objective is to compare four approaches from

the research literature that have been proposed for distributed
access enforcement. These are the access matrix [8], CPOL [6],
authorization recycling [4] and the cascade Bloom filter [5].
Of these, the last two have been proposed specifically in the
context of distributed access enforcement for RBAC. Their
performance has been assessed only in isolation, and not
relative to other approaches.

The access matrix [9, 10] is a well-established syntax for
access control, with a long history. Liu et al. [8] propose its
use (somewhat indirectly) for access control in RBAC. They
do not consider RBAC sessions; we devise and adopt a par-
ticular encoding (see Section 3.3). In the work on CPOL [6],
only an encoding of a trust management language in CPOL
has been presented, and its performance has been assessed
in that context only. The main elements of CPOL are suffi-
ciently general that it can be used for RBAC (see Section 3.4
for our encoding). Consequently, we argue that it is an im-
portant candidate for access enforcement in RBAC.

The directed graph and the Bloom filter are two other can-
didates we consider. A natural representation of RBAC is as
a directed graph. Consequently, it behooves us to consider
it. The Bloom filter is also a meaningful candidate given
that the cascade Bloom filter [5] is an extension to it, and
an empirical argument over the use of the cascade Bloom
filter over the “vanilla” Bloom filter has not been made be-
fore.

Certainly, one can think of other data structures that may
be used for access-enforcement in RBAC. For example, one
could encode RBAC sessions as Access Control Lists (ACLs)
for the purpose of enforcement. However, we argue that our
work gives a broad coverage of the possible approaches with
valuable insights for other possible approaches as well. For
example, an ACL is an encoding of an access matrix, which
is one of the candidates we consider. There are also similar-
ities between ACLs and the directed graph in the context of
RBAC – both approaches are linear from the standpoint of
time efficiency.

3.2 Directed Graph
An RBAC policy can be seen as a directed graph with

a particular structure – it is acyclic, and its vertices can
be partitioned into three sets (users, roles and permissions),
with constraints on edges between the sets (e.g., the only
outgoing edges from users are to roles). A natural data
structure to use in the SDP, consequently, is a directed
graph. When a session is activated, the PDP communicates
to the SDP, in Step 2 of Figure 2, a directed graph, G.

Let bG be the complete RBAC policy at the PDP perceived
as a directed graph. Let S = {s1, . . . , sn} be the set of
sessions that are active at a PEP, and Ri = {r1, . . . , rmi

} be
the set of roles that are associated with the session si. Let
P = {p1, . . . , pk} be the set of permissions that are reachable

in bG from the roles in
S

i
Ri. Then the vertices of G are

S∪P ∪R1 ∪ . . .∪Rn. The edges of G are {〈si, rj〉 : rj ∈ Ri}
∪ E(I) where E(I) is the set of edges of the subgraph I of
bG that is induced by the vertices in P ∪R1 ∪ . . .∪Rn. That

is, G is similar to a subgraph of bG, except with sessions in
place of users, and the edges induced by the vertices that
are relevant to the sessions.

The access 〈s, p〉 is allowed if and only if the vertex p is
reachable from s in G. We represent G as an adjacency list,
which is a standard representation of a graph [11]. As an
example, consider the sessions sa and sb from Section 1 for
the RBAC policy in Figure 1. The session sa is activated
by Alice and is associated with the role Software Engineer.
The session sb is activated by Bob and is associated with the
roles Software Engineer and IT Consultant. The resultant
directed graph at the SDP is shown in Figure 3.

3.3 Access Matrix
The access matrix [9, 10] is a canonical and intuitively

appealing representation for an access control policy. Con-
sequently, we consider it a natural candidate as the data
structure in an SDP. Our encoding of RBAC sessions in an
access matrix is straightforward. Rows in the matrix are
indexed by sessions, and columns are indexed by permis-
sions. An entry in the matrix is a bit. An access request,
〈s, p〉 is an index into the matrix, and can be checked in
constant-time. The access matrix that results at the SDP
for our example sessions sa and sb from the previous section
is shown in Figure 3.

3.4 CPOL
CPOL [6] is an approach to distributed access enforcement

that has been proposed in the context of trust management.
In trust management, the policy is distributed as well. Also,
the syntax of policies is different from RBAC. Consequently,
we need to provide an encoding of RBAC sessions in CPOL.

In CPOL, an AccessToken is used to determine whether
access should be granted or not. In the original design [6],
an AccessToken is opaque – its structure is specific to an ap-
plication. A policy comprises Rules; each Rule contains an
AccessToken. To check whether a particular access should
be granted, we check the set of Rules and determine whether
any of them contains an AccessToken that grants the access.
For faster access enforcement, it is possible to aggregate Ac-
cessTokens in a Cache which is a keyed table.

Our encoding of RBAC in CPOL is as follows; we argue
that this is the most natural encoding. We implement the
SDP as a CPOL Cache. The key into the Cache is a ses-
sion identifier. Each AccessToken is a set of permissions to
which the session is authorized. Our study of the original
implementation of CPOL suggests that there are two impor-
tant aspect that affect the time efficiency of access checking:
the manner in which the set of permissions is implemented
within an AccessToken, and caching.

In our example of the sessions sa and sb for the RBAC
policy from Figure 1 from the previous sections, we would
have two CPOL Rules, Rulea and Ruleb, which contain
AccessTokena and AccessTokenb respectively. AccessTokena

is {Project Planning, Code Modification}. AccessTokenb is
{Project Planning, Code Modification, Project Review}. The
cache has keys sa and sb, for the two access tokens.

In our reimplementation of CPOL, we have adhered closely
to the original implementation. In Section 5, we discuss

123

Figure 3: The directed graph, access matrix and cascade Bloom filter with 2 levels for our example sessions
sa and sb that are discussed in the text, for the RBAC policy in Figure 1. (We discuss the encodings for
CPOL and authorization recycling in Sections 3.4 and 3.5 respectively.) For the cascade Bloom filter, we
assume that three indexing functions are used for Level 1, and two are used for Level 2. The Negation Bit
is set, which indicates that A1 is the set of authorizations that are disallowed. A2 is the set of false positives
in B1, and A3 ⊆ A1 is the set of false positives in B2.

why we have based our assessment on a new implementa-
tion. Our implementation compares in performance to the
original (see Section 5). For ease of administration, we also
maintain a set of Rules that are associated with an SDP,
and a Condition for each entry of the Cache, as specified in
the original design.

3.5 Authorization Recycling
Authorization recycling [4] is an approach to distributed

access-enforcement in RBAC that was proposed in conjunc-
tion with the architecture in Figure 2. In this approach, two
caches are maintained at the SDP, Cache+ and Cache−. The
entries in Cache+ indicate authorizations that are allowed,
and the entries in Cache− indicate authorizations that are
disallowed. An entry in a cache is 〈R, p〉, where R is a set
of roles and p is a permission.

The access-enforcement algorithm is as follows. An ac-
cess request 〈s, p〉 is mapped to 〈R, p〉, where R is the set of
roles with which the session s is associated. We first check
whether there exists an entry in Cache− of the form 〈R′, p〉
such that R ⊆ R′. If there is, we deny the access request.
This is because R ⊆ R′ implies that no role in R is autho-
rized to p. Otherwise, we check whether there exists an entry
in Cache+ of the form 〈R′, p〉 such that R ⊇ R′. If there is,
we allow the request. This is because R ⊇ R′ implies that
some role in R is authorized to p.

It is possible that neither of the above two conditions is
met by 〈R, p〉 that corresponds to an access request 〈s, p〉.
In this case, we need to consult the PDP. Unlike with the
other approaches, in authorization recycling, no data struc-
ture is communicated from the PDP to the SDP in Step
2 of Figure 2. Rather, when an access request is made, if
there is a match in neither Cache− nor Cache+, the SDP
communicates with the PDP and then updates its Cache−

and/or Cache+. We refer the reader to Wei et al. [4] for the
algorithm that is used to update the two caches.

In our example of the two sessions, sa and sb for the
RBAC policy from Figure 1 from the previous sections, both
Cache+ and Cache− are empty before a request for access
takes place. Assume that Bob, in session sb, requests per-
missions Project Planning and Database Access. The for-
mer succeeds and the latter fails, and for each attempt, the
SDP acquires new state from the PDP. Cache+ contains
〈{Software Engineer, IT Consultant} , Project Planning〉 af-
ter the request for Project Planning, and Cache− contains
〈{Software Engineer, IT Consultant} , Database Access〉 after
the request for Database Access. Now, when Alice, in ses-
sion sa, requests permission Project Planning, the request
succeeds based on the contents of Cache− and Cache+.

3.6 (Cascade) Bloom Filter
A Bloom filter [12] is a probabilistic time- and space-

efficient data structure for encoding a set A, and checking
membership in A. We assume a universe, U of which A is a
subset. A Bloom filter B is an array of m bits, with indices
0 through m − 1. It is associated with k indexing functions
h1, . . . , hk each of which maps every e ∈ U to some integer
between 0 and m−1. To represent that e ∈ A, we set the bit
to which each hi maps. To check whether e ∈ A, we check
whether the bit to which every hi maps is set. A counting
Bloom filter [13] makes removal from a Bloom filter easier
by associating a counter with each index rather than a bit.

As k and m are constants in the size of A (and U), B
is represented in constant-space, and we can check whether
e ∈ A in constant-time. However, this check can result in a
false positive; i.e., a check may return ‘true’ in some cases
for which e 6∈ A. Consequently, a Bloom filter trades-off a
probability of false positives for time- and space-efficiency.

The cascade Bloom filter [5] is an extension of the Bloom
filter and has been proposed for the context with which we
deal in this paper – distributed enforcement for RBAC. This
approach uses several Bloom filters and associates each with
a level, l ≥ 1. Let the set encoded by the Bloom filter at

124

level i, Bi, be called Ai. Then, A0 = U , A1 = A, and for
i > 1, Ai comprises elements of Ai−2 that are false positives
in Bi−1. False positives of Bl are represented as a list.

The encoding of RBAC sessions in cascade Bloom filters
that has been proposed [5] is as follows. Let S = {s1, . . . , sn}
be the set of active sessions at a PEP-SDP, and P be the
set of permissions such that p ∈ P if any si ∈ S is au-
thorized to P . Then, U is S × P , and A is the smaller
(in cardinality) of Ap = {〈s, p〉 : s is authorized to p} and
An = {〈s, p〉 : s is not authorized to p}. A bit is maintained
with the cascade Bloom filter to indicate which of Ap or An

is encoded by it. The Bloom filter is a special case of the
cascade Bloom filter, with the number of levels, l = 1. We
adopt the same encoding of RBAC sessions for the Bloom
filter as the cascade Bloom filter.

For the example of sessions sa and sb for the RBAC policy
of Figure 1 from the previous sections, we show an example
cascade Bloom filter with 2 levels in Figure 3.

4. A BENCHMARK
In this section, we discuss a benchmark for access-enforcement

in RBAC that we have devised. The benchmark has two
components: RBAC policies (Section 4.1) and session pro-
files (Section 4.2). We have designed and implemented pro-
grams to generate data sets for the benchmark. The pro-
grams are written in Java, and take as input arguments that
correspond to the categorizations we discuss in Sections 4.1
and 4.2. We have made the programs available publicly [14].

4.1 RBAC Policies
The RBAC policies that comprise our benchmark are from

prior research in RBAC, and experience with RBAC deploy-
ments that have been documented in books and the research
literature. We present a summary in Table 1. We categorize
RBAC policies along the following axes.

Source We have two sources, “Literature,” and “Synthetic.”
By Literature, we mean that we have directly acquired par-
ticular kinds of policies from literature that documents re-
search and experience with RBAC. Our sources for these
can be classified into three. (1) top-down design of RBAC
policies [3, 15, 16, 17], (2) role mining and engineering [18,
19, 20, 21, 22, 23, 24, 25], and, (3) evaluation of approaches
to access-enforcement [4, 5, 8]. We also have created some
new kinds of policies based on policies from the literature.
We call these Synthetic policies.

Number of users, roles and permissions The numbers of
users, roles and permissions are typically co-dependant in
RBAC policies from the literature. In Table 1, we show the
number of users, and the corresponding numbers of roles and
permissions for policies from the literature, and for Synthetic
policies. We point out that roles do not grow, for example,
linearly, with users, but more as a step function.

We point out also that the number of permissions range
from a fraction of the number of users, to a somewhat sig-
nificant multiple. The reason for this range is that RBAC
is deployed in one of two contexts. One is for high-level
policies in which permissions are abstract. Another is at
a much lower level, in which resources that are protected
are individual files or email messages; in such systems, there
can be a considerable number of permissions. (It is common
for a permission to be a pair 〈o, r〉, where o is the object
or resource that is protected, and r is a privilege or right.

Activation Access checks
• Intra-session • Number
– Number of roles • Nature
– Number of permissions
– Nature of roles
– Nature of permissions
• Inter-session
– Number of sessions
– Arrival rate

Table 2: Session profile categories in our benchmark.

However, this is not the only encoding as a permission that
is meaningful; see, for example, the work of Crampton [26].)

For our Synthetic policies, we consider numbers for typ-
ical enterprises that we have not already considered under
Literature. The number of employees of an enterprise can be
up to 1.6 million as of the writing of this paper [27]. If such
enterprises deploy RBAC, we anticipate that they will want
to model each employee as an RBAC user. For such poli-
cies, we anticipate that the number of roles will be in the
same proportion to the number of users as for the largest
range for users from the literature. We do not anticipate
that the number of permissions will increase significantly.
Consequently, we adopt for permissions similar numbers as
the largest ranges from the literature.

Role Hierarchy (RH) and connectivity There are three cat-
egories we consider for the structure of RBAC policies. As
Table 1 indicates, these are RH Depth, RH Model and Con-
nectivity. By RH Depth, we mean the maximum path-length
from a role to a permission. In our survey of the literature,
the RH Depth does not exceed 5.

We consider two RH Models, Stanford and Hybrid. In the
Stanford model [3], roles are layered, and a role at layer i
directly inherits roles only in layer i + 1, and is inherited
directly only by roles in layer i − 1 (or by users, for the
topmost layer of roles). The Stanford model arises in the
top-down design of RBAC policies. Realizing the Stanford
model in an enterprise typically results in 4 or 5 layers of
roles [3]. The hybrid model arises in both the top-down
design of RBAC policies and in role mining. In the hybrid
model, the role hierarchy is some partial ordering, and not
layered as in the Stanford model. A special case of the two
models is when there is no role-role relationship. This is
called Core RBAC and arises in role mining [8, 21].

4.2 Session Profiles
There is some prior work which has datasets on session

profiles [5, 8, 28]. We augment those datasets with our own.
We categorize session profiles into two: activation and access
checks; we summarize in Table 2.

Activation Under this category, we consider attributes as-
sociated with the activation of a session. We consider both
intra- and inter-session attributes. An intra-session attribute
is the number of roles in the session. For the number, we
may specify a constant, or a range. Another attribute is
the nature of roles. For this attribute, we may specify, for
example, that only roles to which a user is directly assigned
are activated. Another example is that only roles that do
not violate some separation-of-duty condition may be ac-
tivated [3]. The other two attributes are the number and
nature of permissions.

125

Source # Users # Roles # Permissions RH Depth RH Model Connectivity

Literature

500-999 10-200 10-3000

1–5

1000-1999 200 1000-3500 Constant (range)
2000-2999 100 100-2000 Stanford to roles, Constant
3000-3999 200-250 1500-11000 Hybrid (range) to permissions,
5000-6000 200 1500-2000 Core Distributions (e.g.,

10000-40000 120-1300 100-11000 Zipf, uniform)

Synthetic
40001-400000 1600-16000 1500-2000

400001-1600000 16000-64000 1500-11000

Table 1: A categorization of RBAC policies in the benchmark.

We have two inter-session attributes. One is the number
of sessions that are activated. The other is the arrival rate
of sessions. We consider two kinds of arrivals: bursty and
uniform. By bursty arrival, we mean that session activa-
tions are interspersed with relatively long “quiet” periods in
which we have no session activation. In the interim, we have
access checks for the sessions that exist. In uniform session
arrival, session activations are uniformly interspersed with
access checks. We conjecture that bursty arrivals are likely
with sessions that are directly used by humans, and uniform
arrivals are possible if there are automated processes with
which sessions are associated.

Access checks Our second category under session profiles re-
lates to access checks. We have two broad attributes: the
number and nature of access checks. Under number of access
checks, we characterize how many access checks are made in
the session. Under the nature of access checks, we charac-
terize the permissions for which access checks needs to be
made. For example, a session may exercise a large subset
of the permissions to which it is authorized, and may do so
multiple number of times.

5. ASSESSMENT
In this section, we discuss our assessment of the six ap-

proaches using the benchmark that we discuss in the pre-
vious section. In Section 5.1, we discuss our methodology
for statistically sound data collection and evaluation. In
Section 5.2, we discuss our assessment of time efficiency for
inter-session attributes. In Section 5.3 we discuss our assess-
ment for intra-session attributes. In Section 5.4, we assess
the space efficiency of the approaches, and in Section 5.5,
we assess how administratively efficient each approach is.

We have implemented all six approaches in Java; our im-
plementations are available publicly [14]. For CPOL [6] and
the (cascade) Bloom filter [5], we have acquired the original
implementations. The code for the latter is already in Java,
and we have made some minor modifications for our assess-
ment. The original implementation of CPOL is in C++.
We have reimplemented it in Java so we have “apples for
apples” comparisons with the other approaches. In doing
so, we have attempted to adhere to the original implemen-
tation as closely as possible. In particular, the manner in
which the AccessToken (see Section 3.4) is implemented is
crucial to the time-efficiency of CPOL. We observe that the
timing measurements we obtain with our re-implementation
(see Table 3) are close to those of Borders et al. [6].

5.1 Methodology
Meaningful empirical assessment is a significant challenge

in computing [29]. For Java programs, non-determinism in
making empirical observations can result from various fac-
tors, such as dynamic compilation and garbage collection.
The methodology we adopt overcomes such non-determinism
and is statistically rigorous. It is based on the work of
Georges et al. [30].

Java programs run within an instance of a Virtual Ma-
chine (VM). We collect the average time across multiple
VM invocations, as there can be variation across such in-
vocations. Within a VM invocation, we need to avoid skew
from the effects of starting up the VM and reach what is
called steady-state [30]. For each VM invocation, we deter-
mine the number of benchmark iterations that we need to
perform by finding at least k consecutive steady-state values
for which the coefficient of variation (CoV) is less than some
preset value (we have chosen 2%). The value of k starts at
some value (4, in our case) and increases so long as the CoV
decreases, upto the threshold. We record the mean of the k
values for each VM invocation. Our final benchmark time
is the mean across all VM invocations.

To minimize the effects from garbage collection, we keep
the heap size constant across VM invocations. Apart from
the mean, we also compute confidence intervals. Our objec-
tive is for the confidence intervals to not overlap, as then,
with a certain confidence (95%, in our case), we can assert
that the two values are statistically distinct. All the values
we report and graph in this paper are statistically distinct
from other values.

We have conducted our experiments on an isolated Intel
dual core E8400 PC that runs at 3 GHz, has 3.5 Gbytes of
RAM and runs the Ubuntu Linux operating system. Our
Java version is 1.6.0 18, and we run the OpenJDK Runtime
Environment.

5.2 Time Efficiency – Inter-Session
We have two inter-session attributes: the number of ses-

sions, and the arrival rate. In Table 3 and Figure 4, we
present our results for time efficiency, with the inter-session
attributes as parameters. We also consider an intra-session
attribute, the nature of RH. We discuss the results that per-
tain to that in the next section. In each dataset we have
25 users, each authorized to different numbers of roles and
permissions. We have 100 roles in total, and 250 permis-
sions. Our objective is to understand the behavior of each
approach as the two inter-session attributes change. Conse-

126

Direc. Access Auth.
CPOL

Bloom Cas. Bl.
graph matrix recycl. filter filter

Bursty
Stanford 32.70 0.79 2928.80 2.14 56.03 18.07
Hybrid 9.41 0.80 94.07 3.12 60.15 32.40
Core 5.17 0.74 10.18 2.87 50.41 29.94

Uniform
Stanford 29.47 0.62 1220.43 1.50 53.73 22.00
Hybrid 8.45 0.62 49.73 1.44 55.57 25.54
Core 5.93 0.60 4.44 1.51 55.62 26.16

Table 3: Average access check times in µs with the inter-session attributes, and one intra-session attribute
(nature of RH), as parameters. The averages are across number of sessions from 2 through 15, for a given
RBAC policy that comprises 25 users, 100 roles and 250 permissions. For the Stanford RBAC policy, we
have adopted 5 layers, which is the maximum in Table 1. For the Hybrid RBAC policy, the depth varies
between 1 to 5. We give the standard deviations for the bursty case in Figure 4.

quently, we consider from 2 through 15 sessions, and both
bursty and uniform arrivals for the sessions. There are sev-
eral observations we make from our results.

Arrival rates We observe from Table 3 that none of the ap-
proaches, except authorization recycling, is impacted by the
session arrival rate (burst vs. uniform). The reason is that in
authorization recycling, all the work is during access check-
ing; session activation does not involve any exchange from
the PDP to the SDP (except validation of the initiation).
Consequently, authorization recycling can be impacted by
bursty session arrival, which results in a number of access
checks in a short periods.

Number of sessions The graphs in Figure 4 show the impact
of the number of sessions on each approach. We observe
that all six approaches are resilient to an increase in the
number of sessions from the standpoint of time efficiency.
That is, access check time does not necessarily grow with the
number of sessions. We expect this to be the case, so long as
the PEP/SDP is not stressed by adding too many sessions.
None of the approaches has an access check algorithm whose
time-complexity is parameterized by the number of sessions.

It is not our objective to stress a PEP/SDP by considering
large numbers of sessions. Indeed, the number of sessions a
PEP/SDP can support without significant impact on its per-
formance depends on its resources such as hardware. Our
objective is gain broader insights into the six approaches,
notwithstanding the resources available to a PEP/SDP, as-
suming some realistic model of computation (the “Random-
Access Machine” model, for example [11]).

Efficiency The access matrix is very time-efficient; in our
tests, an access check takes less than 1 µs. This is unsur-
prising as an access check is done in constant time with mini-
mal additional overhead. CPOL is only slightly less efficient;
for this particular dataset, we can perceive the number of
permissions to which a session is authorized as constant.
Consequently, the manner in which a CPOL AccessToken is
realized does not impact time-efficiency. The directed graph
is highly efficient for Core RBAC. This is because a path
from a session vertex to a permission vertex is exactly 2;
consequently, it is highly efficient when we have only up to a
few hundred roles. The cascade Bloom filter and the Bloom
filter are also efficient. The major overhead with them are
the computation of the indexing function (in our implemen-
tation, this is the cryptographic hash function, SHA-1 [31]),
and searching a set in the worst case. Authorization recy-

cling is efficient for Core RBAC, but its performance de-
grades when we add a hierarchy. The reason is that the first
time a permission is accessed, the SDP must communicate
with the PDP; this must happen for every permission that
is accessed. We study the impact on time efficiency from
intra-session attributes (e.g., a large number of permissions
in a session) in the next section.

Jitter By jitter, we mean the variation in access check times
as the number of sessions changes. We can quantify this as
the percentage error in the mean; that is, the ratio of the
standard deviation to the mean. We observe from Figure 4
that this is quite small for the directed graph, access matrix
and CPOL. It is higher for the cascade and Bloom filter, and
very high for the Stanford RH for authorization recycling.
The cascade and Bloom filter are affect by the heterogeneity
of the permissions; if the union of permissions to which all
sessions are authorized is larger, this can result in a deeper
cascade or a larger set of false positives that must be main-
tained explicitly. Authorization recycling is affected by the
heterogeneity of the roles that a user may activate in a ses-
sion. In our datasets, a user is directly assigned to the same
number of roles across each of the Stanford, Hybrid and
Core policies. Consequently, there is more heterogeneity in
the roles that a user may activate in the Stanford policy
than in the other two.

5.3 Time-Efficiency – Intra-Session
We have studied the impact of intra-session attributes on

time-efficiency. We vary three parameters in our experi-
ments in this context: the number of roles per session, the
number of permissions per session and the nature of RH
(Stanford, Hybrid and Core). Figures 4 shows the impact
of the last attribute on time efficiency, and 5 shows average
access check times in µs for Core RBAC, for which the num-
ber of roles and permissions range from small (10) to large
(10,000). Such numbers are consistent with Table 1.

Role hierarchy Table 3 and the graphs in Figure 4 show the
impact of Stanford vs. Hybrid vs. Core as the choice for RH.
Only for the directed graph and authorization recycling do
we see an impact from the choice of RH. For the directed
graph, a deeper RH results in an increased access check time
as we need to traverse a longer path from a session vertex to
a permission vertex. For authorization recycling, a deeper
RH gives a user more choices of roles he may activate. This
is reflective of our dataset – a user is directly assigned to the
same number of roles for all three of the Stanford, Hybrid

127

Figure 4: Average access check times in µs and the corresponding standard deviations for our six approaches
as the number of sessions changes, for the three different kinds of role hierarchies.

128

Figure 5: Time efficiency for small (10) to large (10,000) numbers of roles and permissions in a session. In
the graph to the right, we do not plot authorization recycling as the numbers are much larger than the ones
for the other approaches.

and Core RBAC policies. However, in the Stanford policy,
he is authorized to more roles as a result of the deep RH.
Consequently, the size of Cache− and Cache+ is larger.

Scalability We observe from Figure 5 that the directed graph
scales poorly as we increase the number of roles. The rea-
son is that access checking for the directed graph is vertex
reachability, which is linear in the size of the graph. Autho-
rization recycling fairs somewhat poorly as we need to cache
almost every role for each permission, and this results in it
being linear in the number of roles, though with a smaller
constant than for the directed graph. For the cascade and
Bloom filter, access matrix and CPOL, the time for access
checking is independent of the number of roles in a session.
In this respect, they scale well with the number of roles.

The cascade and Bloom filter, access matrix and CPOL
scale well also with the number of permissions, as Figure 5
indicates. This is somewhat surprising as an AccessToken
in CPOL is linear in the number of permissions in a session.
As we mention earlier, it is crucial to the time efficiency
of CPOL that this encoding be efficient. Also, for the cas-
cade and Bloom filters, the optimal values of the number of
indices and the number of indexing functions changes with
the number of permissions. (It may decrease for the cascade
Bloom filter owing to the negation bit.) Notwithstanding
this, upto 10,000 permissions, these issues appear to have no
tangible impact on the time efficiency of these approaches.
The directed graph fares poorly in this context as well. This
is because the adjacency list approach often requires a linear
search to find a vertex (permission, in this case). We do not
plot authorization recycling in the graph for permissions in
Figure 5 as the numbers for it are much higher than for the
other approaches. It scales poorly with the number of per-
missions, as the number of entries in the two caches is linear
in the number of permissions in a session.

5.4 Space-Efficiency
In this section, we analyze the space-efficiency of the six

approaches. We base our assessment on what we have ob-
served from our implementations, and an analysis of the data
structures. The space needed for a directed graph grows lin-
early with the number of sessions. In the worst-case, it can
also grow linearly with the number of permissions and roles

per session. However, on average, the size of the directed
graph is constant in the number of permissions and roles.
This is because we expect roles and permissions to be shared
by several sessions.

The access matrix is highly space inefficient. The reason
is that it grows quadratically with the number of sessions
and the number of permissions to which any session is au-
thorized. CPOL is linear in the number of sessions. It is
linear also in the number of permissions per session, and
therefore not as space efficient as the directed graph. It is
agnostic to the number of roles in a session. Authorization
recycling is linear in the number of sessions. However, it can
be quadratic in the number of roles and permissions, in the
worst case. The reason is that an entry in the Cache− or
Cache+ is a role set-permission pair.

The Bloom filter and the cascade Bloom filter are non-
constant in space relative to the number of sessions and the
number of permissions per session. The reason is that the
optimal values for the number of indices and the number of
indexing functions changes with the number of sessions and
permissions. For the cascade Bloom filter, the number of in-
dices may decrease with an increase in the number of session
or permissions per session as a consequence of the negation
bit (see Section 3.6 and Figure 3). Our code implements the
algorithms for insertion and deletion that have been pro-
posed by Tripunitara and Carbunar [5]. Consequently, the
relationship between space and the number of sessions or
permissions per session is a step function. The cascade and
Bloom filter are agnostic to the number of roles per session.

In Figure 6, we present graphs that capture the above
discussion. The graphs have been generated based on our
implementations. The reason the access matrix is highly
space-efficient for small numbers of sessions is that it is a bit
matrix. However, as the number of sessions and permissions
per sessions grow, its (quadratic) growth quickly negates the
fact that each entry in the matrix is only a bit.

5.5 Administrative Efficiency
An administrative change is the addition or deletion of

a user-role, role-role or permission-role relationship in an
RBAC policy. The addition of a user at the PDP has no
impact on an SDP. However, the removal of a user may im-

129

Figure 6: The space efficiency of our approaches. We show the three space inefficient approaches (access
matrix, authorization recycling and CPOL) to the left, and the three space efficient approaches (directed
graph, cascade and Bloom filter) to the right. In our dataset that we used to generate these graphs, The
number of roles and permissions grows by a constant factor per session.

pact an SDP, as that user’s sessions need to be removed.
This impact is linear in the number of sessions in the worst
case for the directed graph, quadratic in the number of ses-
sions and permissions in the worst case for the access matrix,
constant-time for authorization recycling, linear in the num-
ber of sessions in the worst case for CPOL, and quadratic
in the number of sessions and permissions in the worst case
for the cascade and Bloom filter.

The addition or removal of a permission can impact an
SDP. The impact is constant-time for the directed graph,
linear in the worst case in the number of sessions for the
access matrix, quadratic in the number of sessions and roles
in the worst case for authorization recycling, linear in the
number of sessions for CPOL, and linear in the number of
sessions in the worst case for the cascade and Bloom filter.
The addition or removal of a role can authorize or forbid a
session, respectively, to several permissions. We can infer
the impact on the six approaches from our discussions on
permissions.

In Table 4, we show the results of a proportional mix of ad-
ministrative changes. The research literature on RBAC ad-
ministration has focussed mostly on user-role changes, pre-
sumably because these are the most frequent in real-world
deployments. We assume that 75% of the changes are to
user-role relationships. We conjecture that permission-role
changes are the next most frequent (20%) and changes to
roles are infrequent (5%). In our experiments, sessions over-
lap with one another in terms of permissions and roles to a
constant factor.

6. CONCLUSIONS
We summarize our conclusions in Table 5. For each ap-

proach, we rate it “good,” “fair” or “poor” along the three
axes that we adopt in this paper. For time efficiency, we split
our rating into inter- and intra-session. The table allows us
to choose the most appropriate approach for an RBAC de-
ployment. For example, if the deployment is small in the
size of the RBAC policy (e.g., only up to 100’s of roles and
permissions), then the access matrix is a good choice. If
the deployment is larger, however, space considerations can
dominate, and the cascade Bloom filter is a good choice. If

there is a need to balance reasonable space and access check
time with ease of administration, then the directed graph is
a good choice.

Summary We have assessed six approaches to distributed
access enforcement in RBAC. Our approach is empirical,
and we have proposed and used a benchmark as the basis.
Based on our quantitative results, we are able to provide
guidance on the best approach from the among the six for
particular RBAC deployments.

Future work A validation of our conclusions in real-world
RBAC deployments is an important piece of future work.
Another issue is whether our approaches can apply to emer-
gent access control models other than RBAC. We can also
go back and ask this question in older contexts such as trust
management. For example, it will be interesting to assess
whether an encoding of trust management systems in the
access matrix will give better performance than CPOL [6].

7. REFERENCES
[1] Personal Communication, Open Text Corporation,

Aug. 2010.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman, “Role-based access control models,” IEEE
Computer, vol. 29, pp. 38–47, February 1996.

[3] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli,
Role-Based Access Control. Artech House, Apr. 2003.

[4] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu,
“Authorization Recycling in RBAC Systems,” in
Proceedings of the 13th ACM Symposium on Access
Control, Models and Technologies (SACMAT’08),
pp. 63–72, 2008.

[5] M. Tripunitara and B. Carbunar, “Efficient Access
Enforcement in Distributed Role-Based Access
Control (RBAC) Deployments,” in Proceedings of the
14th ACM Symposium on Access Control, Models and
Technologies (SACMAT’09), pp. 155–164, 2009.

[6] K. Borders, X. Zhao, and A. Prakash, “Cpol:
High-performance policy evaluation,” in Proceedings of
the 12th ACM Conference on Computer and
Communications Security (CCS’05), pp. 147–157,
2005.

130

Direc. Access Auth.
CPOL

Bloom Cas. Bl.
graph matrix recycl. filter filter

100 13.45 2934.00 2294.20 321.75 1006.95 2530.05
200 22.20 9003.60 2757.00 1644.00 927.60 5559.30
300 39.15 1741.05 8085.60 5439.30 9760.50 2753.55
400 45.80 3748.80 524.00 5053.00 13755.00 4891.60
500 38.50 25097.25 8781.50 12567.25 3568.00 15980.00
600 87.30 20488.20 3272.10 3492.00 16399.50 7051.80
700 108.85 18676.70 19598.25 1737.05 7383.60 12406.45
800 142.00 33686.40 17520.40 7352.00 7076.80 1967320
900 151.65 17543.25 44167.05 17145.00 33234.30 41891.85
1000 158.50 31068.00 685.00 6800.00 19080.50 32351.50

Table 4: The administrative overhead on a Core RBAC policy. We assume a proportion of 75% changes to
user-role relationships, 20% to role-permission relationships, and 5% to role-role relationships. The number
of sessions is 1000, and every user has at least one session.

Direc. Access Auth.
CPOL

Bloom Cas. Bl.
graph matrix recycl. filter filter

Time
Inter-session fair good fair good fair fair
Intra-session poor good poor good good good
Space fair poor poor poor fair good
Admin good poor poor poor poor poor

Table 5: Our rating of “good,”“fair” or “poor” for each approach that we assess. While we argue that these
ratings follow from our quantitative observations, they are somewhat subjective.

[7] S. Wilson and J. Kesselman, Java Platform
Performance: Strategies and Tactics. Prentice Hall,
May 2000.

[8] Y. Liu, C. Wang, M. Gorbovitski, T. Rothamel,
Y. Cheng, Y. Zhao, and J. Zhang., “Core role-based
access control: efficient implementations by
transformations,” PEPM’06: Proceedings of the 2006
ACM SIGPLAN symposium on Partial Evaluation
and semantics-based Program Manipulation,
pp. 112–120, May 2006.

[9] G. S. Graham and P. J. Denning, “Protection —
principles and practice,” in Proceedings of the AFIPS
Spring Joint Computer Conference, vol. 40,
pp. 417–429, AFIPS Press, May 16–18 1972.

[10] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman,
“Protection in operating systems,” Communications of
the ACM, vol. 19, pp. 461–471, Aug. 1976.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms. The MIT Press,
3 ed., Sept. 2009.

[12] B. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM,
vol. 13, no. 7, pp. 422–426, 1970.

[13] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary
cache: A scalable wide-area web cache sharing
protocol,” IEEE/ACM Transactions on Networking,
vol. 8, no. 3, pp. 281–293, 2000.

[14] Marko Komlenovic, Mahesh Tripunitara and Toufik
Zitouni, “A platform for assessing approaches to
distributed Role-Based Access Control (RBAC)
enforcement,” 2010. Available from
http://code.google.com/p/dist-rbac-eval/.

[15] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett,

“Observations on the role life-cycle in the context of
enterprise security management,” 7th ACM
Symposium on Access Control Models and
Technologies, June 2002.

[16] A. Schaad, J. Moffett, and J. Jacob., “The role-based
access control system of a european bank: A case
study and discussion,” proceedings of ACM
Symposisum on Access Control Models and
Technologies, pp. 3–9, May 2001.

[17] A. Kern, “Advanced features for enterprise-wide
role-based access control,” Proceedings of the 18th
Annual Computer Security Applications Conference,
pp. 333–343, December 2002.

[18] D. Zhang, K. Ramamohanarao, S. Versteeg, and
R. Zhang., “Rolevat: Visual assessment of practical
need for role based access control,” ACSAC,
pp. 13–22, 2009.

[19] J. Vaidya, V. Atluri, and J. Warner, “Roleminer:
mining roles using subset enumeration,” Proceedings of
the 13th ACM conference on Computer and
communications security (CCS’06), pp. 144–153, 2006.

[20] D. Zhang, K. Ramamohanarao, T. Ebringer, and
T. Yann, “Permission set mining: Discovering
practical and useful roles,” ACSAC’08: Proceedings of
the 2008 Annual Computer Security Applications
Conference, pp. 247–256, 2008.

[21] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo,
“Evaluating role mining algorithms,” Proc. ACM
Symposium on Access Control Models and
Technologies (SACMAT), pp. 95–104, 2009.

[22] C. Blundo and S. Cimato, “A simple role mining
algorithm,” Proceedings of the 2010 ACM Symposium
on Applied Computing, pp. 1958–1962, 2010.

131

[23] M. Frank, A. Streich, D. Basin, and J. Buhmann, “A
probabilistic approach to hybrid role mining,” Proc.
16th ACM conference on Computer and
Communications Security (CCS), pp. 101–111, 2009.

[24] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino,
S. Calo, and J. Lobo, “Mining roles with semantic
meanings,” Proc. ACM Symposium on Access Control
Models and Technologies (SACMAT), 2008.

[25] M. Jafari, A. Chinaei, K. Barker, and M. Fathian,
“Role mining in access history logs,” Journal of
Information Assurance and Security, 2009.

[26] J. Crampton, “On permissions, inheritance and role
hierarchies,” in Proceedings of the Tenth ACM
Conference on Computer and Communications
Security (CCS-10), pp. 27–31, ACM Press, Oct. 2003.

[27] “Global 500.” Fortune Magazine, 2010. Available from
http://money.cnn.com/magazines/fortune/

global500/2010/.

[28] Q. Yao, A. An, E. Terzi, and X. Huang, “Finding and
analyzing database user sessions,” Proceedings of the
10th International Conference on Database Systems
for Advanced Applications (DASFAA), 2005.

[29] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Producing wrong data without doing
anything obviously wrong!,” in Proceeding of the 14th
international conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS’09), pp. 265–276, 2009.

[30] A. Georges, D. Buytaert, and L. Eeckhout,
“Statistically rigorous java performance evaluation,”
Proceedings of OOPSLA’07, pp. 57–76, May 2007.

[31] F. I. P. Standards, “Secure hash standard,” 2002.
Available from
http://csrc.nist.gov/publications/fips/

fips180-2/fips180-2withchangenotice.pdf.

132

